Constraining hadronic interaction models with LHC & cosmic ray data

Saggy Ostapchenko + Frankfurt Institute for Advanced Studies

QCD at Cosmic Energies - VII

Chalkida, Greece, May 16 - 20, 2016

arXiv: 1601.06567, 1402.5084

Outline of the talk

- Motivation: model uncertainties for air shower predictions
- **2** Input from LHC data & remaining model differences for X_{max}
- **③** Two basic approaches for constituent parton Fock states
 - differences in model results
 - how to test at LHC
- Relevance of the inelastic diffraction
- Other uncertainties & model tests with UHECR data
- Outlook

ground-based observations (= thick target experiments)

- primary CR energy \iff charged particle density at ground
- CR composition \iff muon density ρ_{μ} at ground

measurements of EAS fluorescence light

- primary CR energy ⇐⇒ integrated light
- CR composition \iff shower maximum position X_{max}

CR composition studies - most dependent on interaction models

- e.g. predictions for X_{max}: on the properties of the primary particle interaction (σ^{inel}_{p-air}, forward particle spectra)
- predictions for muon density: on secondary particle interactions (cascade multiplication); mostly on N^{ch}_{π-air}

this talk: mostly devoted to model predictions for X_{max}

- relation of the differences for predicted X_{max} to the treatments of proton-proton & pion-proton collisions
- how to constrain by LHC & CR measurements

Most important for CR applications: results of TOTEM for $\sigma_{pp}^{tot/inel}$

[from R. Engel]

important: results of ATLAS ALFA - consistent with TOTEM

- important: spread of X_{max} predictions for *p*-induced EAS comparable to *p*-Fe difference!
 - inelastic diffraction or/and 'inelasticity' for p-air?
 - or something else?

Hint (SIBYLL case): combined CMS-TOTEM analysis of $dN_{\rm ch}/d\eta$

only EPOS-LHC & QGSJET-II-04 describe the spectral shape

<ロ> (四) (四) (三) (三)

Hint (SIBYLL case): combined CMS-TOTEM analysis of $dN_{\rm ch}/d\eta$

The problem with other models appeared to be generic!

- Minijet color flow disconnected from rest of hadron
- Large tail in multiplicity distribution Number of minijets very high → saturation effects missing

[F. Riehn, talk at "Composition-2015"]

Hadronic interactions: qualitative picture

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades
 ⇒ particle production
- virtual cascades
 ⇒ elastic rescattering (just momentum transfer)

Hadronic interactions: qualitative picture

- QCD-inspired: interaction mediated by parton cascades
- multiple scattering (many cascades in parallel)
- real cascades
 ⇒ particle production
- virtual cascades
 ⇒ elastic rescattering (just momentum transfer)

Universal interaction mechanism

- different hadrons (nuclei) ⇒ different initial conditions (parton Fock states) but same mechanism
- energy-evolution of the observables (e.g. σ^{tot}_{pp}): due to a larger phase space for cascades to develop

Hadronic interactions: input from pQCD & problems

- pQCD: collinear factorization applies for inclusive spectra $\frac{d^3\sigma_{pp \to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij \to k} \otimes f_{j/p} \otimes D_{h/k}$
- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs (f_{i/p}) & FFs (D_{h/k})
- ⇒ allows to simulate perturbative (high p_t) part of parton cascades (initial & final state emission)

Hadronic interactions: input from pQCD & problems

- pQCD: collinear factorization applies for inclusive spectra $\frac{d^3\sigma_{pp\to h}}{dp^3} = \sum_{i,j,k} f_{i/p} \otimes \sigma_{ij\to k} \otimes f_{j/p} \otimes D_{h/k}$
- separates short- & long-distance dynamics
- pQCD predicts evolution of PDFs (f_{i/p}) & FFs (D_{h/k})

What is beyond?

nonperturbative (low p_t) parton evolution
 ('soft' rescatterings; very initial stage of 'semihard' cascades)

k

- multiple scattering aspect
- nonlinear effects (interactions between parton cascades)
- constituent parton Fock states & hadron 'remnants' (e.g. the talk of Mark)

1. (Implicitely) always same nonperturbative Fock state (typical for models used at colliders, also SIBYLL model)

