- Constraining hadronic interaction models

with LHC & cosmic ray data
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Outline of the talk

© Motivation: model uncertainties for air shower predictions

Q Input from LHC data & remaining model differences for Xmax

© Two basic approaches for constituent parton Fock states
o differences in model results
@ how to test at LHC

@ Relevance of the inelastic diffraction
@ Other uncertainties & model tests with UHECR data
© Outlook



Cosmic ray studies with Extensive Air Shower technique

)

@ primary CR energy <= charged particle density at ground

@ CR composition <= muon density p,, at ground




Cosmic ray studies with Extensive Air Shower technique

@ primary CR energy <= integrated light

@ CR composition <= shower maximum position Xmax




Cosmic ray studies with Extensive Air Shower technique

@ e.g. predictions for Xnax. on the properties of the primary

particle interaction (Oi,;‘_e'air, forward particle spectra)

@ predictions for muon density: on secondary particle

interactions (cascade multiplication); mostly on N&"_.




Cosmic ray studies with Extensive Air Shower technique

thls talk: mostly devoted to model predictions for Xmax

@ relation of the differences for predicted Xmax to the
treatments of proton-proton & pion-proton collisions

@ how to constrain by LHC & CR measurements




Most of the models: updated with Run 1 data of LHC
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~ 250 ¢ ~ 250
Eas B pep /| g p+p
S8 F Total - # &
© 20 F — EPOS19 e g © 20 B — BpOSLHC Total
175 £ - QGSIETIHO3 Sy 175 £~ QGSIETI-4
E QGSIET01 P “ « TOTEM
G B 7, St 2 A hgasic] 10
125 2 et 125
100 E 100 »
7 ; 75 Inelastic
50 E 50
2 e 2
0 ‘,\\H\H‘ 3\ \HHH‘ 4\ \\IHH‘ ﬁ‘ \HHH‘ 6 [) : Hﬁ‘.lll 2\ \HHH' .‘\ \HHH‘ 4I HIHH‘ S\ IHHHl 6
- 10 10 010 10 010 0
Vs (GeV) Vs (GeV)

[from R. Engel]
@ important: results of ATLAS ALFA - consistent with TOTEM




Most of the models: updated with Run 1 data of LHC

Now: very similar high energy extrapolations for all the models
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Most of the models: updated with Run 1 data of LHC

Now: very similar high energy extrapolations for all the models
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model - outdated physics-wise (> 20 years old)

@ yet in a reasonable agreement with LHC data on ogo;/mel

& central production

@ = used here to study 'potential’ range of model uncertainties




Most of the models: updated with Run 1 data of LHC

Yet large model differences for the predicted Xmax!!
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@ important: spread of Xmax predictions for p-induced EAS -
comparable to p-Fe difference!

@ inelastic diffraction or/and 'inelasticity’ for p-air?
o or something else?




Most of the models: updated with Run 1 data of LHC

Hint (SIBYLL case): combined CMS-TOTEM analysis of dNgp/dn
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@ only EPOS-LHC & QGSJET-II-04 describe the spectral shape




Most of the models: updated with Run 1 data of LHC

Hint (SIBYLL case): combined CMS-TOTEM analysis of dNgp/dn

Inclusive pp CMS-TOTEM. f5=8TeV, L=d5b" NSD- mp CMS-TOTEM, (5 =8TaV, L= 45ub’
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pro-ble-m- with other models appeared to be generic!

Sibyll2.3rc3b  —— Sibyll2.3rcs - - Sibyll 2.1

4  CMS+TOTEM ppwith V5 =8TeV.
6|

W Broad dN/deta in Sibyll 2.1 by accident

B Minijet color flow disconnected from
rest of hadron

B Large tail in multiplicity distribution

Number of minijets very high
- saturation effects missing
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[F. Riehn, talk at “Composition-2015"]
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Hadronic interactions: qualitative picture

@ QCD-inspired: interaction mediated by parton cascades

@ multiple scattering
(many cascades in parallel)

@ real cascades
= particle production

@ virtual cascades
= elastic rescattering
(just momentum transfer)




Hadronic interactions: qualitative picture

@ QCD-inspired: interaction mediated by parton cascades

@ multiple scattering
(many cascades in parallel)

@ real cascades
= particle production

@ virtual cascades
= elastic rescattering
(just momentum transfer)

Universal interaction mechanism

o different hadrons (nuclei) = different initial conditions
(parton Fock states) but same mechanism

