

Recent CMS results in the forward region with the CASTOR detector

Sebastian Baur for the CMS Collaboration

The Forward Instrumentation of CMS

Overview

• CMS has an excellent calorimetric instrumentation in the forward region

HF calorimeters

- 13 segments in η : 3.152 < $|\eta|$ < 5.205
- at both sides of CMS: HF- and HF+
- Energy scale known to ±10%

HF (Hadron Forward)

CASTOR in CMS

- Tungsten-Quartz-Cherenkov sampling calorimeter
- Segmented in 16 sectors in φ and 14 modules in z
- No η -segmentation: acceptance of -5.2 < η < -6.6
- Energy scale known to ±17%
- Separated electromagnetic and hadronic sections with depth of $20 X_0 / 10 \lambda_{int}$
- Data in 2015: 2 weeks of low-luminosity runs in June

Motivation for forward physics

- Test influence of diffraction on various observables
- Probe proton fragmentation, UE and MPI
- Sensitive to low-x parton dynamics
- Test hypothesis of limiting fragmentation
- Probe cosmic-ray models
- Maximum acceptance to inelastic collisions

[Simulation study by Ralf Ulrich]

Recent results from CMS forward detectors

7

Recap: LHC Run 1 analyses

Karlsruhe Institute of Technology

- Measurement of diffractive cross sections
- Measurement of the underlying event
- Energy flow in Pb-Pb collisions

CERN CDS: 1472732

[arXiv:1302.2394

S. Baur – Recent CMS forward results QCD at Cosmic Energies, Chalkida May 2016

[arXiv:1503.08689]

Analysis effort with 13 TeV data

- Strong combined effort in CMS to exploit early 13 TeV low pileup data
- Number of MinimumBias analyses with similar event selections and hadron level definitions
- Focus today: Recently published preliminary results from CMS exploiting the forward instrumentation
 - \rightarrow Measurement of the inelastic cross section (CMS-FSQ-PAS-15-005)
 - \rightarrow Measurement of the forward energy flow (CMS-FSQ-PAS-15-006)
 - → Measurement of the very forward energy spectra with CASTOR (CMS-FSQ-PAS-16-002)
 - → Measurement of the very forward jet spectrum with CASTOR (CMS-FSQ-PAS-16-003)

Measurement of the inelastic pp cross section

Measurement of σ_{inel}

- Data from various run periods with low PU (5% 50%) at \sqrt{s} =13 TeV
- Unbiased trigger requiring presence of both beams at the interaction point (ZeroBias)
- Two offline event selections

HF OR

at least one tower above 5 GeV in either HF+ or HF-

HF OR CASTOR

at least one tower above 5 GeV in either HF+ or HF- or CASTOR

- Data-driven correction of noise triggered events and pileup effects
- Correction to the stable particle level with MonteCarlo simulation

Measurement of σ_{inel}

- Define final state via ξ variable
 - $\rightarrow\,$ divide final state in two subsystems X,Y relative to the largest rapidity gap
 - $\rightarrow\,$ calculate invariant masses $\rm M_X\,M_Y$ and use

$$\xi_{\rm X} = \frac{M_{\rm X}^2}{s}$$
, $\xi_{\rm Y} = \frac{M_{\rm Y}^2}{s}$ and $\xi = \max(\xi_{\rm X}, \xi_{\rm Y})$

 \rightarrow optimal detector acceptance is determined using full MonteCarlo simulation

• Extrapolation to the full inelastic phase space is done using model-dependent factors, difference is taken as systematic uncertainty

 $\sigma(\xi > 10^{-6}) = 65.8 \pm 0.8 \text{ (exp.)} \pm 1.8 \text{ (lum.) mb}$ $\sigma(\xi_X > 10^{-7} \text{ or } \xi_Y > 10^{-6}) = 66.9 \pm 0.4 \text{ (exp.)} \pm 2.0 \text{ (lum.) mb}$ $\sigma_{\text{inel}} = 71.3 \pm 0.5 \text{ (exp.)} \pm 2.1 \text{ (lum.)} \pm 2.7 \text{ (ext.) mb}$

Measurement of the forward energy flow

Measurement of $dE/d\eta$

- Average energy density per pseudorapidity
- Unbiased trigger requiring presence of both beams at the interaction point (ZeroBias)
- Two offline event selections:

Measurement of $dE/d\eta$

Average energy density per pseudorapidity:

S. Baur – Recent CMS forward results QCD at Cosmic Energies, Chalkida May 2016

17

Measurement of $dE/d\eta$

- The spread in the model predictions is large for soft-inclusive-inelastic events
- Predictions are generally a bit too high
- Pythia8 Monash, EPOS LHC, QGSJET: comparable results
- CUETP8M1 vs CUETP8M1+MBR: significant effect of adding the MBR model to the CUET tune
- CUETP8S1+uncertainties: dominant contribution from color reconnection parameters

