Some ^ Highlights of pA and AA studies with ATLAS

Zvi Citron עכון ויצמן לפרע WEIZMANN INSTITUTE OF SCIENCE QCD at Cosmic Energies; 17 May 2016

ATLAS at the LHC

- ATLAS has:
 - Charged particle tracking

ATLAS

- Calorimetery
- Muon Spectrometer

25m

LAr electromagnetic calorimeters

Transition radiation tracker

Pixel detector

Semiconductor tracker

44m

Zvi Citron עכון ויצנין לעדע WEIZMANN INSTITUTE OF SCIENCE

QCD at Cosmic Energies; 17 May 2016

Muon chambers

Toroid magnets

Solenoid magnet

Pb+Pb Collisions in ATLAS

- Three Pb+Pb runs at the LHC recorded by ATLAS:
 - 2010: Pb+Pb @ 2.76 TeV, 6.7 μb⁻¹ → 38 Z bosons
 - 2011: Pb+Pb @ 2.76 TeV, 150 μb⁻¹ → ~1.2k Z bosons
 - 2015: Pb+Pb @ 5.02 TeV, ~520 μb⁻¹ → ~5k Z bosons

Pb+Pb Collisions in ATLAS

- Two^{*} basic categories of questions for the data:
 - How do color sensitive objects (especially jets) interact with a hot dense QCD medium?
 - Look mostly at hard probes in rare events
 - What are the properties of the medium itself?
 - Look at bulk particle production in 'normal' events
 - *(Can we study nuclear initial state effects?
 - Usually better off using pA collisions)

EW Bosons as a Probe of the Initial State

We can measure the EW boson production in p+p collisions ...

EW Bosons as a Probe of the Initial State

We can measure the EW boson production in p+p collisions ...

Add the medium and measure the same thing – EW bosons won't interact with the colored QCD medium any changes observed must be due to initial state effects

> Zvi Citron עכון ויצמן למדע weizmann institute of science

EW Bosons Consistent with Expectations

pQCD calculations that work for pp collisions are scaled up to account for the number of binary collisions in PbPb ...

pQCD calculations describe the data (even without nuclear modification of the PDF)

Phys. Rev. Lett. 110, 182302 (2013), EPJC (2015) 75:23

EW Bosons Consistent with Expectations

Boson yield scales with number of binary collisions

Jets as a Probe of the Medium

Partonic jet shower in vacuum composed of:Leading PartonandRadiated Gluons

Jets as a Probe of the Medium

Partonic jet shower in vacuum composed of:Leading PartonandRadiated Gluons

• E transfer to medium via elastic collsions

Add the

medium:

 Gluons radiated due to medium interactions • E transfer to medium via elastic collsions

Zvi Citron

11

 Shunted out of jet cone from multiple scattering

Jet Suppression

Momentum balance not kept within di-jets produced in central collisions
Direct observation of 'jet quenching'

https://cdsweb.cern.ch/record/2055673

Jet Suppression

Phys. Rev. Lett. 114 (2015) 072302

- Number of jets is less than expected compared to pp
- •Strong centrality dependence
- •Little (no) rapidity dependence
- Slight momentum dependence

Jet Suppression

JHEP09(2015)050

•Number of charged particles is less than expected compared to pp

- Strong centrality dependence
- •Little (no) rapidity dependence
- •Strong momentum dependences; 17 May 2016

QCD at Cosmic Energies; 17 May 2016

15

Heavy Flavor Suppression

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N_{A+A} / dy dp_T}{d^2 N_{p+p} / dy dp_T}$

https://cdsweb.cern.ch/record/2055674

Heavy flavor suppressed

 Intermediate scale between inclusive charged particles and jet results

Heavy Flavor Suppression

 $\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos n (\phi - \Phi_n)$

Assume suppression is related to length of medium traversed

Heavy Flavor Suppression

 $\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos n (\phi - \Phi_n)$

Assume suppression is related to length of medium traversed

Hard Probes Story

- Many other observables that show 'color opacity'
- Extracting detailed mechanisms of jet suppression/energy loss not trivial
- EW bosons demonstrate understanding of collision geometry and function as 'standard candles' unbiased by the medium

What About the Medium Itself?