@ energy-evolution of the observables (e.g. Og’g):

due to a larger phase space for cascades to develop




Hadronic interactions: input from pQCD & problems

@ pQCD: collinear factorization applies for inclusive spectra
d3c,
o = Yijk fi/p® Oj—k @ fj/p @ Dk

f

@ separates short- & _

long-distance dynamics \
@ pQCD predicts evolution of K

PDFs (fi/p) & FFs (D) ‘—.—
@ = allows to simulate

perturbative (high pt) part j

of parton cascades (initial

& final state emission) f




Hadronic interactions: input from pQCD & problems

@ pQCD: collinear factorization applies for inclusive spectra
d30pp_,h

a = Yijk fip®0j -k ® o @ Dpyi
f
@ separates short- & .
long-distance dynamics \

@ pQCD predicts evolution of
PDFs (f,/p) & FFs (Dh/k)

What is beyond?

@ nonperturbative (low p;) parton evolution
('soft’ rescatterings; very initial stage of 'semihard’ cascades)

@ multiple scattering aspect
@ nonlinear effects (interactions between parton cascades)

@ constituent parton Fock states & hadron 'remnants’
(e.g. the talk of Mark)




Hadronic interactions: nonperturbative Fock states

1. (Implicitely) always same nonperturbative Fock state
(typical for models used at colliders, also SIBYLL model)

@ multiple parton cascades originate
from the same initial parton state
@ multiple scattering has small
impact on forward spectra ° 0
@ new branches emerge at small X
(G(x,a%) 01/%)
® = Feynman scaling & limiting
fragm. for forward production

@ higher /S = more abundant
central particle production

o forward & central production:
decoupled from each other
o (descreasing number of cascade
branches for increasing X)
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Hadronic interactions: nonperturbative Fock states

2. p =3 of multi-parton Fock states [EPOS & QGSJET(-11)]

@ many cascades develop in parallel
(already at nonperturbative stage)

@ higher /S = larger Fock states
come into play: |qqg) — |0qopg) o
— ... |gacAq...q9)
o = softer forward spectra

(energy sharing between
constituent partons)

o forward & central particle
production - strongly correlated

@ e.g. more activity in central
detectors = larger Fock states
= softer forward spectra
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2. p =3 of multi-parton Fock states [EPOS & QGSJET(-11)]

@ many cascades develop in parallel
(already at nonperturbative stage)

@ higher /S = larger Fock states
come into play: |qqg) — |qqopio) 1)
— ... |gacAq...q9)
o = softer forward spectra

(energy sharing between
constituent partons)

o forward & central particle
production - strongly correlated

@ e.g. more activity in central
detectors = larger Fock states
= softer forward spectra




Hadronic interactions: nonperturbative Fock states

2. p =3 of multi-parton Fock states [EPOS & QGSJET(-11)]

@ many cascades develop in parallel
(already at nonperturbative stage)

@ higher /S = larger Fock states
come into play: |qqg) — |0qopg) o
— ... |gacAq...q9)
o = softer forward spectra

(energy sharing between
constituent partons)

@ forward & central particle
production - strongly correlated

@ e.g. more activity in central
detectors = larger Fock states
= softer forward spectra




Why of importance for air showers?

Main cause: energy-dependence of the nucleon 'inelasticity’

g o8 - —— QGSJET-II-04 _
S [-ee-r EPOS-LHC o SIBYLL: K¢ - weak
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E e o for increasing /S,
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0.5 @ smaller K"®' = more

pronounced 'leading

0.4 particle’ effect
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10° 10 10" 10> development (larger Xmax)

c.m. energy (GeV)
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Why of importance for air showers?

/S-dependence of forward meson spectra (/s= 107 — 10* GeV)
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@ at very high energies, forward mesons contribute to the leading
hadron effect (proton looses most of its energy in p-air)
@ softerning of forward spectra in QGSJET-II:
due to energy sharing between constituent partons




Tests at LHC: correlations of central & forward production

E.g. study ngB/dr] by triggering different activity in CMS

(here > 1, 5, 10, 20 charged hadrons of py > 0.1 GeV & |n| < 2.5)

- ptp- C (13 TeVc.m.) r p+tp- C (13 TeVc.m.)
QGSJET I11-04 SIBYLL 2.3
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dn/ch
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@ QGSJET-II-04: production enhanced over the whole n-range

@ SIBYLL-2.3: much weaker enhancement in the forward region




Tests at LHC: correlations of central & forward production

Cross-correlation of dNFC,g/d|r]| in CMS (|n] <1, pt > 0.1 GeV)
and TOTEM (5.5< |n| < 6.5, p; > 0)
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@ strong correlation for QGSJET-I1-04 & EPOS-LHC
(apart from the tails of the multiplicity distributions)

