Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

for the Pierre Auger Collaboration

Full author list: http://www.auger.org/archive/authors_2016_04.html

QCD at Cosmic Energies VII, Chalkida, Greece May the 17th 2016

Outline

Hadronic interactions can be tested at ultra-high energy in PAO thanks to the comparison of different observables

No consistent description from models

Introduction

- Hadronic Physics in air showers
- Fluorescence Detector
 - Cross section
 - average shower profile
- Hybrid analysis
- Surface Detector
 - Muons in inclined showers
 - Muon production depth (MPD)

Preamble

- Goal of Astroparticle Physics :
 - astronomy with high energy particles
- How to test hadronic interactions ?
 - → if the source mechanism is well understood we could have a known beam at ultra-high energy (10¹⁰ GeV and more)

unlikely situation

- reasonable minimum limits from CR abundance :
 - Iow = hydrogen (proton)
 - ♦ high = iron (A=56)
- test of hadronic interactions in EAS via correlations between observables.

mass measurements should be consistent and lying between proton and iron simulated showers !

From R. Ulrich (KIT)

Spectrum

Extensive Air Shower

From R. Ulrich (KIT)

 $\begin{array}{l} A + air \rightarrow \text{hadrons} \\ p + air \rightarrow \text{hadrons} \\ \pi + air \rightarrow \text{hadrons} \\ \text{initial } \gamma \text{ from } \pi^0 \text{ decay} \\ e^{\pm} \rightarrow e^{\pm} + \gamma \\ \gamma \rightarrow e^+ + e^- \end{array}$

hadronic physics

well known QED

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$$

Cascade of particle in Earth's atmosphere

Number of particles at maximum

- ➡ 99,88% of electromagnetic (EM) particles
- 0.1% of muons
- 0.02% hadrons

Energy

from 100% hadronic to 90% in EM + 10% in muons at ground (vertical)

Hybrid Analysis

SD: Muons

Toy Model for Electromagnetic Cascade

Primary particle : photon/electron

Heitler toy model :

2 particles produced with equal energy

2ⁿ particles after n interactions

$$n = X / \lambda_{e}$$

$$N(X) = 2^{n} = 2^{X/\lambda_{e}} \qquad E(X) = E_{0}/2^{X/\lambda_{e}}$$

Assumption: shower maximum reached if $E(X) = \underline{E}_c$ (critical energy)

$$N_{max} = E_0 / E_c$$
 $X_{max} \sim \lambda_e \ln(E_0 / E_c)$

Toy Model for Hadronic Cascade

Shower development dominated by first (highest energy $E_0/(2N_{tot}))$ produced em particle:

$$X_{max} \sim \lambda_e \ln \left(E_0 / (2.N_{tot}) / E_c \right) + \lambda_{ine}$$

Primary particle : hadron

Using a simple generalized Heitler model to understand EAS characteristics :

- fixed interaction length
- equally shared energy
- 2 types of particles :
 - N_{had} continuing hadronic cascade until decay at E_{dec} producing muons (charged pions).
 - N_{em} transferring their energy to electromagnetic shower (neutral pions).

J. Matthews, Astropart.Phys. 22 (2005) 387-397

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - cross-sections (p-Air and $(\pi$ -K)-Air)
 - (in)elasticity
 - multiplicity
 - charge ratio and baryon production
- Change of primary = change of hadronic interaction parameters

cross-section, elasticity, mult. ...

With unknown mass composition hadronic interactions can only be tested using various observables which should give consistent mass results

Pierre Auger Observatory

SD: Muons

Fluorescence Detector

- Most direct measurement
 - dominated by first interaction
- Reference mass for other analysis (see J. Bellido)

 \rightarrow <InA> from <X_{max}> and RMS

- Possibility to use the tail of X_{max} distribution to measure p-Air inelastic cross-section.
 - require no contamination from photon induced showers (independent check)
 - correction to "invisible" crosssection using hadronic models
 - conversion to p-p cross-section using Glauber model.

