
These are lectures which I gave at LPTHE in January-Febrary 2009. The lectures
are based on our recent works with H. Boos, M. Jimbo, T. Miwa and Y. Takeyama.
All the material presented in these lectures can be found in [1, 2, 3]. However, in
my opinion. these lectures are worth publishing because they provide certain logical
organisation of the results obtained in these papers.

1. Lecture 1.

1.1. Introductory remarks. In this lectures I shall consider the XXZ spin chain.
Let us begin with the model in the finite volume with periodic boundary conditions.
The Hamiltonian is given by

HN = 1
2

N∑
k=−N+1

(
σ1

kσ
1
k+1 + σ2

kσ
2
k+1 + ∆σ3

kσ
3
k+1

)
, ∆ = 1

2
(q + q−1) ,(1.1)

where

σa
N+1 = σa

−N+1 .

I shall consider only the disordered regime:

q = eπiν , ν ∈ R .

The integrability is based on Yang-Baxter relations. Consider the R-matrix

R1,2(ζ) = q
1
2
(σ3

1σ3
2+1)ζ − q−

1
2
(σ3

1σ3
2+1)ζ−1 + (q − q−1)(σ+

1 σ
−
2 + σ−

1 σ
+
2 ) .

This R-matrix satisfies:

• Yang-Baxter equations:

R1,2(ζ1/ζ2)R1,3(ζ1/ζ3)R2,3(ζ2/ζ3) = R2,3(ζ2/ζ3)R1,3(ζ1/ζ3)R1,2(ζ1/ζ2) .

• Unitarity

R1,2(ζ)R1,2(ζ
−1) = (ζq − ζ−1q−1)(ζq−1 − ζ−1q) .

• Crossing

R1,2(ζ
−1) = −σ2

2R
t2
1,2(ζq

−1)σ2
2 .

Two additional properties are

R1,2(1) = (q − q−1)P1,2, R1,2(q
−1) = 2(q − q−1)P−

1,2 ,

where P1,2 is the permutation and P
−
1,2 is the antisymmetriser.

We have

R1,2(ζ) = ζ
1
2
σ3
2

(
1 +

ζ2 − 1

qζ2 − q−1
K1,2

)
P1,2 ζ

− 1
2
σ3
2 (qζ2 − q−1) ,

where

K1,2 =

(
σ+

1 σ
−
2 + σ−

1 σ
+
2 +

q + q−1

4
(σ3

1σ
3
2 − 1) +

q − q−1

4
(σ3

1 − σ3
2)

)
,

is the generator of Tempeley-Lieb algebra, one of its properties is

K2
1,2 = −(q + q−1)K1,2 .
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Introduce the notation

R̃(ζ) = 1 +
ζ2 − 1

qζ2 − q−1
K1,2 .

Then define and evaluate the transfer-matrix

tN (ζ) = Tra (R−N+1,a(ζ) · · ·RN,a(ζ))

= (qζ2 − q−1)2NTra

(
R̃−N+1,a(ζ)R̃−N+2,−N+1(ζ) · · · R̃N,N−1(ζ)P−N+1,a · · ·PN,a

)

= Tra

(
R̃−N+1,a(ζ)R̃−N+2,−N+1(ζ) · · · R̃N,N−1(ζ)PN,a

)
U ,

where U is the shift by one site along the lattice:

Uσa
k = σa

k−1U .

Campbell-Hausdorf formula implies that

tN (ζ) = e

∞
P

p=1
(ζ2−1)pIp

U .

Ip are local integrals of motion:

Ip =
N∑

k=−N+1

dp,[k,k+p] ,

where the local density dp,[k,k+p] acts non-trivially only on the interval [k, k + p],
periodical boundary conditions are implied. In particular,

I1 =
1

q − q−1
HN .

Notice also that

tN(q−1) = (q − q−1)2NTra

(
2P−

−N+1,a(ζ) · · ·2P−
N,a(ζ)

)
= U−1 ,(1.2)

where I used

AiP
−
i,j = θj(Aj)P

−
i,j ,

with

θ(A) = σ2Atσ2 .

Obviously, θi(2Pi,j) = Pi,j.
Combining the above formulae we find

t(ζ)t(q−1)

(qζ2 − q−1)(q − q−1)
= e

∞
P

p=1
(ζ2−1)pIp

.(1.3)
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1.2. Formulation of the problem. Consider the limit N → ∞. Denote by |vac〉
the ground state of the Hamiltonian. Consider the Vacuum Expectation Values
(VEV)

〈q2αS(0)
O〉XXZ =

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 ,(1.4)

where S(k) = 1
2

∑k
j=−∞ σ3

j , and O is a local operator. From [5] integral formulae
were known for these VEV’s for a long time. However, we were not satisfied with
these formulae, and put many efforts in their simplification (see [6] and references
therein). We have shown that all the integrals can be evaluated, and the VEV’s are
expressed in terms of one transcendental function. I shall not go into details because
our results allow significant generalisation which will be discussed in these lectures.

In the paper [7] an evidence was given that formulae similar to ours exist for the
Temperature Expectation Values (TEV)

〈q2αS(0)
O〉XXZ, β,h =

TrS

(
e−βH+hSq2αS(0)

O

)

TrS

(
e−βH+hSq2αS(0)

) ,(1.5)

where TrS stands for the trace on HS. For β → ∞ and h = 0, the expectation value
(1.5) reduces to (1.4).

At this point we ask ourselves a question: why don’t we consider instead of
exp(−βH) the general linear combination exp(−

∑∞
p=1 βpIp). For an integrable

model such a generalisation looks very natural even if its physical meaning is not
very clear.

After some consideration one comes with the following most general case. Our
main concern is the limit N → ∞. This limit tas to be treated carefully, as is
explained above. Having all that in mind we shall formally use the space

HS =

∞⊗

j=−∞
C

2 .

Let us consider also the space

HM =
n⊗

j=1

C
2sj+1 ,

where M stands for Matsubara. With every space C2sj+1 I associate the parameter
τj. Introduce

Tj,M(ζ) = Rj,n(ζ/τn) · · ·Rj,1(ζ/τ1) ,

and
Tj,M = Tj,M(1) .

Further,
TS,M = lim

N→∞
T−N+1,M · · ·TN,M .

In other words, using obvious notations we can rewrite:

TS,M = TS,n · · ·TS,1 .
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The generalisation of TEV which we shall study is

Zκ
{
q2αS(0)

O

}
=

TrSTrM

(
TS,Mq

2κS+2αS(0)
O

)

TrSTrM

(
TS,Mq2κS+2αS(0)

) .(1.6)

Using (1.3) it is easy to see that if all sj = 1
2
, and

(τ 2
2j − 1) =

β

n
, τ2j−1 = q−1

and πiνκ = h then in the limit n → ∞ the linear functional Zκ coincides with
TEV. This is the original idea of the method of”Quantum transfer-matrix” which
was proposed in [9, 12]. Making clever use of parameters τj we can obtain from Zκ

all the generalisations of TEV discussed above.

It is convenient to present the numerator of Zκ
{
q2αS(0)O

}
graphically:

 =R (α+κ) σ 3
= q =qi j

a
r
a
b
u
s
t
a
M

κ σ 3

 Space

fig. 1

1.3. Formulation of the result of our computations. Let me announce the
main result which I shall explain in these lectures.