@ much weaker correlation for SIBYLL-2.3




Tests at LHC: correlations of central & forward production

Alternatively, forward T spectra in LHCF for different ATLAS
triggers (> 1, 6, 20 charged hadrons of p; > 0.5 GeV & |n| < 2.5)
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Tests at LHC: correlations of central & forward production

Alternatively, forward T spectra in LHCF for different ATLAS

triggers (> 1, 6, 20 charged hadrons of p; > 0.5 GeV & |n| < 2.5)
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Compare QGSJET-11-04 (left) to SIBYLL 2.3 (right

)

@ enhanced multiple scattering @ nearly same spectral
= softer pion spectra shape for all the triggers
® =- violation of limiting ® = perfect limiting
fragmentation (energy sharing fragmentation (central

between constituent partons) production decoupled)



Tests at LHC: correlations of central & forward production

Neutron spectra in LHCf (8.99 < n < 9.22) for same triggers
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@ remarkably universal spectral shape in SIBYLL-2.3
(decoupling of central production)
o closely related to the small 'inelasticity’ of the model

@ strong suppression of forward neutrons in QGSJET-1I-04

@ higher central activity = more constituent partons involved
=> less energy left for the proton 'remnant’
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Tests at LHC: correlations of central & forward production

Neutron spectra in LHCf (8.99 < n < 9.22) for same triggers

- 10-15 - 10-15
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NB: in addition/instead, production of forward neutrons may be
strongly suppressed by the 'diquark splitting’ mechanism
o e.g. CGC treatment by Drescher, Dumitru & Strikman (2005)
@ may be discriminated based on p;-dependence
@ e.g. stronger suppression in higher n bins in LHCf




Relevance of the inelastic diffraction

Why different Xnax predictions for the other three models?
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Relevance of the inelastic diffraction

Why different Xnax predictions for the other three models?
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Model d|fferences concerning the treatment of diffraction?

2 ~nd inel dlffr inel
@ predictions for Xmax depend on Op—airr Op—air' Kp Air
tot/el

@ Opp  can be reliably extrapolated thanks to LHC studies

° Od'ﬁr impacts recalculation from pp to pA (AA)

inel _
® OpZair due to inelastic screening

o directly related to Ggﬁ;ir' hence, also to K")”eéllr — due to small

inelasticity’ of diffractive collisions (especially for target SD)




Relevance of the inelastic diffraction

Why different Xnax predictions for the other three models?
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Model differences concerning the treatment of diffraction?
@ predictions for Xmax depend on Oi;f!air' Ogﬂ‘ir, Kgf;ir
tot/el

@ Opp  can be reliably extrapolated thanks to LHC studies
° Ogigfr impacts recalculation from pp to pA (AA)

inel _ 2 H :
® OpZair due to inelastic screening

o directly related to Ggﬁ;ir' hence, also to K'i)”_e;ir — due to small

"inelasticity’ of diffractive collisions (especially for target SD)




Impact of uncertainties of

Presently: tension between CMS & TOTEM concerning OSD

O-SD

on Xmax predictions

TOTEM CMS
Mx range, GeV  7—350 12— 394
oSD(AMy), mb  ~33 43106
dcr_a? mb 0.42 0.62
dygap’
® = may be regarded as the characteristic uncertainty for 650

@ impact on Xmax?




Impact of uncertainties of ogr? on Xmax predictions

Two alternative model versions (tunes): SD+ & SD-

@ SD+: increased high mass diffraction (HMD)
— to approach CMS results

o slightly smaller LMD — to soften disagreement with TOTEM




Impact of uncertainties of ogr? on Xmax predictions

Two alternative model versions (tunes): SD+ & SD-

@ SD+: increased high mass diffraction (HMD)
— to approach CMS results

o slightly smaller LMD — to soften disagreement with TOTEM

@ SD-: smaller LMD (by 30%), same HMD

. tot/el . o
@ similar Gpop/e & central particle production in both cases




Impact of uncertainties of OSD on Xmax predictions

Single diffraction: SD- agrees with TOTEM, SD+ o.k. with CMS

‘ Mx range, GeV <34 34-1100 34—7 7-350 350-1100
TOTEM 262+217 65413 ~18 ~33 ~14
option SD+ 3.2 8.2 1.8 4.7 1.7
option SD- 2.6 7.2 1.6 3.9 1.7

= 125
E SD (pp — Xp) at 7 TeV c.m.
3;0.75 _____
N 05 -"D’IJ":"-" ..........
0.25
0 5 4 3
log, &y
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Impact of uncertainties of OSE on Xmax predictions

Impact on Xmax & RMS(Xmax

RMS(X, ) (g/em’)

Fe

Option SD-: smaller low mass diffraction

@ = smaller inelastic screening = larger O

@ smaller diffraction for proton-air = larger K

@ = smaller Xmax (all effects work in the same direction):
AXmax~ —10g/cm?




