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Disclaimer: the word Baxterize does not
appear in this talk.

Michael Wheeler Refined Cauchy and Littlewood identities



Aim of talk

@ The ASM conjectures were discovered by Mills, Robbins and Rumsey. They express
the number of ASMs (with additional symmetries) as simple products.

@ After Zeilberger's complicated proof of the original conjecture, Kuperberg found a
much simpler proof using the six-vertex model.

o Later on, in a real tour de force, Kuperberg computed partition functions of the
six-vertex model on a large set of domains. All partition functions were expressed in
terms of determinants and Pfaffians.

@ Given their determinant and Pfaffian form, it is not surprising that they expand
nicely in terms of Schur functions.

@ What is much more surprising is that they expand nicely in non determinantal
symmetric functions as well.

@ The results in this talk allow these partition functions to be written, for example, in
the form

OP 4 (z15t) .. . T (@n; ) Ot w)T— (ynst) - . . T— (15 8)|0)
O (z151) ... Py (2n; )T~ (yn3 t) - .. = (y1;1)|0)
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Schur polynomials and SSYT

@ The Schur polynomials s)(z1,...,xn) are the characters of irreducible
representations of GL(n). They are given by the Weyl formula:

Ai—j+n
detigi j<n [Ii] ]

sa(z1,...,zn) =
e H1g¢<j<n(~’ci_%‘)

@ A semi-standard Young tableau of shape )\ is an assignment of one symbol
{1,...,n} to each box of the Young diagram ), such that

@ The symbols have the ordering 1 < - -+ < n.
@ The entries in X increase weakly along each row and strictly down each column.

@ The Schur polynomial sy(z1,...,zn) is also given by a weighted sum over
semi-standard Young tableaux T of shape A:

sa(z1,...,xn) = Z ﬁ xk#(k)

T k=1
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SSYT and sequences of interlacing partitions

@ Two partitions A and p interlace, written A > p, if

Ai = g > N

across all parts of the partitions. It is the same as saying A\/u is a horizontal strip.

@ One can interpret a SSYT as a sequence of interlacing partitions:

T={0=x20 <M <... <A =}

o The correspondence works by “peeling away” partition A(F) from T, for all k:

2[2]4]
2[2[3 |
3|34 [ ]
4] L
T = A2 < AB) < A4
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Plane partitions

o A plane partition is a set of non-negative integers 7 (%, j) such that for all i,57 > 1
w(i,§) 2 7(i+1,5) m(4,5) = m(i,j + 1)

o Plane partitions can be viewed as an increasing then decreasing sequence of
interlacing partitions. They are equivalent to conjoined SSYT.

o We define the set

T = (0= MO < A0 L A0 = ) e (0 0 Z gy




Cauchy identity and plane partitions

@ The Cauchy identity for Schur polynomials,

ZS/\(Z‘l,...,l‘m)S)\(ylyv-wyn) = H H
A

i=1j=1 1_$Zy]

can thus be viewed as a generating series of plane partitions:

> II M“N—M“*”lII | =1 IIII

TETm,n i=1 1=1j=1

1-— TiYj

o Taking the g-specialization z; = ¢™~¢t1/2 and Yj = ¢ It1/2 | we recover
volume-weighted plane partitions:

> w‘HH‘TﬂFﬁH HHlﬂwl

TETm,n i=1j5=1 1=1j5=1
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Symmetric plane partitions

o Symmetric plane partitions satisfy the condition that # (¢, j) = w(j,4) for all 4,5 > 1.

@ A symmetric plane partition is determined by an increasing sequence of interlacing
partitions. (The decreasing part is obtained from the symmetry.)

@ They are in one-to-one correspondence with SSYT.
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Littlewood identities and symmetric plane partitions

@ The three (simplest) Littlewood identities for Schur polynomials

n

E sx(z1,.-,Tn) = H H 1
X I<icjen LT ET i T
n
> sa(@n,om) = ] Hl
X even I<icj<n LT T
1
E sx(z1,.-,Tn) = H T wm
A’ even 1<i<j<n TiZj

can each be viewed as generating series for symmetric plane partitions, with a
(possible) constraint on the partition forming the main diagonal.
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Hall-Littlewood polynomials

e Hall-Littlewood polynomials are t-generalizations of Schur polynomials. They can
be defined as a sum over the symmetric group:

1 - ) T; —tz;
Prlarconit) = S o ([T ] 2t
U)\(t) i=1 i

- T; — T
cE€Sn 1<i<j<n " J

@ Alternatively, the Hall-Littlewood polynomial Py(z1,...,zn;t) is given by a
weighted sum over semi-standard Young tableaux T' of shape A:

n
P)\(:El, cey T t) = Z H (mk#(k)li/')\(k:)/)\(kfl) (t)>
T k=1

where the function 1/, (t) is given by

Yayut) = 11 (1 - t"'bi(f‘))

i>1

1z

mg(p)=m;(N\)+1
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Path-weighted plane partitions