- multiple parton cascades originate from the same initial parton state
- multiple scattering has small impact on forward spectra
 - new branches emerge at small x $(G(x,q^2) \propto 1/x)$
- ⇒ Feynman scaling & limiting fragm. for forward production
- higher $\sqrt{s} \Rightarrow$ more abundant central particle production
- forward & central production: decoupled from each other
 - (descreasing number of cascade branches for increasing *x*)

1. (Implicitely) always same nonperturbative Fock state (typical for models used at colliders, also SIBYLL model)

- multiple parton cascades originate from the same initial parton state
- multiple scattering has small impact on forward spectra
 - new branches emerge at small x $(G(x,q^2) \propto 1/x)$
- ⇒ Feynman scaling & limiting fragm. for forward production
- higher $\sqrt{s} \Rightarrow$ more abundant central particle production
- forward & central production: decoupled from each other
 - (descreasing number of cascade branches for increasing *x*)

- many cascades develop in parallel (already at nonperturbative stage)
- higher $\sqrt{s} \Rightarrow$ larger Fock states come into play: $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$ $\rightarrow \dots |qqq\bar{q}q...\bar{q}q\rangle$
 - → softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
 - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra

- many cascades develop in parallel (already at nonperturbative stage)
- higher $\sqrt{s} \Rightarrow$ larger Fock states come into play: $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$ $\rightarrow \dots |qqq\bar{q}q...\bar{q}q\rangle$
 - ⇒ softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
 - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra

- many cascades develop in parallel (already at nonperturbative stage)
- higher $\sqrt{s} \Rightarrow$ larger Fock states come into play: $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$ $\rightarrow \dots |qqq\bar{q}q...\bar{q}q\rangle$
 - → softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
 - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra

- many cascades develop in parallel (already at nonperturbative stage)
- higher $\sqrt{s} \Rightarrow$ larger Fock states come into play: $|qqq\rangle \rightarrow |qqq\bar{q}q\rangle$ $\rightarrow \dots |qqq\bar{q}q...\bar{q}q\rangle$
 - ⇒ softer forward spectra (energy sharing between constituent partons)
- forward & central particle production - strongly correlated
 - e.g. more activity in central detectors ⇒ larger Fock states ⇒ softer forward spectra

Why of importance for air showers?

Why of importance for air showers?

Why of importance for air showers?

- at very high energies, forward mesons contribute to the leading hadron effect (proton looses most of its energy in *p*-air)
- softerning of forward spectra in QGSJET-II: due to energy sharing between constituent partons

E.g. study $dN_{pp}^{ch}/d\eta$ by triggering different activity in CMS (here ≥ 1 , 5, 10, 20 charged hadrons of $p_t > 0.1$ GeV & $|\eta| < 2.5$)

• QGSJET-II-04: production enhanced over the whole $\eta\text{-range}$

• SIBYLL-2.3: much weaker enhancement in the forward region

Cross-correlation of $dN_{pp}^{ch}/d|\eta|$ in CMS ($|\eta| < 1$, $p_t > 0.1$ GeV) and TOTEM (5.5 $< |\eta| < 6.5$, $p_t > 0$)

- strong correlation for QGSJET-II-04 & EPOS-LHC (apart from the tails of the multiplicity distributions)
- much weaker correlation for SIBYLL-2.3

Alternatively, forward π^0 spectra in LHCf for different ATLAS triggers (≥ 1 , 6, 20 charged hadrons of $p_t > 0.5$ GeV & $|\eta| < 2.5$)

Alternatively, forward π^0 spectra in LHCf for different ATLAS triggers (\geq 1, 6, 20 charged hadrons of $p_t > 0.5$ GeV & $|\eta| < 2.5$)

Compare QGSJET-II-04 (left) to SIBYLL 2.3 (right)

- enhanced multiple scattering
 ⇒ softer pion spectra
- → violation of limiting fragmentation (energy sharing between constituent partons)
- nearly same spectral shape for all the triggers
- ⇒ perfect limiting fragmentation (central production decoupled)

