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Vertex models

General definitions

The playground is a two dimensional
square n×m lattice.

Each horizontal edge can be in one of
` states, and each vertical edge — in
one of k states.

The goal is to find the partition
function.

The partition function is the sum of
the Boltzmann weights of all possible
states of the lattice.

Boltzmann weight of a state is the
product of the Boltzmann weights of
the vertices.
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Vertex models

Weight of a vertex

Boltzmann weigth of a vertex is determined by the states of the adjacent edges.

Associate with the states of horizontal edges the indices (a, b, . . .) taking `
values, and with the states of vertical edges the indices (i, j, . . .) taking k
values.

The summation over the states is now the summation over the indices.

Monodromy matrix

From the weights of the vertices an (` k × ` k) matrix in accordance with the
picture

a
b

i

j

= Mai|bj
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Vertex models

Monodromy matrix for n vertices

Sum over the states of internal horizontal edges.

b b b

a
c1 c2 cn−1

b

i1 i2 i3 in−1 in

j1 j2 j3 jn−1 jn

This gives the matrix with the matrix entries

Mai1i2...in|bj1j2...jn =
∑

c1,c2,...,cn−1

Mai1|c1j1Mc1i2|c2j2 . . .Mincn−1|jnb.
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Vertex models

Transfer matrix

Apply the periodic boundary condition in the horizontal direction.

Sum over the states of the boundary horizontal edges

b b b

a

c1 c2 cn−1

i1 i2 i3 in−1 in

j1 j2 j3 jn−1 jn

This gives the matrix with the matrix entries

Ti1i2...in|j1j2...jn =
∑

a,c1,c2,...,cn−1

Mai1|c1j1Mc1i2|c2j2 . . .Mincn−1|jna.
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Vertex models

Partition function

Applying the periodic boundary condition in the vertical direction we see that

Z = trTm = λm0 + λm1 + . . . ,

where λ0 > λ1 > . . . are the eigenvalues of the transfer matrix T .

Thermodynamic limit

The term thermodynamic limit in the case under consideration means that
n,m→∞. For the free energy for a vertex we have

F =
1

mn
lnZ =

1

n
lnλ0 +

1

mn
ln

(
1 +

(
λ1

λ0

)m
+ . . .

)
≈ 1

n
lnλ0.
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Six vertex model

Ice rule

For each vertex there are exactly two
arrows pointing in and exactly two
arrows pointing out.

Allowed configurations
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Six vertex model

Boltzmann weights

Recall that the partition sum is the sum of the Boltzmann weights of all
possible configurations of the lattice.

The Boltzmann weight of a configuration is the product of the Boltzmann
weights of the vertices.

Boltzmann weights of the vertices for the six vertex model

a a b b c c
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Six vertex model

Commuting transfer matrices

One can show that
[T (a, b, c), T (a′, b′, c′)] = 0

if
a2 + b2 − c2

2ab
=
a′2 + b′2 − c′2

2a′b′

= ∆.

Sectral parameter

Standard parametrization

a = ρ(qζ − q−1ζ−1), b = ρ(ζ − ζ−1), c = ρ(q − q−1).

For this parametrization
∆ = (q + q−1)/2.
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Six vertex model

Baxter’s Q-operator

Transfer matrices for different values of the spectral parameter commute:

[T (ζ), T (ζ′)] = 0.

Baxter proved the existence of the (matrix) operator Q(ζ) having the
properties

[Q(ζ), Q(ζ′)] = 0, [Q(ζ), T (ζ′)] = 0.

Baxter TQ-equation

The operator equation:

T (ζ)Q(ζ) = an(ζ)Q(q−1ζ) + bn(ζ)Q(qζ).

The equation for the eigenvalues:

λ(ζ)θ(ζ) = an(ζ)θ(q−1ζ) + bn(ζ)θ(qζ).
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Six vertex model

The special value of the parameter q

For q = exp(±2πi/3) (∆ = −1/2) there are some reasonings for the existence of
a solution to the TQ-equation with

λ(ζ) = −(q−1ζ − qζ−1)n.

In this case for the function

ϕ(ζ) = (q−1ζ − qζ−1)nθ(ζ)

TQ-equation takes the form

ϕ(ζ) + ϕ(qζ) + ϕ(q2ζ) = 0.

An explicit solution to this equation was found by Yuri Stroganov

Yu. G. Stroganov, The importance of being odd, J. Phys. A: Math. Gen. 34
(2001) L179-L185.
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XXZ spin chain at ∆ = −1/2

Connection to the six vertex model

The Hamiltonian of the XXZ spin chain

HXXZ = −1

2

n∑
k=1

[σxkσ
x
k+1 + σykσ

y
k+1 + ∆σzkσ

z
k+1]

is connected to the transfer matrix of the six vertex model as follows:

T (ζ)
dT (ζ)

dζ

∣∣∣∣
ζ=1

= − 2

q − q−1

(
HXXZ −

n∆

2

)
.