@ As Vuleti¢ discovered, the effect of the t-weighting in tableaux has a nice
combinatorial interpretation on plane partitions.

o The refinement is that all paths at level k receive a weight of 1 — t*.

o Example of a plane partition with weight (1 —t2)4(1 — 3)2 shown below:

. Level-3
. Level-2
D Level-1
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Hall-Littlewood Cauchy identity and path-weighted plane partitions

@ The Cauchy identity for Hall-Littlewood polynomials,
A
is thus a generating series of (path-weighted) plane partitions:

ivpi(m) i @ | ali=1) n @)=l — tx;y;
> IIa-#) [ [Tof ™ HH*J

A N x
TETm,n 121 i=1 j=1 i=1j=1 iYj

n

m;(X) m
H 1_tj)P)\ T1y--+5Tm; )PA(ylv"wy’nv :l__[l__[ _tmly]

j= i=1j=1 - %Y

L":ZIS

k3

@ Taking the same g-specialization as earlier, we obtain
1— tq”r]

> -0 e =TT e

TETm,n i1 i=1j=1
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Littlewood identities for Hall-Littlewood polynomials

@ The t-analogues of the previously stated Littlewood identities are

oo mi(X)

SOTIT IT a=#YHPa(a,. ..

A even i=1 j even

ZP)\(fﬂl,“-
A
Z Py (z1,. ..

A even

n
N 1 —tx;x; 1
’In7t) = 1 1
1<i<j<n TiTj i T
n
N 1—tx;z; 1
Tnit) = 1—x;x; 1—22
1<i<j<n v =1 i
1—tx;x;
4 — J
» Tn; t) - H 1 e
1<i<j<n Tikj

@ These can be regarded as generating series for path-weighted symmetric plane

partitions.

o Paths which intersect the main diagonal might not have a t-weight.
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t-weighting of symmetric plane partitions




Example 1(a): Refined Cauchy identity for Schur polynomials

Theorem
n

ZH T sy (@1, 2n)SA (YL, - - -5 Yn)

A =1

1 d |:1—u+(u—t):r:,-yj]
e — €
A@)InAY)n 1<ti<n [(1 = tziy;) (1 — ziy;)

Expand the entries of the determinant as formal power series, and use Cauchy—Binet:

det [ L —u+ (u—t)ziy; } — det i(l — uth)zhy
1<i,5<n | (1 — tsy;) (1 — @iy;) 1<i,j<n | = 6Ey

n
= 1—utFi)  det [J] det []
Z H( ut™) 1<i,ej<n i 1<i,ej<n s

k1> >kn>0 i=1

The proof follows after the change of indices k; = A\; — i + n.
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Example 1(b): Refined Cauchy identity for Hall-Littlewood polynomials

@ Define

mo(X) oo mi(X) )
=S J] a=ut*H]] I] O =#)Pa(z1,.. ., znit) Pa(yr,- - Yn; t)
N k=1

i=1 j=

-

I13,=. (0 — twiy;) ot [ L—u+ (u—t)zy; }
A@nAY)n  1<hi<n [(1— tzy;) (1 — 23y5)

@ The specialization u = t is particularly nice:

Cn(t;u) =

m;(A)
[ @Q=)Pa(z1,. . zn; ) Pa(yrs -y yni )
0 j=

.:18

-

>

k3

H?,j:1(1 —tz;y;) o (1—1)
A@)nAY)n  1<ii<n [(1 = tziy;) (1 — 2iy5)

Michael Wheeler Refined Cauchy and Littlewood identities



Example 1(b): Refined Cauchy identity for Hall-Littlewood polynomials

partitions?

the level of plane

tion: What does the refinement do at




Example 1(b): Refined Cauchy identity for Hall-Littlewood polynomials

o Answer: The zero-height entries are treated like the rest.