Neutron spectra in LHCf ($8.99 < \eta < 9.22$) for same triggers

 remarkably universal spectral shape in SIBYLL-2.3 (decoupling of central production)

- closely related to the small 'inelasticity' of the model
- strong suppression of forward neutrons in QGSJET-II-04
 - higher central activity ⇒ more constituent partons involved ⇒ less energy left for the proton 'remnant'

Neutron spectra in LHCf ($8.99 < \eta < 9.22$) for same triggers

 remarkably universal spectral shape in SIBYLL-2.3 (decoupling of central production)

• closely related to the small 'inelasticity' of the model

- strong suppression of forward neutrons in QGSJET-II-04
 - higher central activity ⇒ more constituent partons involved ⇒ less energy left for the proton 'remnant'

Neutron spectra in LHCf ($8.99 < \eta < 9.22$) for same triggers

NB: in addition/instead, production of forward neutrons may be strongly suppressed by the 'diquark splitting' mechanism

- e.g. CGC treatment by Drescher, Dumitru & Strikman (2005)
- may be discriminated based on pt-dependence
 - $\bullet\,$ e.g. stronger suppression in higher η bins in LHCf

Relevance of the inelastic diffraction

Relevance of the inelastic diffraction

Why different X_{max} predictions for the other three models?

- σ_{p-air}^{inel} due to inelastic screening
- directly related to $\sigma_{p-\text{air}}^{\text{diffr}}$, hence, also to $K_{p-\text{air}}^{\text{inel}}$ due to small 'inelasticity' of diffractive collisions (especially for target SD)

Relevance of the inelastic diffraction

Why different X_{max} predictions for the other three models?

- $\sigma_{pp}^{\text{diffr}}$ impacts recalculation from pp to pA (AA)
 - σ_{p-air}^{inel} due to inelastic screening
 - directly related to σ^{diffr}_{p-air}, hence, also to K^{inel}_{p-air} due to small 'inelasticity' of diffractive collisions (especially for target SD)

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Presently: tension between CMS & TOTEM concerning $\sigma^{SD}_{\it pp}$

	TOTEM	CMS
M_X range, GeV	7 - 350	12 - 394
$\sigma_{pp}^{\mathrm{SD}}(\Delta M_X)$, mb	$\simeq 3.3$	4.3 ± 0.6
$\frac{d\sigma_{pp}^{\text{SD}}}{dy_{\text{gap}}}$, mb	0.42	0.62

• \Rightarrow may be regarded as the characteristic uncertainty for $\sigma^{\rm SD}_{pp}$

• impact on *X*_{max}?
Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD)
 - to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Two alternative model versions (tunes): SD+ & SD-

- SD+: increased high mass diffraction (HMD)
 to approach CMS results
 - slightly smaller LMD to soften disagreement with TOTEM
- SD-: smaller LMD (by 30%), same HMD
- similar $\sigma_{pp}^{tot/el}$ & central particle production in both cases

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Single diffraction	on: SD- agrees	s with TOT	EM, SC)+ o.k. י	with CMS
M_X range, GeV	< 3.4	3.4 - 1100	3.4-7	7-350	350-1100
TOTEM	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
option SD+	3.2	8.2	1.8	4.7	1.7
option SD-	2.6	7.2	1.6	3.9	1.7
$\begin{array}{c} \widehat{\textbf{g}} & 1.25 \\ \xrightarrow{\textbf{MS}} & 1 \\ \xrightarrow{\textbf{MS}} & 1 \\ \xrightarrow{\textbf{DP}} & 0.75 \\ \xrightarrow{\textbf{DP}} & 0.5 \\ 0.25 \\ 0 \\ -6 \\ -6 \\ -5 \\ -6 \\ -5 \\ -4 \\ -3 \\ \log_{10}\xi_{X}} \end{array}$					

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Impact on $X_{\text{max}} \& \text{RMS}(X_{\text{max}})$

Option SD-: smaller low mass diffraction

- \Rightarrow smaller inelastic screening \Rightarrow larger σ_{p-air}^{inel}
- smaller diffraction for proton-air \Rightarrow larger $K_{n-\text{air}}^{\text{inel}}$
- \Rightarrow smaller X_{max} (all effects work in the same direction): $\Delta X_{\text{max}} \simeq -10 \text{ g/cm}^2$