First, we forget about Matsubara direction and describe the space of operators
in space direction. The main idea is similar to that of Conformal Field Theory: we
have to consider the space Wα,0 of operators of the form q2αS(0)O with spinless O,
and to introduce certain operators acting on this space. To be precise we have to
consider bigger space:

W
(α) =

∞⊕

s=−∞
Wα−s,s .
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On this space we defined the creation operators t∗(ζ), b∗(ζ), c∗(ζ) and annihilation
operators b(ζ), c(ζ). These are one-parameter families of operators of the form

t∗(ζ) =
∞∑

p=1

(ζ2 − 1)p−1t∗p ,

b∗(ζ) = ζα+2
∞∑

p=1

(ζ2 − 1)p−1b∗
p , c∗(ζ) = ζ−α−2

∞∑

p=1

(ζ2 − 1)p−1c∗p ,

b(ζ) = ζ−α
∞∑

p=0

(ζ2 − 1)−pbp , c(ζ) = ζα
∞∑

p=0

(ζ2 − 1)−pcp .

The operator t∗(ζ) is in the center of our algebra of creation-annihilation operators,

[t∗(ζ1), t
∗(ζ2)] = [t∗(ζ1), c

∗(ζ2)] = [t∗(ζ1),b
∗(ζ2)] = 0,

[t∗(ζ1), c(ζ2)] = [t∗(ζ1),b(ζ2)] = 0 .

The rest of the operators b, c, b∗, c∗ are fermionic. The only non-vanishing anti-
commutators are

[b(ζ1),b
∗(ζ2)]+ = −ψ(ζ2/ζ1, α) , [c(ζ1), c

∗(ζ2)]+ = ψ(ζ1/ζ2, α) ,

where

ψ(ζ, α) = ζα ζ2 + 1

2(ζ2 − 1)
.(1.7)

Each Fourier mode has the block structure

t∗p : Wα−s,s → Wα−s,s(1.8)

b∗
p, cp : Wα−s+1,s−1 → Wα−s,s , c∗p,bp : Wα−s−1,s+1 → Wα−s,s .

Among them, τ = t∗1/2 plays a special role. It is the right shift by one site along
the chain. Consider the set of operators

τ
mt∗p1

· · · t∗pj
b∗

q1
· · ·b∗

qk
c∗r1

· · · c∗rk

(
q2αS(0)

)
,(1.9)

wherem ∈ Z, j, k ∈ Z≥0, p1 ≥ · · · ≥ pj ≥ 2, q1 > · · · > qk ≥ 1 and r1 > · · · > rk ≥ 1.
It has been shown [4] that (1.9) constitutes a basis of Wα,0. In the next two lectures
I shall explain how these operators are constructed.

Second step consists in using the above description of Wα,0 for computation of
Zκ. We prove the following:

Zκ
{
t∗(ζ)(X)

}
= 2ρ(ζ)Zκ{X} ,(1.10)

Zκ
{
b∗(ζ)(X)

}
=

1

2πi

∮

Γ

ω(ζ, ξ)Zκ
{
c(ξ)(X)

}dξ2

ξ2
,(1.11)

Zκ
{
c∗(ζ)(X)

}
= − 1

2πi

∮

Γ

ω(ξ, ζ)Zκ
{
b(ξ)(X)

}dξ2

ξ2
,(1.12)
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where Γ goes around ξ2 = 1.
Form these formulae we derive

Zκ
{
t∗(ζ0

1) · · · t∗(ζ0
k)b∗(ζ+

1 ) · · ·b∗(ζ+
l )c∗(ζ−l ) · · · c∗(ζ−1 )

(
q2αS(0)

)}
(1.13)

=

k∏

p=1

2ρ(ζ0
p) × det

(
ω(ζ+

i , ζ
−
j )
)

i,j=1,··· ,l .

Taking the Taylor coefficients in (ζǫ
i )

2 − 1 in both sides, one obtains the value of Zκ

on an arbitrary element of the basis (1.9).

2. Lecture 2.

2.1. Quantum affine algebra U ′
q(ŝl2). We shall need some information about the

quantum affine algebra U ′
q(ŝl2). So, I have to apologise for presenting some formal

mathematical facts in this lecture.
Consider the affine algebra ŝl2

0 with central charge equal to zero. It is generated
by Chevalley generators

e0, e1, f0, f1, h = h1 = −h0 .

They are subject to two kinds of relations. The trivial commutation relations:

[ei, fj ] = δi,jhi ,

and the Serre relations

ad3
e0
e1 = ad3

e1
e0 = 0, ad3

f0
f1 = ad3

f1
f0 = 0 .

We have decomposition into direct sum of two Borel subalgebras:

ŝl2
0 = b

+ ⊕ b
−

which are generated respectively by ei, h and fi, h. The algebra ŝl2
0 allows evaluation

representation:

evζ(e0) = ζF, evζ(e1) = ζE, evζ(f0) = ζ−1E, evζ(f1) = ζ−1F, evζ(h) = H .

I shall need the q-deformation of the universal enveloping algebra of loop algebra.
Let me remind formal definitions concerning the quantum groups. Quantum group
is a Hopf algebra which means that it allows two operations: multiplication with
unit 1:

m : A ⊗ A → A ,

and comultiplication

∆ : A → A ⊗ A ,

with the requirement that ∆ is a homomorphism:

∆(xy) = ∆(x)∆(y) .

Additional requirement consists in existence of antipode and counit. Antipode is
an anti-homomorphism s : A → A, it is a deformation of inverse for Lie algebra.
The counit is a homomorphism ǫ : A → A, roughly speaking it projects A as linear
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space on 1 in a way compatible with the multiplication. The antipode and counit
satisfy

m ◦ (s⊗ id) ◦ ∆(x) = m ◦ (id⊗ s) ◦ ∆(x) = ǫ(x) .

Let σ be the permutation of two copies of A in the tensor product:

σ : A ⊗ A → A ⊗ A , σ(x⊗ y) = y ⊗ x .

The main requirement which distinguishes quantum groups among other Hopf alge-
bras is the quisi-triangularity. Let ∆′ = σ ◦ ∆. Obviously, ∆′ is also a comultipli-
cation. The quasi-triangularity requires existence of universal R-matrix R ∈ A ⊗A

which intertwines two comultiplications:

∆′ = R∆R
−1 .

The universal R-matrix satisfy the Yang-Baxter equations:

R1,2R1,3R2,3 = R2,3R1,3R1,2 ,(2.1)

where usual notations for different embedding of R into A⊗3 are used. Another
property is

(id⊗ s)R = R
−1 .(2.2)

We shall be interested in a particular example of quantum group which is U ′
Q(ŝl2).

Similarly to the loop algebra U ′
Q(ŝl2) is generated by ei, fi, hi (i = 0, 1). We consider

the case of central charge equal to zero: h1 = −h0 ≡ h. Two Borel subalgebras
Uq(b

+) and Uq(b
−) are generated respectively by ei, h and fi, h. We have the com-

mutation relations:

[ei, fj] = δi,j
ti − t−1

i

q − q−1
,

where ti = qhi. The deformed Serre relations are

e3i ej + (q2 + q−2 + 1)(e2i ejei − eieje
2
i ) − eje

3
i = 0 ,(2.3)

f 3
i fj + (q2 + q−2 + 1)(f 2

i fjfi − fifjf
2
i ) − fjf

3
i = 0

The comultiplication and antipode are given by

∆(ei) = ei ⊗ 1 + ti ⊗ ei, ∆(fi) = fi ⊗ t−1
i + 1 ⊗ fi, ∆(ti) = ti ⊗ ti ,

s(ei) = −t−1
i ei, ∆(fi) = fiti, s(ti) = t−1

i .