Example 1(c): Refined Cauchy identity for Macdonald polynomials
@ The Cauchy identity for Macdonald polynomials is

txiy;;
Zb)\((bt)P)\(ml?"'7wn;q7t)P>\(y17'--7y7L;q7 H ( ’Ly]
=1 xzyj»Q)
where
oo}
1— qa(s)tl(s)+1
_ _ k —
- H(]' q 27), b)\(qz t) - H 1_ qa(s)+1tl(s)
k= SEN
Theorem (Kirillov—Noumi,Warnaar)
" .
ST = w5 )ba(a, ) Pa(@1, - - 205 € ) PA(YL, - - s Y3 45 ) =
X i=1
ﬁ (tziy;5q) H?,j:l(l — xiY;) . |: Il =@ SE (@ = )\ ]
=1 @9539) Thcicjcn (@i —25)(yi — yj) 1<ig<n [(1— taiy;) (1 - 24y;)

Proof

Act on the Cauchy identity with a generating series of Macdonald’s difference operators.
The left hand side follows immediately. The right hand side follows after acting on the
Cauchy kernel, and performing some manipulation.
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Example 2(a): Refined Littlewood identity for Schur polynomials

n
> [ — w2225y (@1, 22y)

A even i=1

I 1 - [(l—u-l—(u—t)ac,-acj)(xi—wj)]

1<i<j<en (Iz — xj) 1<i<j<2n (]_ — t:):,-xj)(l = xixj)
<i<j<

Proof.

Expand the entries of the Pfaffian and use a Pfaffian analogue of Cauchy—Binet:

P L] = Pf 9, 1 — uth)(zla® — zFal
1<i<j<2n ] 1<i<j<2n 0§<l Let( G i75)
= Z Pf [6k. ki+1(1— utkl)] det [mk’]

1<i<j<2n ©r 1<i,5<2n L ¥

k1>-->kop>0

The Pfaffian in the sum factorizes, to produce the correct (blue) factor and the
restriction on the summation. O

Michael Wheeler Refined Cauchy and Littlewood identities



Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials

@ Define
mo(X) co m;(N)
Lon(t;u) = Z H (l—utk 2) H H 1—¢— PA(mh...,xgn;t)
A even k even i=1j even

Theorem (DB,MW,PZJ)

Lon(t;u) = 11

(1 —taixy) e [(l—u—i—(u—t)a:,-a:j)(xi—wj)]
1<i<j<2n

(mi — xj) 1<i<j<2n (]_ — t:ri:rj)(l = mimj)
@ The specialization u = t is again especially nice:

oo m;i(X)

SOT1 I @-t7HPa(zr,. .., z205t)

A even =07 even

- 11 (A —twizj) o (1 —t) (i — =)

x; —xi) 1<i<ij<2n | (1 —tx;z;)(1l — x;2;
J J J

1<i<j<2n
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Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials

@ At the level of plane partitions, this is (again) a very simple refinement.




Example 2(b): Refined Littlewood identity for Hall-Littlewood polynomials

@ At the level of plane partitions, this is (again) a very simple refinement.




Example 2(c): Refined Littlewood identity for Macdonald polynomials

@ The most fundamental Littlewood identity for Macdonald polynomials is

e teix;;q
> @ t)Pa(z1, L rmigt) = ] Goizs; 9)

A even 1<i<j<an (TiT539)
where
1 — ga(s)¢l(s)+1
@t = ] e L
1— qa(s)+1tl(s)

SEAX
I(s) even

Conjecture (DB,MW,PZJ)

>0 TI0 - ug> 2295 (a, ) Pa(ar, ., w2nsq. 1) =
A even i=1
H (tzixj; q) H (1 —zz5) Pt |:(1_u+(u_t)zizj)($i_$j):|

T; — ;) 1<i<j<2n 1 —txz;) (1 — x5
J Y J

1<i<icen Fi%59) 1 icon
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The six-vertex model

@ The vertices of the six-vertex model are

— T
y
T
at(z,y)
— T
y
H
— (@, y)

Michael Wheeler

Yy

b (2,y)

— T
Yy
T
et (@)
— T
Yy
T
c—(z,y)
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The six-vertex model

@ The Boltzmann weights are given by

at(z,y) = f— a_(z,y) = 1—z/y
by(z,y) =t b(z,y) =Vt
e Rt o
ct+(@y) = 1—x/y ~Ey) = 1—a/y

@ The parameter t from Hall-Littlewood is now the crossing parameter of the model.

@ The Boltzmann weights obey the Yang—Baxter equations (the Mq(gl;) solution):

\
=3
-z
- Y
Y
7
z z
T T
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Boundary vertices

o We also require corner vertices

S R N

1 1 1 1
which do not depend on a spectral parameter and behave like sources/sinks.