Impact of uncertainties of σ_{pp}^{SD} on X_{max} predictions

Impact on X_{\max} & RMS(X_{\max})

Option SD+: larger high mass diffraction

- opposite effects
- but: minor impact on X_{max} ($\Delta X_{\text{max}} < 5 \text{ g/cm}^2$)
- in both cases: minor impact on RMS(X_{max}): < 3 g/cm² (dominated by σ^{inel}_{p-air})

- previous analysis not general enough?
- or other interaction properties relevant?
- to answer use "cocktail" model approach

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- QGSJET-II for σ^{inel}_{p-air} & leading nucleon spectrum (EPOS-LHC for the rest)
- $\Delta X_{\text{max}} \leq 5 \text{ g/cm}^2$ in agreement with above
- now QGSJET-II for the complete 1st interaction (EPOS-LHC for the rest)
- $\Delta X_{\rm max} \leq 5 {\rm g/cm^2}$
- reason: harder pion spectra in *p* air in EPOS-LHC

Let us compare X_{max} of EPOS-LHC & QGSJET-II-04

- QGSJET-II for σ^{inel}_{p-air} & leading nucleon spectrum (EPOS-LHC for the rest)
- $\Delta X_{\rm max} \le 5 {\rm g/cm^2}$ in agreement with above
- now QGSJET-II for the complete 1st interaction (EPOS-LHC for the rest)
- $\Delta X_{\rm max} \leq 5 {\rm g/cm^2}$
- remaining difference: copious pp- & nn-pair production in π- & K-air in EPOS-LHC

Now compare X_{max} of QGSJET & QGSJET-II-04

- use QGSJET-II for the complete 1st interaction (QGSJET for the rest)
- $\Delta X_{\rm max} \leq 3 {\rm g/cm^2}$
- next: QGSJET-II for the 1st interaction & for all $\sigma_{\pi-air}^{inel}$, σ_{K-air}^{inel}
- rest: mostly due to softer pion & kaon spectra in π-air in QGSJET

PAO measurement of maximal muon production depth $X_{\rm max}^{\mu}$

- models predict deeper X_{\max}^{μ} than observed
 - e.g. one needs primary iron for QGSJET-II-04
 - or primary gold for EPOS-LHC...

What is the physics behind the different predictions for X_{\max}^{μ} ?

◆□ > ◆□ > ◆目 > ◆目 > ● 目 → のへの

1) Smallness of the π – air cross section?

- NB: muons originate from a multi-step hadron cascade
- smaller $\sigma_{\pi-air}^{inel} \Rightarrow$ longer distances between the cascade steps
 - \Rightarrow deeper X_{\max}^{μ}

1) Smallness of the π – air cross section?

- NB: muons originate from a multi-step hadron cascade
- smaller $\sigma_{\pi-air}^{inel} \Rightarrow \text{longer}$ distances between the cascade steps
 - \Rightarrow deeper X_{\max}^{μ}

2) Hardness of pion spectra in π – air?

- pion decay probability: $p_{\text{decay}} \propto E_{\pi}^{\text{crit}}/E_{\pi}/X$
- $X^{\mu}_{
 m max}$: where $p_{
 m decay} \sim p_{
 m inter}$
- harder spectra in π air \Rightarrow deeper X_{\max}^{μ} (effectively one more cascade step)

2) Hardness of pion spectra in π – air?

- pion decay probability: $p_{\text{decay}} \propto E_{\pi}^{\text{crit}}/E_{\pi}/X$
- $X^{\mu}_{
 m max}$: where $p_{
 m decay} \sim p_{
 m inter}$
- harder spectra in π air \Rightarrow deeper X_{\max}^{μ} (effectively one more cascade step)

3) Copious production of (anti-)nucleons?

- no decay for $p \& \bar{p} (n \& \bar{n})$ \Rightarrow few more cascade steps
- but: impact on X^μ_{max} IFF
 N_{p,p̄,n,n̄} comparable to N_π!

3) Copious production of (anti-)nucleons?