•Lots going on in addition to the rare processes!

- •Study collective bulk properties of the medium
- •Spatial anisotropies observable in momentum space due to **collective flow** •Study of the moments, v_n , and correlations between reaction planes, Φ_n ,

teaches us about the initial geometry and expansion

Medium flows like a liquid

Reaction plane
Singles:
$$\frac{dN}{d\phi} \propto 1 + \sum_{n} 2v_n \cos n (\phi - \Phi_n)$$

Pairs: $\frac{dN_{Pairs}}{d\Delta\phi} \propto 1 + \sum_{n} 2v_n^a v_n^b \cos(n\Delta\phi)$

Fourier decomposition of azimuthal distribution

Probing the Medium Using Pair Correlations

Multi-faceted correlation patter even in pp collisions

Probing the Medium Using Pair Correlations

Initial spatial anisotropies propagate into azimuthal anistropies in particle production Learn about the liquid properties of the medium with a Fourier decomposition in PbPb collisions

22

- Higher order Fourier coefficients
 - v_n coefficients rise and fall with centrality.
 - v_n coefficients rise and fall with p_T.
 - v_n coefficients are ~boost invariant.

Zvi Citron קכון ויצמן למדע WEIZMANN INSTITUTE OF SCIENCE 23

Event by Event Fluctuations

Event by event analysis of flow parameters \rightarrow Detailed description of bulk dynamics

24

Correlation of Flow Harmonics

PRC 92 (2015) 034903

- Lower flow harmonics arise primarily from ellipticity (ϵ_2) and triangularity (ϵ_3)
- Measure how much of higher orders arise proportionally from lower order $\boldsymbol{\epsilon}$
- Detailed measurement shows models still need work

Bulk Observables Story

- Here too many detailed observables not shown
 - Identified particle flow
 - Event plane correlations
 - Long range vs short range correlations
- Hydrodynamics are important part of but not the whole story – models are necessary and still are not consistently successful

State of Heavy Ion Data

- Seem to have a strongly coupled QGP in AA collisions
- Many measurements of jet modification and collective properties (not to mention quarkonia, etc.)
- Theory is still catching up
 - Progress but fully consistent model of suppression still doesn't exist
 - Hydro calculations have improved, but ambiguities in initial conditions and implementation remain
- Room for improvement in measurements
 - Better centrality, better reconstruction, new measurements etc
 - New data is coming
 - Where else can we 'push' the physics forward?

Semi Heavy Ion Collisions

- Traditional Heavy Ion Playbook
 - AA: Create QGP
 - pp: Establish baseline to contrast with AA observables
 - pA: Control experiment that isolates initial state physics
- pA (or dA) has its own interesting physics 'cold nuclear matter'
 - Low-x physics: shadowing, saturation, etc
 - Nuclear PDFs
 - Cronin effect
- Measured at RHIC with d+Au in 2003 and 2008
- Measured at LHC with p+Pb in 2013
- Some surprises ...

PLB 748 (2015) 392-413 Jets in p+Pb Collisions

- Nuclear modification in p+Pb
- Overall jet production in p+Pb scales as expected compared to p+p
 - R_{pA} close to unity
 - Compared to pQCD calculation with nPDF
- Control for Pb+Pb
 Moving towards nPDF studies

PRC 92 (2015) 044915 Studying nPDF with EW Bosons

Rapidity differential Z boson cross section

- Asymmetric in y
- Shape matched only with inclusion of nuclear PDF modification
- (Models underestimate total crosssection)

Zvi Citron

30

PRC 92 (2015) 044915 Studying nPDF with EW Bosons

x differential Z boson cross section

- Asymmetric in y
- Shape matched only with inclusion of nuclear PDF modification
- (Models underestimate total crosssection)

