QCD at Cosmic Energies - VII May 16 - 20, 2016

Chalkida, Greece

Multiparton interactions in Herwig

Frashër Loshaj

Table of Contents

(2) MPI and the Underlying event

Soft interactions 3

Herwig Monte Carlo Event Generator

- Herwig is a general-purpose event generator for high energy lepton-lepton, lepton-hadron and hadron-hadron collisions.
- Special emphasis is put on the accurate simulation of QCD radiation.
- The event in Herwig is simulated including these steps:
 - Elementary hard process,
 - Initial and final state parton showers,
 - Decay of heavy objects,
 - Multiple interactions (hard and soft),
 - Hadronization and
 - Hadron decays.

[Eur.Phys.J. C58 (2008) 639-707]

Taken from Stefan Gieseke

Frashër Loshaj

Taken from Stefan Gieseke

Frashër Loshaj

Taken from Stefan Gieseke

Frashër Loshaj

Herwig 7

Recently released:

H7

- Herwig++ 3.0 \rightarrow Herwig 7.0
- No distinction anymore between HERWIG and Herwig++; we refer to it as Herwig from now on.
- Most new features have to do with NLO calculations of hard processes with matching to angular-ordered and dipole shower modules.
- The focus of this talk:
 - review of semi-hard and soft multiple parton interactions,
 - recent development in diffraction and colour structure of soft scatters.

Multiple Parton Interactions (MPI) - motivation

Inclusive jet cross section above transverse momentum p_T

$$egin{split} &\sigma_{\mathrm{H}}^{\mathit{inc}}(\boldsymbol{s}, \boldsymbol{p}_{T}^{\min}) = \int dx_{1} dx_{2} d\hat{t} ~ \varTheta\left(\boldsymbol{p}_{T} - \boldsymbol{p}_{T}^{\min}
ight) \sum_{i,j,k,l} rac{1}{1 + \delta_{kl}} \ & imes \left(f_{i|h1}(x_{1}, \mu^{2}) f_{i|h2}(x_{2}, \mu^{2}) rac{d\sigma_{ij
ightarrow kl}}{d\hat{t}}(x_{1} x_{2} \boldsymbol{s}, t)
ight) \end{split}$$

- Cross section increases with s.
- At moderate values of s, exceeds total cross section.
- A way to resolve this contradiction is MPI.

[M. Bähr's talk at MPI@LHC 08.]

MPI - definitions and applications

- Several scatterings between partons in the same hadron collision.
- Important for understanding min-bias processes and the underlying event.
- Underlying event all activity in a hadronic collision not related to the hard process, e.g. initial-state radiation, additional scatters in the collision, etc.
- Jet measurements sensitive to the underlying event; jet algorithms gather all particles in the vicinity of the leading initial hard parton.
- Min-bias events selected with least trigger bias possible; constitute the majority of the events in hadronic collisions.

MPI in Herwig

Multiple scattering in a pp collision:

Mean pairs of interactions at a given impact parameter b:

 $\mathcal{L}_{\text{partons}}$ - parton luminosity; $\hat{\sigma}_{H}$ - partonic hard scattering cross section for $p_{T} > p_{T}^{\min}$.

[J.M. Butterworth et al., Z.Phys. C72 (1996) 637-646].

Frashër Loshaj

- Multiparton interactions in Herwig

16/5/2015

MPI in Herwig (cont'd)

Assumption:

$$d\mathcal{L}_{\text{partons}} = A(b)n_{h_1}(x_1)n_{h_2}(x_2)dx_1dx_2$$

Profile function A(b) was factored out. We have:

$$\int d^2 b A(b) = 1.$$

 $n_{h_i}(x_i)$ - parton densities of hadrons (parton flavor is omitted); After performing the convolution:

$$\langle n(s,b) \rangle = A(b)\sigma_H^{\rm inc}(s),$$

 $\sigma_H^{\text{inc}}(s)$ - inclusive scattering cross section. Assumption: scatters are uncorrelated; probability of having *m* scatters:

$$P_m(A(b)\sigma^{\rm inc}) = \frac{\left(\langle n(b,s)\rangle\right)^m}{m!} \exp\left(-\langle n(s,b)\rangle\right)$$

Multi-reggeon interactions - AGK rules

Eikonal model n pomeron amplitude

$$\mathcal{A}^{(n)}(s,b) = rac{1}{2i} rac{(-\chi(s,b))^n}{n!}, \ ext{with} \ \chi(s,b) = -2i \mathcal{A}^{(1)}(s,b)$$