- no decay for $p \& \bar{p} (n \& \bar{n})$ \Rightarrow few more cascade steps
- but: impact on X^μ_{max} IFF
 N_{p,p̄,n,n̄} comparable to N_π!

Difference of X_{max}^{μ} : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect: X^µ_{max} difference – due to pion-air collisions
- largest effect: copious p̄p
 & n̄n production in π-air

Difference of X_{max}^{μ} : EPOS-LHC / QGSJET-II-04, using "cocktail"

- use QGSJET-II for 1st interaction and EPOS-LHC for the rest
- small effect: X^µ_{max} difference – due to pion-air collisions
- largest effect: copious p̄p
 & n̄n production in π-air
- remaining difference: harder π[±] & K[±] spectra in π- & K-air in EPOS

Difference of X_{max}^{μ} : QGSJET / QGSJET-II-04, using "cocktail"

This would require a faster development of the hadronic cascade

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

This would require a faster development of the hadronic cascade

- because: impact on X_{\max}^{μ} stronger than on X_{\max}
- this would lead us to almost pure proton composition?!

This would require a faster development of the hadronic cascade

Is it feasible model-wise?

- one has to approach the results of the old QGSJET
- higher pion-air cross section unlikely
- \Rightarrow the only way: softer pion spectra in π -air
- may be obtained in CGC-like approach (e.g. as in Drescher, Dumitru & Strikman 2005)
- but: stronger effect expected for pp ('diquark breakup')
 - $\bullet\,\Rightarrow$ can be tested at LHC (notably by LHCf & ATLAS)

This would require a faster development of the hadronic cascade

Is it feasible model-wise?

- one has to approach the results of the old QGSJET
- higher pion-air cross section unlikely
- \Rightarrow the only way: softer pion spectra in π -air
- may be obtained in CGC-like approach (e.g. as in Drescher, Dumitru & Strikman 2005)
- but: stronger effect expected for pp ('diquark breakup')
 - $\bullet\,\Rightarrow$ can be tested at LHC (notably by LHCf & ATLAS)

Outlook

- **③** Most important LHC input for UHECR physics: $\sigma_{pp}^{tot/el}$
- ② Of considerable importance: to resolve the diffraction issue
- Next crucial point: to constrain model approaches for constituent parton Fock states
 - will impact ALL the present models
 - requires combined studies with forward & central detectors
- Present uncertainties for X_{max}: largely related to VHE pion-air interactions
- Solution May be constrained by X_{\max}^{μ} measurements in CR experiments

Outlook

- **()** Most important LHC input for UHECR physics: $\sigma_{pp}^{tot/el}$
- ② Of considerable importance: to resolve the diffraction issue
- Next crucial point: to constrain model approaches for constituent parton Fock states
 - will impact ALL the present models
 - requires combined studies with forward & central detectors
- Present uncertainties for X_{max}: largely related to VHE pion-air interactions
- Solution May be constrained by X_{\max}^{μ} measurements in CR experiments

< □ > < □ >

Comments on the 'muon excess': see extra slides

Extra slides

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

How robust are predictions for EAS muon content?

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- assume: muon predictions are o.k. up to energy *E*_A
- how difficult to get enhancement at energy E_B (E_B < 100E_A)?
 - i.e. within 2 orders of magnitude in energy
- secondary pions: mostly with x_F < 0.1
 - \Rightarrow just 1 cascade step between $E_A \& E_B$

How robust are predictions for EAS muon content?

- NB: N_µ results from a multi-step hadron cascade
 - ~ 1 cascade step per energy decade
- assume: muon predictions are o.k. up to energy E_A
- how difficult to get enhancement at energy E_B (E_B < 100E_A)?

\Rightarrow Muon excess has to be produced by primary CR interactions

- if we double N^{ch} for the 1st interaction?
 - < 10% increase for N_{μ} !
- to get, say, a factor 2 enhancement: N_{ch} should rise by an order of magnitude

Prospects for seeing new physics in CR air showers?

- \bullet proton-air cross section at UH energies: $\sigma_{\mathit{p-air}}^{inel} \sim 1/2~\text{b}$
- to be detected by air shower techniques: new physics should impact the bulk of interactions
- ullet \Rightarrow to emerge with barn-level cross section