The comultiplication looks quite simple, but the universal R-matrix intertwining ∆
and ∆′ is complicated. It can be written as follows:

R = Rq−
h⊗h

2 ,

R = 1 − (q − q−1)
1∑

i=0

ei ⊗ fj + · · · ∈ Uq(b
+) ⊗ Uq(b

−) ,

where the · · · stands for terms of higher degree in generators. A formula for the
general term of the series is not known, only first several terms were calculated
directly.
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2.2. Representations. The evaluation representation is exactly as in undeformed
case. Consider the (2s+1)-dimensional representations of Uq(sl2) (explicit formulae
are given later). Its composition with the evaluation representation gives rise to the

representation π
(2s)
ζ of U ′

q(ŝl2). We have the following formula:

(evζ1 ⊗ π
(1)
ζ2

)(R) = τ(ζ)L◦(ζ) , ζ = ζ1/ζ2 ,

L◦(ζ) =

(
1 − ζ2qH+1 −(q − q−1)ζF

−(q − q−1)ζE 1 − ζ2q−H+1

)
t
σ3/2
0 ,(2.4)

where in the case under consideration (|q| = 1) the multiplier τ(ζ) is some transcen-
dental function depending on ζ and on the Casimir of Uq(sl2). The formula (2.4) is
rather a result of consistency with Yang-Baxter, crossing and unitarity then of an
honest computation. First of all, as it has been said, the formula for the universal
R-matrix is not completely known. This is unpleasant, but can be fixed in principle.
But knowing the full series for the universal R-matrix would not completely solve
the problem. The expression through the universal R-matrix can provide only power
series in ζ , while the function τ(ζ) is such that this power series do not converge

being only asymptotical ones. That is why I shall use the relation to U ′
q(ŝl2) only as

an intuitive idea, all the algebraic formulae which I shall use can be verified directly.
We shall use the following representations for Uq(sl2) in the L-operator (2.4):

• Finite-dimensional of dimension 2s+ 1:

Fvj = vj+1, Hvj = (−2s+ 2j)vj , t0 = q−H ,

Evj = (qj − q−j)(q2(s−2s−1) − q−2(j−2s−1))vj−1, j = 0, · · · , 2s .
• Shifted Verma module with lowest weight Λ and shift m are denoted by
Vη,m(Λ). They are defined by

Fvj = vj+1, Hvj = (Λ + 2j)vj,

Evj = q−Λ+1(qΛ−H−2 − 1)(qΛ+H − 1)vj−1, j = 0, · · · ,∞ .

t0vj = q−H−mvj ,

where v−1 = 0.

Recall that R ∈ Uq(b
+) ⊗ Uq(b

−). Suppose we have two homomorphisms

Uq(b
+) → A+, Uq(b

−) → A− .

I shall use the term L-operator for the image of the universal R-matrix under these
maps. This is an observation of Bazhanov, Lukyanov and Zamolodchikov that for
constructing L-operator it is not necessary to represent the entire affine algebra as
we did before, but only its Borel sublagebras.

Consider the important example. The q-oscillator algebra Osc is an associative
with generators a, a∗, qD and defining relations

qDa q−D = q−1a, qD a∗q−D = q a∗,

a a∗ = 1 − q2D+2, a∗a = 1 − q2D .
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Representations of Osc relevant to us are ρ± : Osc→ End(W±) defined by

W+ = ⊕k≥0C|k〉, W− = ⊕k<0C|k〉,(2.5)

qD|k〉 = qk|k〉, a|k〉 = (1 − q2k)|k − 1〉, a∗|k〉 = (1 − δk,−1)|k + 1〉 .
We shall use the trace functional Tr(q2αD·) : Osc → C(qα) given as follows. For
each x ∈ Osc and y ∈ C, the ordinary trace ±TrW±(yDx) on W± is well-defined
for sufficiently small |y|±1, and gives the same rational function gx(y) in y. By
definition, Tr(q2αDx) means gx(q

2α) ∈ C(qα). Notice that Tr(q2αD·) is a purely
algebraic operation characterized as the unique linear map with the properties

Tr(q2αDXY ) = Tr(q2αDq2αd(X)Y X) (X, Y ∈ Osc, qDXq−D = qd(X)X),

Tr(q2αDqmD) =
1

1 − q2α+m
(m ∈ Z).

There is a homomorphism of algebras oζ : Uqb
+ → Osc given by

oζ(e0) =
ζ

q − q−1
a, oζ(e1) =

ζ

q − q−1
a∗, oζ(t0) = q−2D, oζ(t1) = q2D .

We define representations o±ζ : Uqb
+ → End(W±) by

o+
ζ = ρ+ ◦ oζ, o−ζ = ρ− ◦ oζ ◦ ι ,

where ι denotes the involution ei → e1−i, ti → t1−i of Uqb
+.

We define

(o±ζ ⊗ πξ)R = σ(ζ/ξ) · L◦
Aj

±(ζ/ξ) .

Then by self-consistence one finds:

L◦
A,j(ζ) :=

(
1 − ζ2q2DA+2 −ζaA

−ζa∗
A 1

)

j

(
q−DA 0

0 qDA

)

j

, .(2.6)

Here I started to put indices counting different algabras. They are often tautological,
but many formulae are unreadable if we do not use them. The rule is: A,B, · · · for q-
oscillators, a, b, · · · for auxiliary two-dimensional spaces, j, k, · · · for space direction,
j,k, · · · for Matsubara direction.

The main property of the q-oscillator representation is that its tensor product
with usual evaluation representation has reducible but not decomposible structure.
Without going into much details let me write directly the manifestation of this fact:

L{a,A},j(ζ) = (Fa,A)−1La,j(ζ)LA,j(ζ)Fa,A(2.7)

=

(
1 0

q−q−1

ζ−ζ−1 σ
+
j 1

)

a

(
LA,j(qζ)q

−σ3
j/2 0

0 LA,j(q
−1ζ)qσ3

j /2

)

a

,

where Fa,A = 1 − aAσ
+
a .

The explicit formula for σ(ζ) is not important, but the functional equation and
relation to ρ(ζ) are given by:

ρ(ζ) = q−1/2σ(q−1ζ)

σ(ζ)
, σ(ζ)σ(q−1ζ) =

1

1 − ζ2
.(2.8)
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3. Lecture 3.

3.1. Evaluation of Zκ. Let us return to the functional Zκ. It is defined as

Zκ
{
q2αS(0)

O

}
= lim

l→∞

Tr[−l+1,l]TrM

(
T[−l+1,l],Mq

2κS[−l+1,l]+2αS[−l+1,0]O

)

Tr[−l+1,l]TrM

(
T[−l+1,l],Mq

2κS[−l+1,l]+2αS[−l+1,0]

) ,(3.1)

where I used obvious notations for traces over finite chain [−l + 1, l]. Consider the
transfer-matrices in Matsubara direction:

TM(ζ, κ) = Trj

(
Tj,M(ζ)qκσ3

j

)
, TM(ζ, κ+ α) = Trj

(
Tj,M(ζ)q(κ+α)σ3

j

)
,

where

Tj,M(ζ) = L◦
j,n(ζ/τn) · · ·L◦

j,1(ζ/τ1) .