Direct Cross-Section Measurement

- Update of PRL 109, 062002 (2012)
 - About four times more data: 44218 events
 - Two bins in energy: $10^{17.8} 10^{18.0} 10^{18.5} \text{ eV}$
 - Updated systematic uncertainties
 - New hadronic interaction models:

EPOS-LHC, QGSJetII-04 tuned to LHC data

- Direct measurement from the tail of X_{max} distribution
 - X_{max} is a convolution between X_1 (cross-section) and ΔX (shower development from models)

Constraints from Data

Careful data selection

- maximum statistic
- maximum quality (showers completely in field-of-view)
- tail should contain only p-showers (contamination by He is largest uncertainty)
- energy ranged fixed by composition measurement in PAO data (See J. Bellido)

Attenuation Length

 $\langle \mathsf{E}
angle = 10^{17.90}\,\mathrm{eV}$

 $\Lambda_{\eta} = 60.7 \pm 2.1 (\text{stat}) \pm 1.6 (\text{syst}) \,\text{g/cm}^2$

 \rightarrow η = fraction of event from highest energy

- → deconvolution from $Λ_η$ to σ using hadronic models to take into account diffraction (syst. uncertainties, dominated by Sibyll 2.1)
- not enough sensitivity (yet) to slope of energy or event fraction dependence.

 $\langle \mathsf{E} \rangle = 10^{18.22} \, \mathrm{eV}$

 $\Lambda_{\eta} = 57.4 \pm 1.8(\text{stat}) \pm 1.6(\text{syst}) \,\text{g/cm}^2$

Sytematic Uncertainties

	$10^{17.8} - 10^{18}\mathrm{eV}$	$10^{18} - 10^{18.5} \mathrm{eV}$
Λ_{η} , systematic uncertainties (mb)	13.5	14.1
Hadronic interaction models (mb)	10	10
Energy scale uncertainty, $\Delta E/E = 14\%$ (mb)	2.1	1.3
Conversion of Λ_{η} to σ_{p-air} (mb)	7	7
Photons (mb)	+4.7	+4.2
Helium, 25% (mb)	-17.2	-15.8
Total systematic uncertainty on $\sigma_{\rm p-air}$ (mb)	+19/-25	+19/-25

Helium fraction does not exceed 25% in mass composition fits published by Auger

- ➡ Up to 25% Helium:
 - induced bias < 20mb</p>
 - CNO induces no bias : up to 50% of CNO.
- ➡ Up to 0.5% of Photons:
 - induced bias < 10mb</p>

p-Air Production Cross Section @ 57 TeV

p-Air Production Cross Section @ 39 and 55 TeV

p-p Inelastic Cross Section @ 39 and 55 TeV

Conversion using Glauber model: Glauber(σ_{pp}^{tot} , B_{el} , λ , ...) $\rightarrow \sigma_{\text{p-air}}$

Lower energy point 76.95 \pm 5.4(stat)+5.2/-7.2(syst) \pm 7(glauber) at $\sqrt{s_{\rm pp}} = 38.7 \pm 2.5$ TeV Higher energy point 85.62 \pm 5(stat)+5.5/-7.4(syst) \pm 7.1(glauber) at $\sqrt{s_{pp}} = 55.5 \pm 3.6$ TeV

p-p Inelastic Cross Section @ 39 and 55 TeV

Conversion using Glauber model: Glauber(σ_{pp}^{tot} , B_{el} , λ , ...) $\rightarrow \sigma_{\text{p-air}}$

Relatively low cross-section compared to TOTEM: Limitations due to Glauber approach ? uncertainties to low ?

Mean Longitudinal Profile

Average of all FD measurements rescaled and centered at X⁻=X-X_{max}:

- Extract 2 parameters from mean shower shape
 - L from rising before maximum
 - 🔶 R from fall after maximum
- Sensitivity to mass composition and hadronic interactions

QCD Cosmics – May 2016

Shape Parameters vs Energy

Large uncertainties but similar results between models and compatible with data

QCD Cosmics – May 2016

T. Pierog, KIT - 20/33

SD: Muons

Model Consistency using FD

Shown by J. Bellido : std deviation of InA allows to test model consistency.

Model Consistency using FD

Shown by J. Bellido : std deviation of InA allows to test model consistency.

Hybrid Analysis

- Analysis based on 411 Golden Hybrid Events
 - find simulated showers reproducing each FD profile for all possible models and primary masses (p, He, N, Fe),
 - decompose ground signal into pure electromagnetic (S_{EM}) and muon dependent signal (S_U),
 - rescale both component separately (R_e and R_µ to reproduce SD signal for each showers,

 $S_{\rm resc}(R_E, R_\mu)_{i,j} \equiv R_E S_{EM,i,j} + R_E^{\alpha} R_\mu S_{\mu,i,j}$

for mixed composition, give weight according to X_{max} distribution.