Using AGK rules, the k cut pomeron cross section is

$$\sigma_k(s) = \int d^2 b \frac{(2\chi)^k}{k!} \exp\left(-2\chi\right)$$

MPI - eikonal model

 Jet production cross section due to exactly k uncorrelated hard interactions

$$\sigma_{k}(s) = \int d^{2}b P_{k}(A(b)\sigma^{\text{inc}}) = \int d^{2}b \frac{\left(A\sigma_{\text{H}}^{\text{inc}}\right)^{k}}{k!} \exp\left(-A\sigma_{\text{H}}^{\text{inc}}\right)$$

- Similar to the eikonal model if $\chi_{\rm H}(\boldsymbol{s}, \boldsymbol{b}) = \frac{1}{2} \boldsymbol{A}(\boldsymbol{b}, \mu) \sigma_{\rm H}^{\rm inc}(\boldsymbol{s}, \boldsymbol{p}_T^{\rm min}).$
- \blacksquare We have introduced the parameter μ explicitly which is tuned in Herwig.
- Prob. of having *n* scatters, given there is one:

$$P_{n\geq 1}(\sigma^{\rm inc}) = \frac{\int d^2 b P_n(A(b)\sigma^{\rm inc})}{\int d^2 b \sum_{k=1}^{\infty} P_k(A(b)\sigma^{\rm inc})} = \frac{\sigma_n(\sigma^{\rm inc})}{\sigma_{\rm inel(\sigma^{\rm inc})}}$$

 This expression is the basis of underlying event calculations. Describes well the data ([M. Bähr, S. Gieseke, and M. H. Seymour JHEP 07 (2008), 076)]).

Underlying event - Tevatron

The direction of the leading jet is used to partition the event into three parts: towards, away and transverse.

Underlying event - Tevatron

[JHEP 0807 (2008) 076]

Frashër Loshaj

- Multiparton interactions in Herwig

16/5/2015

Underlying event - Tevatron

[JHEP 0807 (2008) 076]

Frashër Loshaj

- Multiparton interactions in Herwig

16/5/2015

Underlying event - ATLAS (900 GeV)

Also include Std deviation!

taken from Stefan Gieseke

Frashër Loshaj

Underlying event - ATLAS (900 GeV)

Also include Std deviation!

taken from Stefan Gieseke

Frashër Loshaj

Underlying event - ATLAS (7 TeV)

 $N_{\rm ch}/{\rm StdDev}$ transverse vs $p_t^{\rm lead}/{\rm GeV}$.

taken from Stefan Gieseke

Frashër Loshaj

Underlying event - Energy extrapolation to 100 TeV

taken from Andrzej Siodmok

• Different tunes give similar results due to the strong correlation between p_{\perp}^{\min} and μ^2 .

Underlying event - Energy extrapolation to 100 TeV

taken from Andrzej Siodmok

Soft interactions

- Extend the model to include interactions with $p_T < p_T^{\min}$.
- Add to the eikonal function the soft contribution ([JHEP 09 (2002), p. 015]):

$$\chi(\boldsymbol{s},\boldsymbol{b}) = \chi_{H}(\boldsymbol{s},\boldsymbol{b}) + \chi_{S}(\boldsymbol{s},\boldsymbol{b}) = \frac{1}{2} \left[\boldsymbol{A}(\boldsymbol{b},\mu)\sigma_{H}^{\mathrm{inc}}(\boldsymbol{s},\boldsymbol{p}_{T}^{\mathrm{min}}) + \boldsymbol{A}(\boldsymbol{b},\mu_{s})\sigma_{s}^{\mathrm{inc}} \right]$$

The cross section for j soft and k hard uncorrelated interactions

$$\sigma_{jk} = \int d^2 b \frac{(2\chi_S)^j}{j!} \frac{(2\chi_H)^k}{k!} \exp\left[-2(\chi_S + \chi_H)\right]$$

• σ_s^{inc} and μ_s are obtained by fitting to experimental data.

Soft interactions

Generic (nonperturbative) gluon-gluon interactions are generated at $p_T < p_T^{\min}$. We require $d\sigma_{\rm H}^{\rm inc}/dp_T^2$ to match the soft counterpart at $p_T = p_T^{\min}$.

Hadronization

- After parton shower and MPI, quarks and gluons must hadronize.
- The basis for hadronization in Herwig is the colour preconfinement property cluster model:

- Nonperturbative gluon splitting to quark-antiquark pair.
- Large N_c limit: non-planar graphs are subleading.

Colour connections

• Event with multiple hard subprocesses

Soft subprocess with disrupted color lines (exceptional case)

Colour connections in Herwig

Colour reconnection

• Allow reshuffling of clusters (rs) + (Im) if total mass is lower:

 $M_{rl} + M_{sm} < M_{rs} + M_{lm}$

Min-bias ATLAS (900 GeV)

 Good agreement with data; example from [Eur.Phys.J.C72 (2012) 2225]

Min-bias ATLAS (7 TeV)

Data taken from [New J.Phys. 13 (2011) 053033]. Plotted with Rivet.