Impact of uncertainties of OSE on Xmax predictions

Impact on Xmax & RMS(Xmax)

®50)

{glem’)

o0 [=0s

s

= 800

RMS(X, ) (g/cm 3

750 40

Fe

700 20

650 -

M0

0
30 [ T 2
10 1y ](J
E, (GeV)

@ opposite effects
@ but: minor impact on Xmax (AXmax < 5g/cn?)
@ in both cases: minor impact on RMS(Xnax): < 39 cn?
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Other sources of model uncertainties for Xmax

Model differences for Xmax twice bigger (reach 20 g/cm?)

“E 800 |- p-induced EAS
S B
< B
e
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L el A
1017 101 101
E, (eV)

@ previous analysis not general enough?

@ or other interaction properties relevant?

@ to answer - use “cocktail”’ model approach



Other sources of model uncertainties for Xmax

Let us compare Xmax of EPOS-LHC & QGSJET-11-04
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Other sources of model uncertainties for Xmax

Let us compare Xmax of EPOS-LHC & QGSJET-I1-04

°
(EPOS-LHC for the rest) € 800 |- pinduced EAS
° Axmax§5g/cm2_ in S !
. =
agreement with above < EPOS-LHC
@ now 750 |
(EPOS-LHC for the rest) I
I QGSJET-II-04
0 MXmax< 5 g/cm? 700
@ reason: harder pion spectra Ll L
in p—air in EPOS-LHC 107 DR
o (eV)




Other sources of model uncertainties for Xmax

Let us compare Xmax of EPOS-LHC & QGSJET-I1-04

)

(EPOS-LHC for the rest)

@ AXmax< 5 g/cm? - in
agreement with above

800 — p-induced EAS

X max (@/cTTT)

@ now EPOS-LHC

750
(EPOS-LHC for the rest)
0 AXmax < 5 g/cm?

@ remaining difference: 700
copious pp- & nn-pair nn e o
S : 10 10" 10"
production in T& & K-air E, (V)
in EPOS-LHC

QGSJET-II-04

-



Other sources of model uncertainties for Xmax

Now compare Xmax of QGSJET & QGSJET-II-04

. 800
“E - p-induced EAS
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750
o use QGSJET-II for the
complete 1st interaction 700 1
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@ AXmax< 3 g/cm 10 10 3 (e\1l())




Other sources of model uncertainties for Xmax

Now compare Xmax of QGSJET & QGSJET-II-04

800

- p-induced EAS

X max (@/CTT)

@ use QGSJET-II for the
complete 1st interaction 0T
(QGSJET for the rest)

0 AXmax < 3 g/cm?

700
@ next:
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Other sources of model uncertainties for Xmax

Now compare Xmax of QGSJET & QGSJET-II-04

® use QGSJET-II for the
complete 1st interaction
(QGSJET for the rest)

0 AMXmax< 3 g/cm2

@ next:

800

- p-induced EAS

X e (@/CTT)

750

700
@ rest: mostly due to softer

pion & kaon spectra in
Tair in QGSJET




Other sources of model uncertainties for Xmax

Present Xmax uncertainties: largely due to very high energy 11— air

820

@ Xmax for 10%° eV proton EAS [ prinduced EAS (§=10"eV)

using 'cocktail’: QGSJET-II
for E > Egrans and EPOS-LHC 800 |
or QGSJET for E < Etrans e

@ main difference for E — Eg QGSJET-11-04
(before most of the energy 780 |-
goes into the e/m cascade)

EPOS-LHC|

X max (@/cnT)

QGSJET

o hOW to Constrain pion_air HHHH‘ \HHHJ HHHH‘ HHHU‘ HHHH‘ HHHH‘ \HHHJ L LU

L 15 17
collisions at VHE?! 10 10 L
trans (e )
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Testing models with air shower data

PAO measurement of maximal muon production depth XHax

proton —

" o) [8/em?]
|
|
|

»

3501~

(x
‘\‘
\
\‘

(I B R il
[ ]
M
- 4 ]

@ models predict deeper Xhax ~ #0- itn -
than observed OGSl
@ e.g. one needs primary W wP ‘10‘23
iron for QGSJET-11-04 E[eV]
Zhoieriman/jeoldifor [from M. Roth,  talk at

EPOS-LHC...