These are two commutative (but not mutually commutative) families of operators.
Since O is local in the expression for Zκ there are infinitely many TM(1, κ) to the
right of O and TM(1, κ+ α) to the left of O. Suppose that TM(ζ, κ) (TM(ζ, κ+ α))
has unique eigen- (co)vector |κ〉 (〈κ+ α| ) such that

• If T (ζ, κ) (T (ζ, κ+ α)) is corresponding eigenvalue, T (1, κ) (T (1, κ+ α)) is
of maximal absolute value.

• Nondegeneracy:

〈κ+ α|κ〉 6= 0 .

Suppose that

q2αS(0)
O = q2αS(k−1)X[k,m] ,

where X[k,m] acts non-trivially only on the space interval [k,m]. Then it is quite
clear that

Zκ
{
q2αS(0)

O

}
= ρ(1)k−1

〈κ+ α|Tr[k,m]

(
T[k,m],Mq

2κS[k,m]X[k,m]

)
|κ〉

T (1, κ)m−k+1〈κ+ α|κ〉 ,

where

ρ(ζ) =
T (ζ, κ+ α)

T (ζ, κ)
.(3.2)

Let us discuss the diagonalisation of TM(ζ, κ) using Q-operators and Baxter equa-
tions . One can say that the diagonilasation is solved simpler by Bethe Ansatz, but
later we shall need the algebraic structure described during the previous lecture for
more serious goals, so, the diagonilasation will serve a good exercise.

3.2. Spectral problem in Matsubara direction. Introduce theQ-operator (transfer-
matrix with q-oscillator as auxiliary space):

QM(ζ, κ) = ζκ−STr+
A

(
TA,M(ζ)q2κDA

)
,

where Tr+ is trace over W+,

TA,M(ζ) = L◦
A,n(ζ/τn) · · ·L◦

A,1(ζ/τ1) ,
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S is the operstor of total spin in Matsubara direction. Recall that we allow ar-
bitrary spins in Matsubara direction, corresponding L-operators L◦

A,j(ζ/τj) are ob-
tained from (2.6) by standard fusion procedure. Using the fusion relation (2.7) we
immediately obtain the Baxter equation:

TM(ζ, κ)QM(ζ, κ) = a(ζ)QM(ζq−1, κ) + d(ζ)QM(ζq, κ) ,(3.3)

where

a(ζ) =

n∏

j=1

((
qζ

τj

)2

− 1

)
, d(ζ) =

n∏

j=1

((
ζ

τj

)2

− 1

)
.

By construction TM(ζ, κ) and ζ−κ+SQM(ζ, κ) are polynomials of ζ2. That is why the
equations (3.3) imply Bethe equations and, hence, defines the spectrum of transfer-
matrices.

Denote by J the operation of spin reversal in Matsubara direction. It is easy to
see that

JTM(ζ, κ)J = TM(ζ,−κ) .
The Q-operator QM(ζ, κ) is originally defined for qκ < 1, but then it is analytically
continued. I shall often denote QM(ζ, κ) by Q+

M(ζ, κ). We have another solution of
Baxter equation

Q−
M(ζ, κ) = JQ+

M(ζ, κ)J .

This Q-operator is directly defined by

QM(ζ, κ) = ζ−κ+STr−A
(
T−

A,M(ζ)q−2κDA
)
,

and

L−
A,j(ζ) = σ1

jL
+
A,j(ζ)σ

1
j .

3.3. Commutation relations. BLZ construction. I want to prove the commu-
tation relations:

[T (ζ1, κ), T (ζ2, κ)] = 0 ,(3.4)

[T (ζ1, κ), Q
+(ζ2, κ)] = [T (ζ1, κ), Q

−(ζ2, κ)] = 0 ,(3.5)

[Q+(ζ1, κ), Q
+(ζ2, κ)] = [Q−(ζ1, κ), Q

−(ζ2, κ)] = 0 ,(3.6)

[Q+(ζ1, κ), Q
−(ζ2, κ)] = 0 .(3.7)

The equation (3.4) we already know. The equations (3.5) follow from

LA,a(ζ2/ζ1)LA,j(ζ2)La,j(ζ1) = La,j(ζ1)LA,j(ζ2)LA,a(ζ2/ζ1) .

The equations (3.6) are more complicated. The point is that a priori we cannot
expect that the R-matrix intertwining LA,j(ζ1) and LB,j(ζ2) because both A and
B correspond to representations of the same Borel subalgebra. However, by direct
computation we find that the R-matrix satisfying

RA,B(ζ1/ζ2)LA,j(ζ1)LB,j(ζ2) = LB,j(ζ2)LA,j(ζ1)RA,B(ζ1/ζ2) .

does exist. It is given by

RA,B(ζ) = PA,Bh(ζ, uA,B)ζDA+DB ,(3.8)
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where we have set uA,B = a∗
Aq

−2DAaB, and h(ζ, u) is the unique formal power series
in u satisfying

(1 + ζu)h(ζ, u) = (1 + ζ−1u)h(ζ, q2u),(3.9)

h(ζ, u) = (1 + ζ−1u)(1 + q−2ζu)h(q−2ζ, u)(3.10)

and h(ζ, 0) = 1.
Finally, let us consider the most complicated equation (3.7). Trying to find an

R-matrix intertwining L+
A,j(ζ1) and L−

B,j(ζ2) one immediately finds a contradiction.

Let us introduce the following elements of Osc⊗2 which will play a role in the
sequel.

UA,B(ζ) = ζa∗
A + aBq

2DA ,(3.11)

VA,B(ζ) = ζa∗
B + aAq

2DB ,(3.12)

YA,B(ζ) = (ζq2 − aAaB)q2DA ,(3.13)

ZA,B(ζ) = ζ−1q2DB+2 − a∗
Aa∗

Bq
−2DA .(3.14)

These operators appear as matrix elements of products of L-operators,

L◦
A

+(ζ1)L
◦
B
−(ζ2)

(3.15)

=

(
1 − ζ1ζ2YA,B(ζ) −ζ1(1 − ζ−1q−2ZA,B(ζ))aA − c(ζ1, ζ2)VA,B(ζ)
−ζ2UA,B(ζ) 1 − ζ1ζ2ZA,B(ζ)

)
q−(DA−DB)σ3

,

L◦
B
−(ζ2)L

◦
A

+(ζ1)

(3.16)

=

(
1 − ζ1ζ2ZB,A(ζ−1) −ζ1UB,A(ζ−1)

−ζ2(1 − ζq−2ZB,A(ζ−1))aB − c(ζ2, ζ1)VB,A(ζ−1) 1 − ζ1ζ2YB,A(ζ−1)

)
q(DB−DA)σ3

.

Here we have set ζ = ζ1/ζ2, and c(ζ1, ζ2) = ζ−1
1 ζ2

2 (1 − ζ2
1q

2).
Let us list the commutation relations that are relevant to us.