Muon Rescaling

- Simulations don't reproduce FD and SD signal consistently
 - R=S^{observed}/S^{predicted} increase
 with zenith angle
 - EPOS-LHC Iron could be (almost) compatible with data, but X_{max} data are NOT pure Iron (but mixed).

- To reproduce data simulations have to be rescaled
 - for mixed composition, only muon component has to be changed

correct energy scale

 30% muon deficit for EPOS-LHC and 59% for QGSJETII-04.

QCD Cosmics – May 2016

T. Pierog, KIT - 24/33

Hybrid Analysis

Muon Rescaling

- Simulations don't reproduce FD and SD signal consistently
 - R=S^{observed}/S^{predicted} increase with zenith angle
- To reproduce data simulations have to be rescaled
 - for mixed composition, only muon component has to be changed

To get FD and SD data consistently reproduced, muon signal has to be increased in simulations :

Check it by direct muon measurement !

Hybrid Analysis

SD: Muons

Toy Model for Hadronic Cascade

Primary particle : hadron Muons produced after many had. generations

N_{had}ⁿ particles can produce muons after n interactions

 $N(n) = N_{had}^n$

 N_{tot}^{n} particles share E_0 after *n* interactions

 $E(n) = E_0 / N_{tot}^n$

Assumption: particle decay to muon when $E = E_{dec}$ (critical energy) after n_{max} generations

$$E_{dec} = E_0 / N_{tot}^{n_{max}}$$

$$n_{max} = \frac{\ln(E_0/E_{dec})}{\ln(N_{tot})}$$

Surface Detector

- **SD** detector sensitive to
 - electromagnetic particles (EM)
 - ➡ muons
- Particles at ground produced after many generations of hadronic interactions
 - most of EM particles from pure EM (universal) shower (depend on high (first) energy hadronic interactions)
 - muons produced at the end of hadronic cascade (depend on low energy hadronic interactions)
 - small fraction of EM (at large r) produced by last hadronic generation
- EM and muons give different signal in Cherenkov detector.
 - property of time traces

Direct Muon Measurement

Old showers contain only muon component

- direct muon counting with very inclined showers (>60°) by comparing to simulated muon maps (geometry and geomagnetic field effects)
- EM halo accounted for
- correction between true muon number and reconstructed one from map by MC (<5%)

R_{μ}/E_{FD} in energy bins

Hybrid Analysis

Direct Muon Measurement

QCD Cosmics – May 2016

SD: Muons

Muon Production Depth

geometric delay of arriving muons

$$c \cdot t_{g} = \frac{l}{l} - (z - \Delta)$$
$$= \sqrt{r^{2} + (z - \Delta)^{2}} - (z - \Delta)$$

mapped to muon production distance

 $z = \frac{1}{2} \left(\frac{r^2}{ct_{\rm g}} - ct_{\rm g} \right) + \Delta$

decent resolution and no bias

Hybrid Analysis

MPD and Models

- ➡ data set: 01/2004 12/2012
- ➡ E > 1e19.3 eV
- zenith angles [55°,65°]
- Core distances [1700 m, 4000 m] (more muons/event)
- ➡ 481 events after quality cuts
- ➡ syst: 17 g/cm2
- Event by event resolution:
 - 100 (80) g/cm2 at 10^{19.3} eV for p (Fe)
 - 50 g/cm2 at 10²⁰ eV

Large discrepancies between models : EPOS LHC predictions for MPD excluded by data (outside p-Fe range) High sensitivity of MPD to some details of hadronic interactions

MPD and Models

- 2 independent mass composition measurements
 - both results should be between p and Fe
 - both results should give the same mean logarithmic mass for the same model
 - problem with EPOS appears after corrections motivated by LHC data (low mass diffraction) and model consistency (forward baryon production at high energy : see S.Ostapchenko's talk): direct constraint on hadronic interactions.