S. Baur – Recent CMS forward results QCD at Cosmic Energies, Chalkida May 2016

CMS

19

Measurement of $dE/d\eta$

- Non single diffractive energy flow is ~20% higher than the inclusive inelastic
- Smaller spread of model predictions for non-single-diffractive-enhanced
- Overall reasonable description of data by predictions given uncertainties of data

Measurement of $dE/d\eta$

Test of limiting fragmentation with new and old data:

- → Transverse energy flow as function of (pseudo-)rapidity shifted by the beam rapidity
- \rightarrow converges for different \sqrt{s} towards 0
- \rightarrow confirmed !

Measurement of the very forward energy spectra

- A more detailed look into the CASTOR acceptance: energy deposition probability 1/N dN/dE
- Same event selection as before: ZeroBias trigger, offline HF OR selection:

• Furthermore:

Exploit the design of CASTOR and separate electromagnetic and hadronic energy

- CASTOR is a combined electromagnetic and hadronic calorimeter
- Signal in the first two modules of CASTOR is sensitive to the electromagnetic component
- Back part measured the hadronic contribution

- Residual effects: non-compensation, leakage of em/had energy into back/front part, • Electromagnetic Response non-nominal acceptance √s=13 TeV
 - \rightarrow unfold spectra with d'Agostini iterative with early stopping

CMS Measurement of $1/N_{evt} dN/dE$ in CASTOR 41.5 μb⁻¹ √s=13 TeV (B=0T) -6.6 < η < -5.5 , ξ_{sp}>10⁻⁶ -6.6 < η < -5.5 , ξ_{sp}>10⁻⁶ 41.5 μb⁻¹ /s=13 TeV (B=0T) 10^{-1} 10 1/N_{evt} dN/dE [GeV⁻¹] I/N_{evt} dN/dE [GeV⁻¹] Data Data CMS CMS Total uncertainty Total uncertainty Preliminary Preliminary Model uncertainty Model uncertainty 10^{-2} Sibyll 2.1 10⁻² PYTHIA8 CUETP8M⁻ PYTHIA8 CUETP8M1, MPI off Sibvll 2.3 EPOS 1.99 THIA8 CUETP8M1, pt0Ref = 1.5 EPOS LHC HIA8 CUETP8M1, pt0Ref = 3.0 10⁻³ 10⁻³ GSJet II.03 YTHIA8 4C+MBR QGSJet II.04 Herwig++ 2.7 UE-EE-5C 10 10 10⁻⁵ 10^{-5} 10⁻⁶ 10⁻⁶ 2 Ratio MC/Data

- Measurement confirms the general shape of the spectrum, bump structure at ~350 GeV
- Models perform reasonably well, tuning improvement is seen
- Clear evidence for the importance of MPI, sensitive to pt0Ref parameter •

4000

Total Energy [GeV]

5000

3000

- Better general agreement, despite Sybill 2.3
- Herwig++ UE EE-5C seems to have too strong cutoff on MPI

CMS

Measurement of 1/N_{evt} dN/dE in CASTOR

- · All models tend to have a too flat spectrum
- Sybill 2.3 shows interesting feature at 0 energy
- General: Shape is rather complex, detailed implications need detailed further studies

CMS

Measurement of the very forward jet spectrum

Measurement of very forward jets

- CASTOR towers are clustered into jets with anti-kt radius 0.5
- Matched to particle level jets also clustered with anti-kt 0.5
- First order Jet Energy Calibration:
 - → Simulation based correction for first order detector effects

Measurement of very forward jets

- Unfolding of the jet spectrum using d'Agostini iterative method with early stopping •
- Correction for border effects (jets hitting the edges of CASTOR), reconstruction inefficiencies and pt resolution
- Broad matrix due to lack of eta segmentation ٠
- Distribution within the CASTOR acceptance ٠ influences the result
 - \rightarrow large model dependence
- Main systematic uncertainties:
 - CASTOR energy scale: >50 %
 - CASTOR acceptance uncertainty: 10-30%
 - Model uncertainty: 20-50%
 - Luminosity: 2.9 %

Measurement of very forward jets

- Systematic uncertainties especially jet energy scale are very large
- PYTHIA8 gives slightly too large cross sections, proper MPI description is important
- EPOS LHC and QGSJetII seem to be too steep