@ The corner vertices satisfy a reflection equation:

T -z -
T T vy = - Y _*MU

Y x
Hy: j—l Z*HJK T o1
— T - T y z
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Domain wall boundary conditions

@ The six-vertex model on a lattice with domain wall boundary conditions was first
considered by Korepin:

A A A
- T > -«
- T2 > -«
- x3 > <
- T4 — <
- x5 »> <
- 26 > <

Y Y y

1

@ This partition function is of fundamental importance in periodic quantum spin
chains based on Y(sl2) and Uy (sl2).
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Domain wall boundary conditions

o Configurations on this lattice are in one-to-one correspondence with alternating sign
matrices:

cocoo+ oo
co+ | + o
+ooco | +
o+ | + oo
cocooco+4+ o
oo+ ocooco

@ The domain wall partition function was evaluated in determinant form by lzergin:

ZasM(Z1, s Tni Y1, -0, Ynit) =
[13;2. (1 — taiy;) (1-1
ngi<jgn($i —2;)(Yyi — Y5) (1 —tziy;) (1 — ziy;) 1<i,5<n

o The DWPF is equal to the right hand side of a refined Cauchy identity:

ZasM(Z1, -+ Tn; Y1, - -5 Yn;t) = Cn(t;t)
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Half-turn symmetry

@ One can consider those configurations under domain wall boundary conditions
which have 180° rotational symmetry.

@ The fundamental domain is given by:

- x3 >
— T2 >-
-1 >
e )
- Z2 >
- Z3 >
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Half-turn symmetry

@ Configurations on this lattice are in one-to-one correspondence with half-turn
symmetric alternating sign matrices:

0o 0 o O + O
o 0 0 + — +
6o 0 + — + O
6O + — + 0 O
+ — + 0 0 0
0O + 0 0 0 O

o Kuperberg evaluated this partition function as a product of determinants:

B 1721 (1 — tiy;)?
[icicicn @i —25)%(yi — y;)?

(1-1) 1+ V(1 — Viziy;)

et
1<iygi<n [ (1 — tay;)(1 — xiyj)} 1<iygi<n | (1 —taiy;) (1 — 243y5)

Zur(T1, - Tni YL, -5 Ynst)

X

@ In other words,

ZHT(xI: e Tns YL, - 7yn§t) = Cn(t§t)cn(t§ 7\/2)
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Off-diagonally symmetric boundary conditions

o Off-diagonally symmetric boundary conditions were introduced by Kuperberg. One
considers domain wall configurations with reflection symmetry about a diagonal
axis, and which have no c vertices on that diagonal.

@ The fundamental domain is

td
- x1 > .
- T2 —
- z3 —
- zy —p
- x5 —
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Off-diagonally symmetric boundary conditions

o Configurations on this lattice are in one-to-one correspondence with off-diagonally
symmetric ASMs (OSASMs):

0 0 + 0 0 O
+ 0 - + 0 0
0 0 o o0 + O
o + 0 0 — +
0o 0 + 0 0 0
0o 0o o o0 + O

o Kuperberg evaluated this partition function as a Pfaffian:

ZosasM(21, ..., Z2n;t) =

H (1—t$ixj)Pf (1_t)(~75i _xj)

(]. — t:r,‘i:cj)(l — xixj)

1<i<j<2n (zi — ;) 1<i<j<2n

@ The OSASM partition function is equal to the right hand side of a refined
Littlewood identity:

ZosasM (1, - -, Tan;t) = Lon(t;t)
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Off-diagonally/off-anti-diagonally symmetric boundary conditions

e Similarly, one can consider domain wall configurations with reflection symmetry in
both diagonals, and with no c vertices on those diagonals.

@ The fundamental domain is

- T4 —p—o
- T3 >
- T2 >
-z >
- T >
1
- T2 > T
T2
— x3 > T
T3
- T4 —>—e T
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Off-diagonally/off-anti-diagonally symmetric boundary conditions

o Configurations on this lattice are in one-to-one correspondence with
off-diagonally/off-anti-diagonally symmetric ASMs (OOSASMs):

o o o o + 0 0 0
0 0 O f £ 0 O
o o0 o o 0 0 + 0
o + 0 0 0 0 — +
+ — 0 0 0 0O + 0
o + 0 0O O 0 0 O
o 0 + —-— + 0 0 O
o o0 o + 0 0 0 O

@ The partition function can be evaluated as a product of Pfaffians:

(1 —tx;x5)?
Zo0sAsM(Z1; - -, Tan;t) = H ﬁx
1Ci<j<an i T Xj

(1 —t)(z; — ;) (L+ VO (1 = Viza;)(zi — z;)

1<i<j<2n (1 — t$i$j)(1 — 3}11‘3):| 1<i<j<2n (1 — t:ﬂif]')(l — :vizvj)

@ In other words,

ZoosasMm (@1, - .., T2nit) = Lon(tit)Lon(t; —V1)
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Open questions

o Expansion of other symmetry classes of ASMs.
@ What is the missing operator needed to prove the conjecture?

@ Do these correspondences have a combinatorial meaning? The similarity of the
underlying domains on both sides of these correspondences is very curious.

e Can more general objects in the six-vertex/XXZ model (form factors/correlation
functions) be expanded nicely in terms of Hall-Littlewood polynomials?

e What about more general models, such as the eight-vertex and 8VSOS models?
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