• UA,B, YA,B, ZA,B, aA among themselves:

YA,B(ζ)UA,B(ζ) = q2UA,B(ζ)YA,B(ζ) ,

ZA,B(ζ)UA,B(ζ) = q−2UA,B(ζ)ZA,B(ζ) ,

aAUA,B(ζ) − q2UA,B(ζ)aA = ζ(1 − q2),(3.17)

YA,B(ζ)aA = q−2aAYA,B(ζ)

ZA,B(ζ)aA = q2aAZA,B(ζ) + q2(1 − q2)ζ−1VA,B(ζ) ,

YA,B(ζ)ZA,B(ζ) = q2 − ζ−1q4UA,B(ζ)VA,B(ζ) ,

ZA,B(ζ)YA,B(ζ) = q2 − ζ−1q2UA,B(ζ)VA,B(ζ) .

• UA,B, YA,B, ZA,B, aA, aB with VA,B:

[VA,B(ζ), X] = 0 for X = UA,B(ζ), YA,B(ζ), ZA,B(ζ), aA,(3.18)

VA,B(ζ)aB − q−2aBVA,B(ζ) = ζ(1 − q−2) .
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• UA,B, YA,B, ZA,B, aA with aB:

[UA,B(ζ), aB] = [YA,B(ζ), aB] = [aA, aB] = 0,(3.19)

ZA,B(ζ)aB = aBZA,B(ζ) + ζ−1(1 − q2)UA,B(ζ)q2(DB−DA) .

The following result can be extracted from [8].
Lemma. Set

ζ =
ζ1
ζ2
, qΛ = qζ .(3.20)

The tensor product W+
ζ1
⊗W−

ζ2
has an increasing filtration by Uqb

+-submodules

{0} = W
(−1)
L ⊂W

(0)
L ⊂W

(1)
L ⊂ · · · ⊂W

(m)
L ⊂ · · · ⊂W+

ζ1
⊗W−

ζ2
,(3.21)

∞⋃

m=−1

W
(m)
L = W+

ζ1
⊗W−

ζ2
,

such that each subquotient is isomorphic to a shifted Verma module

ιL : W
(m)
L /W

(m−1)
L

∼→ V√ζ1ζ2,2m(Λ) .(3.22)

The tensor product W−
ζ2
⊗W+

ζ1
in the opposite order has a decreasing filtration by

Uqb
+-submodules

W−
ζ2
⊗W+

ζ1
= W

(−1)
R ⊃ W

(0)
R ⊃ · · · ⊃W

(m)
R ⊃ · · · ,(3.23)

∞⋂

l=−1

W
(m)
R = 0,

such that each subquotient is isomorphic to a shifted Verma module

ιR : W
(m−1)
R /W

(m)
R

∼→ V√ζ1ζ2,2m(Λ) .(3.24)

Proof. The vector space W+ ⊗W− has the following basis

ej,p = UA,B(ζ)ja
p
B |0〉 ⊗ | − 1〉 (j, p ∈ Z≥0) .

Let W
(m)
L denote the linear span of ej,p with j ≥ 0 and p ≤ m. Introduce the

operator H by qHej,m = ζq2j+1ej,m. A direct calculation using (3.17)–(3.19) shows
that (with ⋆ denoting an irrelevant constant)

UA,B(ζ)ej,m = ej+1,m ,

YA,B(ζ)ej,m = qH+1ej,m ,

ZA,B(ζ)ej,m = q−H+1ej,m + ⋆ ej+1,m−1 ,

(1 − ζ−1q−2ZA,B(ζ))aAej,m = ζ−1(ζq−H−1 − 1)(ζqH+1 − 1)ej−1,m + ⋆ ej,m−1 ,

VA,B(ζ)ej,m = ⋆ ej,m−1

q2(DA−DB)ej,m = ζ−1qH+2m+1ej,m .
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In view of the relations

(q − q−1)∆(e0) = ζ1(1 − q−2ζ−1ZA,B(ζ))aA + ζ−1
1 ζ2

2VA,B(ζ),

(q − q−1)∆(e1) = ζ2UA,B(ζ),

∆(t0)
−1 = ∆(t1) = q2(DA−DB),

we see that W
(m)
L are Uqb

+-submodules, and the factors coincide with the Verma
modules.

Similarly, for W−
ζ2
⊗W+

ζ1
we introduce a basis

fj,p =
(
(1 − ζq−2ZB,A(ζ−1))aB

)j
VB,A(ζ−1)p| − 1〉 ⊗ |0〉 .

Let W
(m)
R be the linear span of fj,p with j ≥ 0 and p > m. Setting qHfj,m =

ζq2j+1fj,m, we have

(1 − ζq−2ZB,A(ζ−1)) aBfj,m = fj+1,m ,(3.25)

UB,A(ζ−1)fj,m = ζ−1(ζq−H−1 − 1)(ζqH+1 − 1)fj−1,m ,

ZB,A(ζ−1)fj,m = qH+1fj,m + ⋆fj−1,m+1 ,

YB,A(ζ−1)fj,m = q−H+1fj,m ,

VB,A(ζ−1)fj,m = fj,m+1 ,

q2(DA−DB)fj,m = ζ−1qH+2m+1fj,m .

The second statement follows from these. QED

Let us say that an operator XL(ζ) ∈ End(W+ ⊗W−) (resp. XR(ζ) ∈ End(W− ⊗
W+)) is left (resp. right) admissible if it preserves the filtration (3.21) (resp. (3.23)).
The operators

UA,B(ζ), VA,B(ζ), YA,B(ζ), ZA,B(ζ), aA, q
2(DA−DB)

are left admissible, and

UB,A(ζ−1), VB,A(ζ−1), YB,A(ζ−1), ZB,A(ζ−1), aB, q
2(DA−DB)

are right admissible. By the isomorphisms (3.22),(3.24), we have the correspondence
of operators on each subquotient,

ιL ◦ X
L(ζ) ◦ ι−1

L = X(ζ) = ιR ◦ X
R(ζ) ◦ ι−1

R ,

where XL(ζ), XR(ζ) and X(ζ) are related to each other via the following table 1.
The above Lemma has two corollaries which are important to us. We shall omit

writing the intervals [k, l].
If X

L(ζ) is left admissible, then

N(α− S)TrA,B

{
X

L(ζ) T+
A,M(ζ1, α)T−

B,M(ζ2, α)
}
ζα−S

= −TrV (Λ)

{
X(ζ) Tv(

√
ζ1ζ2, α)

}
(3.26)

= N(α− S)TrA,B

{
X

R(ζ) T−
B,M(ζ2, α)T+

A,M(ζ1, α)
}
ζα−S .
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Table 1. Correspondence of operators: W+
ζ1
⊗W−

ζ2
(left), Vζ(Λ) (mid-

dle), W−
ζ2
⊗W+

ζ1
(right)

XL X XR

VA,B(ζ) 0 ⋆
⋆ 0 VB,A(ζ−1)

YA,B(ζ) qH+1 ZB,A(ζ−1)
ZA,B(ζ) q−H+1 YB,A(ζ−1)√

ζ(1 − ζ−1q−2ZA,B(ζ))aA (q − q−1)F
√
ζ UB,A(ζ−1)√

ζ
−1
UA,B(ζ) (q − q−1)E

√
ζ
−1

(1 − ζq−2ZB,A(ζ−1))aB

The operators X(ζ), XR(ζ) are obtained from XL(ζ) via the table (1). In particular
taking XL(ζ) = XR(ζ) we get the commutation relation (3.7).