Summary

Summary

- CMS published recently a nice set of measurements that exploit the forward instrumentation
- The inelastic proton-proton cross section has been measured at 13 TeV and extrapolated to the full phase space
 - \rightarrow Measurement favors a smaller value than most models
 - → Most models describe the relative increase from $\xi > 10^{-6}$ to $\xi_X > 10^{-7}$ or $\xi_Y > 10^{-6}$ rather well
 - → Results public in CMS-PAS-FSQ-15-005: http://cds.cern.ch/record/2145896
- The energy flow in the forward region, in pseudorapidity range $3.15 < |\eta| < 6.6$, is measured in pp-collisions at 13 TeV for two event classes.
 - \rightarrow In general models provide reasonable description of data, given the uncertainties.
 - \rightarrow Results are studied in terms of shifted pseudorapidity. An overall consistency with hypothesis of limiting fragmentation is found.
 - → Results public in CMS-PAS-FSQ-15-006: http://cds.cern.ch/record/2146007

Summary

- Normalized energy spectra in pseudorapidity range -5.2 < η < -6.6 are measured with CASTOR in pp-collisions at 13 TeV.
 - \rightarrow Models perform quite good in reproducing the spectra shapes
 - \rightarrow Tuning to LHC data improved the description, especially the UE tunes
 - \rightarrow Importance of MPI to describe the energy in the very forward region is shown
 - → More concrete interpretations need careful studies
 - → Results public in CMS-PAS-FSQ-16-002: http://cds.cern.ch/record/2145374
- For the first time, jets in the very forward region are measured and fully unfolded to the particle level
 - → Systematic uncertainties are very large
 - \rightarrow All models agree within the uncertainties
 - \rightarrow Still, some weak conclusions can be drawn
 - \rightarrow Nevertheless, this opens the door for further studies, e.g. jet correlations or ratios to different center-of-mass energies
 - → Results public in CMS-PAS-FSQ-16-003: http://cds.cern.ch/record/2146006

rivet plugins are available upon request for most of the presented analyses

Thank you !

Backup

Calibration of CASTOR

- Challenging calibration procedure due to exposed position
- Data-driven absolute calibration based on HF scale with independent dataset
- Channel-wise intercalibration with beam halo muons (dedicated trigger)

CASTOR energy scale uncertainties

Systematic uncertainty of the energy scale: • \rightarrow HF calibration: 10% \rightarrow model & extrapolation uncertainty: 10% Alignment is done with infrared non-compensation: 5% sensors with respect to the \rightarrow beampipe with precision of ~2mm \rightarrow position uncertainty: 7% \rightarrow total: 17% measured position (IP side) 1.7.7 beam pipe CMS Preliminary nominal sensor position Fraction of Reconstructed Energy reconstructed sensor position 80 s=13 TeV CASTOR: measured inner boundary Events 40000 60 CMS **Measured Position** Offset of far side: Offset of near side: private work x=-4.68+-1.90 mm x=-2.23+-2.17 mm v=-2.889+-2.43 mm y=-1.648+-1.75 mm 40 Simulated Minimum Bias 30000 52000 12000 12000 12000 12000 **Position Uncertainty** y [mm] 20 -20 -40 -60 -60 -40 -20 20 40 60 80 x [mm] 5000 non-compensation 0.5 1.5 E_{Reco} / E_{True}

Measurement of σ_{inel}

	$\sigma(\xi>10^{-6})$	$\sigma(\xi_{\rm X} > 10^{-7} \text{ or } \xi_{\rm Y} > 10^{-6})$
	(mb)	(mb)
Model dependence	0.66	0.38
HF energy scale uncertainty	0.34	0.13
CASTOR energy scale uncertainty	-	0.04
CASTOR alignment	-	0.03
Run-to-run variation	0.15	0.14
Total	0.76	0.44
Luminosity	1.78	1.96

 $\sigma(\xi > 10^{-6}) = 65.8 \pm 0.8 \text{ (exp.)} \pm 1.8 \text{ (lum.) mb}$

 $\sigma(\xi_X > 10^{-7} \text{ or } \xi_Y > 10^{-6}) = 66.9 \pm 0.4 \text{ (exp.)} \pm 2.0 \text{ (lum.) mb}$

 σ_{inel} = 71.3 ± 0.5 (exp.) ± 2.1 (lum.) ± 2.7 (ext.) mb

Measurement of $dE/d\eta$

Check of systematic effects

	Soft-inclusive inelastic events	Non-single diffractive events
Model dependence of correction factor	< 3	8.5%
Influence of noise on selection	< 1.75%	< 0.5%
Influence of noise on energy sums	< 1	.2%
Calorimeter global energy scale in 3.15 < η < 5.20	10%	
Calorimeter global energy scale in 5.20 < η < 6.6	17	7%

Extensive air shower modeling

- Both air shower observables and the very forward energy spectrum are sensitive to changes in the hadronic interaction parameters such as multiplicity, elasticity or baryon production.
- This effect is most visible in the structures below 1TeV.