Zvi Citron

31

• *x* to <10⁻³

https://cdsweb.cern.ch/record/2055677

Studying nPDF with EW Bosons

Lepton η differential W boson cross section

Eur. Phys. J. C (2016) 76:199 Unraveling centrality & nPDF effects

- Centrality is *difficult* in pPb collisions
 - Less overall activity and asymmetric system
 - Small **physics** effects that get averaged over in PbPb may become significant
- 'Centrality bias' hard processes are correlated with larger underlying event
- Glauber model may not be the full story: 'Gribov' color fluctuations may be at play which allow the nucleon-nucleon cross-section to fluctuate

Modification of nPDF seen in both Z and W bosons looks centrality dependent

- Striking similarity between Z boson and charged particle yield
- Suggests centrality bias (inapplicable to charged particle yield) may not be the culprit
- But ...

Jet Centrality Dependence

'Shift' of η_{dijet} depends on centrality Somewhat more than nPDF can explain

Nuclear modification factor at high momentum splits in centrality bins. ... looks like some type of 'centrality bias'

PLB 756 (2016) 10-28

'Centrality' Jet Dependence

PLB 756 (2016) 10-28

'Centrality' Jet Dependence

A Step Back to p+p Collisions

- Interesting physics in the hard probes of p+Pb
- Before the next surprise in p+Pb, let's consider high multiplicity p+p ...

A Step Back to p+p Collisions

- Interesting physics in the hard probes of p+Pb
- Before the next surprise in p+Pb, let's consider high multiplicity p+p ...

Select highest multiplicity p+p collisions Long range y correlation observed Similar to structure observed in HI which corresponds to collective flow

'Double Ridge' in p+Pb Collisions

High multiplicity

Low multiplicity

Double Ridge indicates ...

Select high multiplicity p+Pb events Look at two particle correlation

Subtract off the uninteresting part of the correlation as found in low multiplicity collisions

Phys. Rev. C 90, 044906

'Double Ridge' in p+Pb Collisions

Double Ridge indicates ... Flow?

Similar magnitude to Pb+Pb at about 1/6 density

Zvi Citron

44

PRL 116 (2016) 172301

Liquid Drops Everywhere?

Once we know to look for it:

- Comprehensive analysis in pp collisions at two different energies
- Effect seems to persist to collisions with fewer than 30 tracks!

State of the Data

Heavy Ion Collsions

- The hot dense medium in HI collisions suppresses color sensitive jets and attenuates their momentum
- EW bosons do not interact with the QCD medium
- The medium looks like a liquid

Semi Heavy Ion Collisions

- pQCD is a reasonable start
 - Learn about initial state modification, nPDFs, etc.
- Unexpected centrality phenonmena
 - Maybe gets at fundamental proton properties

Also look like a liquid(!) and so do pp collisions (!!)

Zvi Citron

State of the Data

- 'Simple' story of a color opaque strongly coupled liquid, i.e. QGP!, uniquely in high energy AA collisions doesn't seem to be the case
- Do liquid properties have nothing to do with QGP/color opacity?
- Might we have reached small system QGP?

Where Can We Go From Here?

- There is some collectivity in pA and pp collisions
- All the details are important! Must understand at least:
 - Most peripheral AA collisions
 - Multi-parton interactions
 - Fluctuations in proton 'size'
 - Underlying event everywhere
- Can we find (other?) signatures of QGP in
 small systems?

Additional Information

EW Bosons To Define Centrality (?)

Agreement with scaling measured
Reverse our assumptions – assume scaling calculate geometric factor necessary for 'perfect' scaling
Derive geometric factors from EW bosons
Competitive uncertainties

Heavy Ion Collisions

- Can we probe QCD dynamic properties, cross a phase transition?
 - Time scale too short for external probes
 - Rely on probes produced by the collision
 - Reconstruct final state particles and work our way back

QCD at Cosmic Energies; 17 May 2016

Zvi Citron

Event by Event Data Looks Like 'Ideal' Liquid

Event be event fluctuations close to ideal hydro-dyanmic calculations