4. Lecture 4.

4.1. Construction of annihilation operators. During the last lecture I explained
several properties of the q-oscillator representation and applied it to diagonalisation
of transfer-matrices in Matsubara direction. If this were the only application I would
not bother you with it: there are simpler ways to diagonalise the transfer-matrix.
Today I shall explain much more important application of q-oscillators. Here we
shall forget about Matsubara and concentrate on the space direction.

Consider the operator X[k,l] which acts on C⊗(l−k+1). Define

Ta,[k,l](ζ) = L◦
a,l(ζ) · · ·L◦

a,k(ζ) .

The adjoint monodromy matrix Ta(ζ, α) is defined by

Ta(ζ, α)(X[k,l]) = Ta,[k,l](ζ)q
ασ3

aX[k,l]Ta,[k,l](ζ)
−1 , .

Here and later I use the abbreviation: in the left hand side the suffix [k, l] is used
only for the argument and not for Ta(ζ, α).

Define

S(X[k,l]) := [S[k,l], X[k,l]], S[k,l] := 1
2

∑
j∈[k,l] σ

3
j .

Notice that L◦
a,j(ζ)

−1 has poles at ζ2 = q±2. Hence Ta(ζ, α)(X[k,l]) is a meromorphic
function of ζ2 which has poles of degree at most l − k + 1 at the above points.

Define similarly the matrices TA(ζ, α) and Ta,A(ζ, α). It is easy to compute
L◦

A,j(ζ)
−1 and to make sure that it has simple pole at ζ2 = 1. Hence TA(ζ, α)

has pole of degree at most l− k + 1 at ζ2 = 1, and Ta,A(ζ, α) has poles of degree at
most l − k + 1 at ζ2 = 1, q±2.

Due to the fusion relation (2.7) we have

T{a,A}(ζ, α)(X[k,l]) = (Fa,A)−1
(
Ta(ζ, α)TA(ζ, α)(X[k,l])

)
Fa,A(4.1)

=

(
AA(ζ, α)(X[k,l]) 0
CA(ζ, α)(X[k,l]) DA(ζ, α)(X[k,l])

)

a

,
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where

AA(ζ, α)(X[k,l]) = TA(qζ, α)qα−S(X[k,l]),(4.2)

DA(ζ, α)(X[k,l]) = TA(q−1ζ, α)q−α+S(X[k,l]).(4.3)

At the previous lecture we took in the relations similar to (4.1) trace of the diagonal
element which led to Baxter equations. The main idea of our construction is to take
the trace of the off diagonal element defining

k(ζ, α)(X[k,l]) := TrA

{
CA(ζ, α)ζα−S

(
q−2S[k,l] X[k,l]

)}
.(4.4)

This operator raises spin of X[k,l]. We introduce another operator which lowers the
spin:

φ(k)(ζ, α) = q−1N(α− S − 1) ◦ J ◦ k(ζ,−α) ◦ J ,

where J is the adjoint of spin reversal, N(x) = q−x − qx.
In what follows I shall often use the q-difference operator:

∆ζf(ζ) = f(ζq) − f(ζq−1) .

I shall say that ∆ζf(ζ) is q-exact 1-form if ζ−αf(ζ) or ζαf(ζ) is a meromorphic
function os ζ2, singular at ζ2 = 1 only.

Using the R-matrix for the first case and BLZ construction for the second one
arrives after some calculations to the following relations:

k(ζ1, α)k(ζ2, α + 1) + k(ζ2, α)k(ζ1, α + 1)(4.5)

= ∆ζ1m
(++)(ζ1, ζ2, α) + ∆ζ2m

(++)(ζ2, ζ1, α),

k(ζ1, α)φ(k)(ζ2, α+ 1) + φ(k)(ζ2, α)k(ζ1, α− 1)(4.6)

= ∆ζ1m
(+−)(ζ1, ζ2, α) + ∆ζ2m

(−+)(ζ2, ζ1, α) ,

where for m(++), m(+−) we have rather frightening formulae.

m(++)(ζ1, ζ2, α)(X[k,l])

= Trb,A,B

(
Mb,A,B(ζ1/ζ2)TA(ζ1, α)T{b,B}(ζ2, α)(ζ1ζ2)

α−S(q−4S[k,l]X[k,l])
)
,

Mb,A,B(ζ) =
ζ−1q−1

ζ − ζ−1

(
q2DB−2DA+σ3

b
+2(a∗

A)2σ3
b − ζ−1qDB(1 + ζuA,B)a∗

Aq
DBσ+

b

)
,

m(+−)(ζ1, ζ2, α)(X[k,l])

= N(α − S)Trb,A,B

(
M ′

b,A,B(ζ1/ζ2)T
+
A(ζ1, α)T−

{b,B}(ζ2, α)(X[k,l])
)
ηα−S,

M ′
b,A,B(ζ) =

1

ζ − ζ−1
qσ3

b
DA
(

1
2
(ζ + ζ−1)σ3

b + ζ−1UA,B(ζ)σ−
b

)
q−σ3

b
DA .

It can be shown that the singularity of m(++)(ζ1, ζ2, α) at ζ2
1 = ζ2

2 is fictitious, so, the
only singularities of m(++)(ζ1, ζ2, α) as function of ζ2

1 are situated at ζ2
1 = 1. Hence,

the right hand side of (4.5) can be called q-exact 2-form. Having an equation like
(4.5) with classical exact form in the right hand side we would integrate it over
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closed cycles in both variables to find operators whose anti-commutator vanishes.
Similar trick applies to our case, namely, if we define

c̄(ζ, α)(X[k,l]) := 1
2πi

∮
Γ
ψ(ζ/ξ, α+ S)k(ξ, α)(X[k,l])

dξ2

ξ2 ,

c(ζ, α)(X[k,l]) := 1
4πi

∮
Γ
ψ(ζ/ξ, α+ S) {k(qξ, α) + k(q−1ξ, α)} (X[k,l])

dξ2

ξ2 ,

where Γ goes clockwise around ζ2 = 1, then integrating (4.5) one easily gets

c(ζ1, α)c(ζ2, α+ 1) + c(ζ2, α)c(ζ1, α + 1) = 0 ,(4.7)

and the same if we replace one or both c by c̄. Actually, as we shall see c and c̄

are not independent, so, in practice I shall use only c. This is the first important
property of c(ζ, α).

Define further

b(ζ, α) = φ(c)(ζ, α) .

The relation (4.7) implies

b(ζ1, α)b(ζ2, α− 1) + b(ζ2, α)b(ζ1, α− 1) = 0 .(4.8)

In order to find commutation relations between c and b one has to use (4.6). Here
there is one trouble: the right hand side of (4.6) is a singular q-exact 2-form: it has
a simple pole at ζ2

1 = ζ2
2 because

m(+−)(ζ1, ζ2, α) = ψ(ζ1/ζ2, α + S) +O(1), ζ2
1 ∼ ζ2

2 .