Default Herwig 7.0 soft MPI model; default tune.

Min-bias - Energy extrapolation to 100 TeV

taken from Andrzej Siodmok

Only the underlying event is tuned.

Challenge: the "Bump" problem

 Forward pseudorapidity gap Δη^F. Defined as the larger of two pseudorapidities from the last particle to the edge of the detector.

[Eur.Phys.J. C72 (2012) 1926]

 Too many events with large rapidity gaps, especially if colour reconnection is switched on.

MPI - summary

Miminum bias model includes the following pieces:

- Soft diffraction is not implemented in Herwig 7.0.
- In the following we construct a new soft interaction model and soft diffraction model.

Soft scatter kinematics - Multi-peripheral ladder

• Consider one pomeron cut; $N \sim \log E_{cm}/m_{\perp}$, • $p_{i+} = (1 - x_1) \cdots (1 - x_{i+1}) x_i p_{A+}$, $x_i \simeq 1/2$.

- Ordering in rapidity.
- No correlations.
- Amplitude not large when sub-energies $s_{i,i+1} = (p_i + p_{i+1})^2$ large.
- Challenges for Herwig:
 - What are color connections.
 - what is the multiplicity.

Colour connection of multiple ladders

• Many pomeron cuts; average number $\langle n(s, \mu_s) \rangle = A(b, \mu_s) \sigma_s(s)$.

Colour connections:

Needs to be tuned and matched with the hard MPI.

Diffraction in hadron collisions

Cross section behaves as

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt} \bigg|_{t=0} e^{-B|t|} \simeq \frac{d\sigma}{dt} \bigg|_{t=0} (1 - B|t|),$$

in analogy with diffraction in optics

$$I(heta) \simeq I(0) \left(1 - Bk^2 heta^2\right).$$

A definition: diffraction is a high energy process in which no quantum numbers are exchanged between colliding particles.

Generating diffractive events

From Regge theory, for single diffraction, we have:

$$\frac{d^2 \sigma^{SD}}{dM^2 dt} \sim \left(\frac{s}{M^2}\right)^{\alpha_{\rm P}(0)} e^{\left(B_0 + 2\alpha' \ln\left(\frac{s}{M^2}\right)\right)t}$$

Similarly for double diffraction

$$\frac{d^2\sigma^{DD}}{dM_1^2 dM_2^2 dt} \sim \left(\frac{s}{M_1^2}\right)^{\alpha_{\mathbb{P}}(0)} \left(\frac{s_0}{M_2^2}\right)^{\alpha_{\mathbb{P}}(0)} e^{\left(b+2\alpha' \ln\left(\frac{ss_0}{M_1^2 M_2^2}\right)\right)t}.$$

where *b* is very small and $s_0 \simeq 1/\alpha'$. We also use the following values of parameters:

•
$$\alpha(0) = 1.058$$
,
• $B_0 = 10.1 \text{ GeV}^{-2}$,
• $\alpha' = 0.25 \text{ GeV}^{-2}$.

Damping factor $(1 - M^2/s)$ was used to include points in phase space not covered by Regge theory.

Diffractive events in Herwig

 We implement soft diffraction in Herwig by modelling it with the following matrix element

 Quark (q) and diquark (qq) form a cluster with diffractive mass, stretched along the dissociated proton.

Diffraction (preliminary) results

(Data taken from [Eur.Phys.J. C72 (2012) 1926]. Plotted with Rivet.)

- Reproduces well the plateau.
- Relative weight between single and double diffraction may need to be tuned simultaneously with other parameters.

Combining min-bias and diffractive runs (preliminary)

(Data taken from [Eur.Phys.J. C72 (2012) 1926]. Plotted with Rivet.)

- The soft interaction model still produces rapidity gaps.
- Tuning needed to get the correct multiplicity.

Min-bias with the new soft model (preliminary)

- Plots with $p_{\perp}^{min} = 2$ and 3 GeV.
- Correlation between p^{min}_⊥ and μ may not exist anymore, therefore we have one more tunable parameter.

Summary and outlook

- We reviewed the hard and soft MPI models in Herwig.
- Good agreement with data.
- Challenge: the so-called "bump" problem: the soft interaction model in Herwig produces too many events with large rapidity gaps.
- To address the problem we:
 - modified the soft interaction model and
 - implemented soft diffraction.
- Preliminary results show qualitative improvement, but more work is needed.
- Proper tuning has to be done and other observables should be checked as well.
- Diffraction and soft interaction model have to be sampled properly.