Summary

- Measurements of the EM content in showers:
 - relatively well reproduce by models
- Measurements of the muon content in showers:
 - direct results comparable with Fe-like predictions from post-LHC models
 - observed X_{max} distribution (EM component) not compatible with Fedominated composition: discrepancy between data and hadronic interaction models.
- Comparison of <InA> from X_{max} from FD and X^µ_{max} from SD allows direct test of hadronic interaction models (and Physics behind !)
 - test small effects amplified by cascade effect
 - test energy, phase space (forward) and projectile (mesons) difficult to reach with accelerators

Hadronic interactions can be tested at ultra-high energy in PAO thanks to the comparison of different observables

No consistent description from models

Small Rapidity Gaps

- Effect of remnant mass distribution in EPOS
 - \twoheadrightarrow small y-gap or EPOS 1.99 : diffractive mass distribution 1/M for p and π
 - \twoheadrightarrow small y-gap π : diffractive mass distribution 1/M² for p and 1/M for π
 - EPOS LHC : diffractive mass distribution $1/M^2$ for p and π

Small Rapidity Gaps

- Effect of remnant mass distribution in EPOS
 - \twoheadrightarrow small y-gap or EPOS 1.99 : diffractive mass distribution 1/M for p and π
 - small y-gap π : diffractive mass distribution 1/M² for p and 1/M for π
 - EPOS LHC : diffractive mass distribution 1/M² for p and π

Muon Counting

Reference model: QGSJet II.04 (proton)

Reference model: QGSJet II.03 (proton)

The Smoothing Method

- Time traces analysis
 - amplitude distribution of the particle responses:
 - muon signal is peaky
 - EM signal is smooth
 - arrival time distributions:
 - muonic signal is short and high
 - EM signal is low and elongated
- Method
 - smooth the signal with a low-pass rectangular filter:

$$\hat{x}_j = \sum_{i=1} x_i p_{ij}$$

- → assign any positive difference to the muon signal $S_{\mu} = \sum_{i=1}^{N} \mathbb{I}\left\{x_{j} > \hat{x}_{j}\right\} (x_{j} \hat{x}_{j})$
- repeat the procedure on the smooth component until convergence to get muon fraction

The Multivariate Method

Time traces analysis

- → muon fraction measured by combining muon-content characteristics of the FADC signal : $\hat{f}_{\mu} = a + b \hat{\theta} + c f_{0.5}^2 + d \hat{\theta} P_0 + e \hat{r}$
- $f_{0.5}$ and P_0 sensitive to large relative fluctuations and short signals as those when muons are signal dominant
- ➡ fit parameters (a, b, c, d, e) estimated using MC simulations

QCD Cosmics – May 2016

T. Pierog, KIT - 38/33

60

Muon Signal from Time Traces

Time traces analysis 0.9 Auger data (multivariate) 0.8 from FADC traces at 1000 m from shower core Auger data (smoothing) 0.7 QGSJetII.04 proton SD events with $\theta < 60^{\circ}$, E_{recon} : $10^{18.98} - 10^{19.02} \text{ eV}$ QGSJetII.04 iron μ^π 0.6 **EPOS.LHC** proton EPOS.LHC iron normalized to QGSJETII-04 proton: 0.5 0.4 Multivariate: 1.33 ± 0.02 (stat) ± 0.05 (sys) 0.3∟ 10 20 30 40 50 Smoothing: 1.31 ± 0.02 (stat) ± 0.09 (sys) θ[°] 2.070 **EPOS.LHC** iron Auger data (multivariate) 60 1.8 $S_{\mu 19}(1000)/S_{\mu 19} Q/P(1000)$ **EPOS.LHC** proton Auger data (smoothing) S₁₉(1000) [VEMcharge] QGSJetII.04 iron 50 1.6 QGSJetII.04 proton 40 QGSJetII.04 proton 1.4 **QGSJetII.04** iron 30 **EPOS.LHC** proton 1.2 20 **EPOS.LHC** iron Auger data 1.0 10 0 10 0.8 10 20 30 40 50 60 20 30 40 50 60 θ̂ [°] $\hat{\theta}$ [°]

MPD and Diffraction

- Inelasticity linked to diffraction (cross-section and mass distribution)
 weak influence on EM X_{max} since only 1st interaction really matters
 - \rightarrow cumulative effect for X^{μ}_{max} since muons produced at the end of hadr. subcasc.
 - rapidity-gap in p-p @ LHC not compatible with measured MPD
 - \rightarrow harder mass spectrum for pions reduce X^{μ}_{max} and increase muon number !

probably different diffractive mass distribution for mesons and baryons