This fact is very important for the commutation relations with creation operators
which we shall consider later, but it does not affect the commutation relations be-
tween c and b which are

c(ζ1, α)b(ζ2, α + 1) + b(ζ2, α)c(ζ1, α− 1) = 0 .(4.9)

Now I want to discuss one more miraculous property of operators c and b. I shall
concentrate on c. By the very construction it is quite obvious that for an operator
X[k,l] = q2(α+1)S[k,m−1] ⊗ Y[m,l] with k < m < l we have

k(ζ, α)(q2(α+1)S[k,m−1] ⊗ Y[m,l]) = q2αS[k,m−1] ⊗ k(ζ, α)(Y[m,l]) ,

where the convention is that in the right hand side k(ζ, α) is constructed on the
interval [m, l]. We call this relation the left reduction relation.

Really nontrivial relation occurs when we consider X[k,l] = Y[k,m]⊗I[m+1,l]. In that
case we compute:

k(ζ, α)(Y[k,m] ⊗ I[m+1,l]) = k(ζ, α)(Y[k,m]) ⊗ I[m+1,l] + ∆ζv(ζ, α)(Y[k,m] ⊗ I[m+1,l]) ,
(4.10)

where v is rather messy operator, but its only property which interests us here is
that it is singular at ζ2 = 1 only. So, the last term of (4.10) is a q-exact 1-form and
we obtain for c(ζ, α):

c(ζ, α)(q2(α+1)S[k,m−1] ⊗ Y[m,l]) = q2αS[k,m−1] ⊗ c(ζ, α)(Y[m,l])(4.11)

c(ζ, α)(Y[k,m] ⊗ I[m+1,l]) = c(ζ, α)(Y[k,m]) ⊗ I[m+1,l] .(4.12)
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These reduction relations allow to define the operator c(ζ, α) in the infinite volume
as operator sending quasi-local operators of the type q2(α+1)S(0)O to operators of the
type q2(α)S(0)O′. Notice that the spin of O′ is greater than the spin of O by 1. Now we
construct the operator c(ζ) acting on W(α) from blocks c(ζ, α− s) : Wα−s+1,s−1 →
Wα−s,s.

This non-violent construction of operators in infinite volume out of operators in
finite volume is the essence of our approach. Notice the contrast with the thermo-
dynamic limit for Bethe Ansatz which is a complicated and mathematically non-
rigorous procedure.

One important property of c, b is that they kill the primary field:

c(ζ)(q2αS(0)) = 0, b(ζ)(q2αS(0)) = 0 .

For that reason and for the fact that c, b do not increase the length of operators we
call them annihilation operators.

4.2. Construction of creation operators. Our next goal is to construct creation
operators which produce the space W(α) acting on the primary field. I start with
the simple one.

On the interval [k, l] consider the operator

t∗(ζ, α)(X[k,l]) = TraTa(ζ, α)(X[k,l]) .

For trivial reasons it satisfies the left reduction relation:

t∗(ζ, α)(q2αS[k,m−1] ⊗X[m,l]) = q2αS[k,m−1] ⊗ t∗(ζ, α)(X[m,l]) ,(4.13)

which allows to define the inductive limit k → −∞.
Let us expand 1

2
t∗[k,l](ζ, α)(X[k,m]) in ζ2 − 1. Recall the formulae from the first

lectures and set

R̃∨
i,j(ζ

2) = ζσ3
i /2Ri,j(ζ)Pi,jζ

−σ3
j /2, R̃

∨
i,j(ζ

2) = ζSiRi,j(ζ)Pi,jζ
−Sj .

We have

t∗[k,l](ζ, α)(X[k,m]) = Tra{R̃
∨
a,l(ζ

2)R̃∨
l,l−1(ζ

2) · · · R̃∨
k+1,k(ζ

2)(qασ3
kτ (X[k,m]))}.

Define an operator ri,j(ζ
2) by

R̃
∨
i,j(ζ

2) = 1 + (ζ2 − 1)ri,j(ζ
2).

Note that ri,j(ζ
2) is regular at ζ2 = 1 and that ri,j(ζ

2)(Z) = 0 if Z is a local
operator such that its action on the i-th and the j-th components is proportional to

the identity operator or qα(σ3
i +σ3

j ). We define R̃∨
[k,l](ζ

2) acting on M[k,l] by

R̃
∨(ζ2)(X[k,l]) := R̃

∨
l,l−1(ζ

2) · · · R̃∨
k+1,k(ζ

2)(X[k,l]).
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We have

t∗[k,l](ζ, α)(X[k,m])

= 2

l−1∑

j=m

(ζ2 − 1)j−mrj+1,j(ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ2)(Y[k,m+1])

+(ζ2 − 1)l−mTra

{
ra,l(ζ

2)rl,l−1(ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ2)(Y[k,m+1])
}
.

where Y[k,m+1] = qασ3
kτ (X[k,m]). There are no gaps between rk+1,k(ζ

2) for k > m due
to the vanishing property of ri,j(ζ

2)(Z) discussed above. Therefore, the inductive

limit l → ∞ is well-defined as a formal power series in ζ2−1. Namely, for X ∈ W
(α)
s

such that the support of X is contained in [k,m] we define

t∗(ζ)(X) = lim
l→∞

q2(α−s)S(k−1)t∗[k,l](ζ, α− s)(X[k,m])

= 2q2αS(k−1)
∞∑

j=m

(ζ2 − 1)j−mrj+1,j(ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ2)(Y[k,m+1]).

The operators t∗p are the coefficients of t∗(ζ).

t∗(ζ) =

∞∑

p=1

(ζ2 − 1)p−1t∗p.

It can be shown that t∗(ζ) is a commutative family of operators. Moreover, t∗(ζ1)
commute with c(ζ2), b(ζ2). As I said the operator c̄(ζ) is not independent:

c̄(ζ) = − 1

2πi

∫

Γ

ψ(ζ/ξ,α)t∗(ξ)c(ξ)
dξ2

ξ2
,

where α takes value α− s on Wα−s,s. Actually, the operators t∗p have rather simple
nature: they are constructed from form shift τ

∗ and adjoint action of local integrals
of motion. Acting on the primary field they create operators from Wα,0, but certainly
only a part of them. So, we have to find the rest of creation operators.

For an analogy with the theory of singular Riemann surfaces it is very tempting
to consider ∆−1

ζ k(ζ, α). I do not want to go into details of this analogy because I

have never been able to explain it clearly, but let me say that taking ∆−1
ζ is natural

at least for the reduction relation (4.10). The operator k(ζ, α) has singularity, so,
before applying ∆−1

ζ it is convenient to make some subtractions in order that no
transcendental function occur. These subtraction are done with operators which are
already familiar:

f(ζ, α)(X[k,l]) = ∆−1
ζ

({
k(ζ, α) − c̄(ζ, α) − c(qζ, α)− c(q−1ζ, α)

}
(X[k,l])

)
.