“Composition-2015"]




Testing models with air shower data

What is the physics behind the different predictions for Xhax?

“’é 600 | p-induced EAS
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Testing models with air shower data

1) Smallness of the Tt— air cross section?

n=1
i
@ NB: muons originate from a
multi-step hadron cascade
n=3

inel
) sr_naller O air = longer
distances between the

cascade steps
o = deeper Xanx

[from J. Matthews]
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Testing models with air shower data

2) Hardness of pion spectra in T1— air?
(b) D
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@ pion decay probability:
Pdecay ] E1c-[m /En/X
o Xhax where Pdecay~ Pinter n=3

@ harder spectra in TT— air
= deeper Xhax (effectively
one more cascade step)

[from J. Matthews]
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Testing models with air shower data

3) Copious production of (anti-)nucleons?
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[from R. Engel]
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Np,p.n,7 comparable to Ny!
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Testing models with air shower data

Difference of Xhax EPOS-LHC / QGSJET-11-04, using “cocktail”
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Testing models with air shower data

Difference of Xhﬂax: EPOS-LHC / QGSJET-1I-04, using “cocktail”

o
and =
EPOS-LHC for the rest 5 600 |- p-induced EAS
S i

@ small effect: g i

XHax difference — due to X -

pion-air collisions 2l =
o largest effect: i

500

@ remaining difference:

harderT[i&Ki Spectra = Ll \\\\\\‘18 ! \\\\ng

in TE & K-air in EPOS 10 10 E, (e\l/?




Testing models with air shower data

Difference of X#,axz QGSJET / QGSJET-11-04, using “cocktail”
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Testing models with air shower data

Difference of Xhﬂax: QGSJET / QGSJET-11-04, using “cocktail”
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@ = can be used to constrain model approaches

@ e.g. copious pp & nn production disfavored by Auger data

-



Interpreting simulteneously PAO data on Xmax & Xhax?

This would require a faster development of the hadronic cascade
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Interpreting simulteneously PAO data on Xmax & Xhax?

This would require a faster development of the hadronic cascade
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@ one has to approach the results of the old QGSJET

@ higher pion-air cross section - unlikely

@ = the only way: softer pion spectra in Trair

@ may be obtained in CGC-like approach
(e.g. as in Drescher, Dumitru & Strikman 2005)
@ but: stronger effect expected for pp ('diquark breakup’)
@ = can be tested at LHC (notably by LHCf & ATLAS) )
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Most important LHC input for UHECR physics: Gpop/e

Of considerable importance: to resolve the diffraction issue

Next crucial point: to constrain model approaches for
constituent parton Fock states

@ will impact ALL the present models

@ requires combined studies with forward & central detectors

Present uncertainties for Xmax: largely related to VHE pion-air
interactions

May be constrained by Xhax measurements in CR experiments
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Comments on the 'muon excess': see extra slides

Most important LHC input for UHECR physics: oL";/e'

Of considerable importance: to resolve the diffraction issue

Next crucial point: to constrain model approaches for
constituent parton Fock states

o will impact ALL the present models

@ requires combined studies with forward & central detectors

Present uncertainties for Xmax: largely related to VHE pion-air
interactions

May be constrained by XH.ax measurements in CR experiments
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How robust are predictions for EAS muon content?

@ NB: N, results from a
multi-step hadron cascade

@ ~ 1 cascade step per
energy decade

@ assume: muon predictions
are o.k. up to energy Ep

ol

@ how difficult to get
enhancement at energy Eg
(EB < 1OGEA)?

o i.e. within 2 orders of
magnitude in energy

33

@ secondary pions:
mostly with xg < 0.1

@ = just 1 cascade step
between Ep & Eg




How robust are predictions for EAS muon content?

@ NB: N, results from a
multi-step hadron cascade

@ ~ 1 cascade step per (b)
energy decade

@ assume: muon predictions n=1
are o.k. up to energy Ep 0
Wy
@ how difficult to get .\‘\ﬂ:
enhancement at energy Eg B 1=2

(EB < 1OGEA)?

= Muon excess has to be produced by primary CR interactions

@ if we double N° for the 1st interaction?

@ < 10% increase for Ny!

@ to get, say, a factor 2 enhancement:
Nch should rise by an order of magnitude




Prospects for seeing new physics in CR air showers?

@ proton-air cross section at UH energies: Og’fgir ~1/2b

@ to be detected by air shower techniques:
new physics should impact the bulk of interactions

@ = to emerge with barn-level cross section