It follows from this equality that

[HXXZ, T (ζ)] = 0

At ∆ = −1/2, if an eigenvector of the transfer matrix with the eigenvalue
λ(ζ) = −(q−1ζ − qζ−1)n exists it is an eigenvector of the Hamiltonian HXXZ

with the eigenvalue
E = −3n/4.



XXZ spin chain at ∆ = −1/2

Mathematica enters the game

It was demonstrated that an eigenvector of the Hamiltonian HXXZ with the
eigenvalue E = −3n/4 exists for ∆ = −1/2 for odd n = 1, 3, . . . , 17. For even
n = 2, 4, . . . , 16 there is no such vector.

These results are given in the paper

A. V. Razumov and Yu. G. Stroganov, Spin chains and combinatorics, J. Phys.
A: Math. Gen. 34 (2001) 31853190.

In the same paper a few conjectures on the properties of the eigenvector are
formulated.
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XXZ spin chain at ∆ = −1/2

Conjecture 1

The ground state of the Hamiltonian HXXZ|∆=−1/2 for odd n has the energy
−3n/4.

Proof

X. Yang and P. Fendley, Non-local space-time supersymmetry on the lattice, J.
Phys. A: Math. Gen. 37 (2004) 8937-48;

G. Veneziano and J. Wosiek, A supersymmetric matrix model: III. Hidden
SUSY in statistical systems, JHEP 11 (2006) 030.



XXZ spin chain at ∆ = −1/2

Conjecture 2

If one divides the components of the ground state vector by the component
with minimal absolute value all other components become positive integers.
Here the maximal component for n = 2m+ 1 coincides with the number Am of
the alternating sign matrices of order m.

Proof

A. V. Razumov, Yu. G. Stroganov and P. Zinn–Justin, Polynomial solutions of
qKZ equation and ground state of XXZ spin chain at ∆ = −1/2, J. Phys. A:
Math. Theor. 40 (2007) 11827-11847.



XXZ spin chain at ∆ = −1/2

Definition

An m×m matrix satisfying the conditions

all matrix entries are either 0 or +1 or −1

+1 and −1 alternates in every row and every column

the first and the last nonzero entry in every row and every column is +1

is called an alternating sign matrix of order m.

All alternating-sign matrices of order 3

 +1 0 0
0 +1 0
0 0 +1

  +1 0 0
0 0 +1
0 +1 0

  0 +1 0
0 0 +1

+1 0 0

  0 +1 0
+1 0 0

0 0 +1


 0 0 +1

+1 0 0
0 +1 0

  0 0 +1
0 +1 0

+1 0 0

  0 +1 0
+1 −1 +1

0 +1 0





XXZ spin chain at ∆ = −1/2

Conjecture 3

With the above normalization, the sum of squared components of the ground
state vector is N 2

m and the the sum of the components is 3m/2Nm, where

Nm =
3m/2

2m
2 · 5 · · · (3m− 1)

1 · 3 · · · (2m− 1)
Am.

Proof

P. Di Francesco, P. Zinn–Justin and J.–B. Zuber, Sum rules for the ground
states of the O(1) loop model on a cylinder and the XXZ spin chain, J. Stat.
Phys.: Theor. Exp. (2006) P08011.



XXZ spin chain at ∆ = −1/2

To study the correlation functions it is convenient to use the operators

αk = (1 + σzk)/2.

Conjecture 4

The emptiness formation probabilities satisfy the equality

〈α1 · · ·αp−1〉
〈α1 · · ·αp−1αp〉

=
(2p− 2)!(2p− 1)!(2m+ p)!(m− p)!

(p− 1)!(3p− 2)!(2m− p+ 1)!(m+ p− 1)!
.

Proof

N. Kitanine, J. M. Maillet, N. A. Slavnov and V. Terras, Emptiness formation
probability of the XXZ spin-1 / 2 Heisenberg chain at ∆ = 1/2, J. Phys. A:
Math. Gen. 35 (2002) L385-L388.

L. Cantini, Finite size emptiness formation probability of the XXZ spin chain at
∆ = −1/2, J. Phys. A: Math. Theor. 45 (2012) 135207.



General XYZ spin chain

Hamiltonian of XYZ spin chain

HXYZ = −1

2

n∑
j=1

[Jxσ
x
kσ

x
k+1 + Jyσ

y
kσ

y
k+1 + Jzσ

z
kσ

z
k+1]

The periodic boundary conditions

σxn+1 = σx1 , σyn+1 = σy1 , σzn+1 = σz1 .

Baxter’s observation

Baxter observed that the case

JxJy + JxJz + JyJz = 0
is very special.

For XXZ spin chain

Jx = 1, Jy = 1, Jz = ∆,

and the above equality takes the form

∆ = −1/2.
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General XYZ spin chain

References for the case of XYZ spin chain I
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General XYZ spin chain
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