It is easy to see that ζ−α+Sf(ζ, α)(X[k,l]) is a meromorphic function of ζ2 with sin-
gularities at ζ2 = 1 and ζ2 = ∞.
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Now I give the main definition. I cannot explain where these formulae come from,
for us it was a result of long experimental work

b∗(ζ, α)(X[k,l]) :=
(
f(qζ, α) + f(q−1ζ, α)− t∗(ζ, α)f(ζ, α)

)
(X[k,l]) . .(4.14)

We define one more operator in familiar way

c∗(ζ, α)(X[k,l]) := −φ(b∗)(ζ, α)(X[k,l]).(4.15)

The first property of b∗(ζ, α) is the right reduction relation:

b∗(ζ, α)(X[k,m] ⊗ I[m+1,l]) = Trc

{
Tc,[m+1,l](ζ)

(
gc(ζ, α)(X[k,m]) ⊗ I[m+1,l]

)}
,(4.16)

where

gc(ζ, α)(X[k,m]) =
(

1
2
f(qζ, α) + 1

2
f(q−1ζ, α)− Tc(ζ, α)f(ζ, α) + uc(ζ, α)

)
(X[k,m]),

uc(ζ, α)(X[k,m]) = TrA,a

{
Ya,c,AT{a,A}(ζ, α)ζα−S

(
q−2S[k,m]X[k,m]

)}
,

Ya,c,A = −1
2
σ3

cσ
+
a + σ+

c σ
3
a − aAσ

+
c σ

+
a . .

The formula for gc(ζ, α) is given for completeness, here we need only to properties:

• The operator gc(ζ, α)(X[k,m]) is localised on the interval [k,m].
• As a function of ζ2 the operator gc(ζ, α)(X[k,m]) regular at ζ2 = 1.

So, using the reduction relation (4.16) and the above properties we realise that
b∗(ζ, α) considered as power series in ζ2−1 allows the inductive limit k → −∞, l →
∞. Then from blocks we combine the operator b∗(ζ). Similarly, the operator c∗(ζ)
is defined.

The operator t∗(ζ1) commutes with c∗(ζ2), b∗(ζ2). The operators c, b, c∗ and b∗

are fermions:

[b(ζ1), c
∗(ζ2)]+ = [c(ζ1),b

∗(ζ2)]+ = 0 ,(4.17)

[b(ζ1),b
∗(ζ2)]+ = −ψ(ζ2/ζ1,α + S) ,

[c(ζ1), c
∗(ζ2)]+ = ψ(ζ1/ζ2,α + S) .

Proof of these commutation relations is extremely complicated. It is based on (4.5)
and (4.6) and uses a lot of algebra.

Finally, we prove the completeness (1.9).

5. Lecture 5.

5.1. Functional Zκ and creation operator t∗(ζ). In the previous lecture we
introduced the operators which create the entire space Wα,0 from the primary field.
The goal of this, last, lecture is to compute Zκ on the descendants created by these
operators.

Consider X ∈ Wα,0. Without loss of generality we set

X = X[1,l]q
2αS(0) .
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The functional Zκ is evaluated as follows:

Zκ
{
t∗(ζ, α)

(
X[1,m]q

2αS(0)
)}

= lim
l→∞

〈κ+ α|Tr[1,l],a

(
T[1,l],Mq

2κS[1,l]Ta,[1,l](ζ, α)(X[1,m])
)
|κ〉

T (1, κ)l〈κ+ α|κ〉 .

An important consequence of the definition of t∗ is that if we define for some matrix
K

t∗[k,l](ζ, α,K)(X[k,m]) =
2

Tr(K)
Tra

(
KaTa,[k,l](ζ, α)(X[k,m])

)
,

then it is easy to conclude that

t∗[k,l](ζ, α,K)(X[k,m]) = t∗[k,l](ζ, α)(X[k,m]) mod (ζ2 − 1)l−m .(5.1)

From this observation we derive

〈κ+ α|Tr[1,l],a

(
T[1,l],Mq

2κS[1,l]Ta,[1,l](ζ)(X[1,m])
)
|κ〉

=
2

T (ζ, κ)
〈κ+ α|Tr[1,l],a

(
T[1,l],Mq

2κS[1,l]Ta,M(ζ)qκσ3
aTa,[1,l](ζ, α)(X[1,m])

)
|κ〉

mod (ζ2 − 1)l−m .

The idea here is exactly as in (5.1). The monodromy matrix Ta,M(ζ)qκσ3
a plays

the role of Ka. The fact that it carries the additional structure as operator in the
Matsubara space is not important. What is important is that the state |κ〉 is an

eigenstate of Tra

(
Ta,M(ζ)qκσ3

a

)
with eigenvalue T (ζ, κ). Now we can proceed using

the Yang-Baxter equation and the cyclicity of trace:

2

T (ζ, κ)
〈κ+ α|Tr[1,l],a

(
T[1,l],M q2κS[1,l]Ta,M(ζ)qκσ3

aTa,[1,l](ζ, α)(X[1,m])
)
|κ〉

=
2

T (ζ, κ)
〈κ+ α|Tr[1,l],a

(
Ta,[1,l](ζ)

(
Ta,M(ζ)q(κ+α)σ3

aT[1,l],M q2κS[1,l]X[1,m]

))
|κ〉

=
2

T (ζ, κ)
〈κ+ α|Tr[1,l],a

(
Ta,M(ζ)q(κ+α)σ3

aT[1,l],M q2κS[1,l]X[1,m]

)
|κ〉

= 2ρ(ζ)〈κ+ α|Tr[1,l]

(
T[1,l],M q2κS[1,l]X[1,m]

)
|κ〉 ,

Which implies the first of our main relations:

Zκ
{
t∗(ζ)

(
q2αS(0)

O
)}

= 2ρ(ζ)Zκ
{
q2αS(0)

O

}
.(5.2)

Notice the important property of this formula. The operator t∗(ζ) was defined as
formal power series in ζ2 − 1, it did not make sense to talk about convergence of
these series. However, when substituted under Zκ the operator t∗(ζ) provides the
analytical function ρ(ζ).
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5.2. Functional Zκ and creation operator b∗(ζ). Preparation. Now consider
the operator b∗(ζ). Using the reduction relation (4.16) and the arguments used
when considering t∗ we get

T (ζ, κ)Zκ
(
b∗(ζ, α)(q2(α+1)S(0)X[1,m])

)
(5.3)

=
Tr[1,m],c

(
〈κ+ α|T[1,m],M(1, κ)Tc,M(ζ, κ)2gc,[1,m](ζ, α)(X[1,m])|κ〉

)

T (1, κ)m〈κ+ α|κ〉 .

The right hand side of this equation is of the form ζαR(ζ2), where R(ζ2) is a mero-
morphic function of ζ2 with poles at ζ2 = q±2. The first goal is to compute the
singularities. This is not very complicated problem comparing to other computa-
tions which we had to do during this work. The result is

T (ζ, κ)Zκ
{(

b∗(ζ, α) − 1

2πi

∮

Γ

ωsym(ζ, ξ)c(ξ, α)
dξ2

ξ2

)
(X)

}
= ζαPn(ζ2),(5.4)

where X ∈ Wα+1,−1, Γ encircles ξ2 = 1,

ωsym(ζ, ξ|κ, α) = 4
a(ξ)d(ζ)ψ(qζ/ξ, α)− a(ζ)d(ξ)ψ(q−1ζ/ξ, α)

T (ζ, κ)T (ξ, κ)

−∆ζψ(ζ/ξ, α) + 2ψ(ζ/ξ, α)
(
ρ(ζ) − ρ(ξ)

)
.

and Pn(ζ2) is a polynomial in ζ2 of degree at most n.
Inspired by (5.4) we conjecture that

T (ζ, κ)Zκ
{
b∗(ζ, α)(X)

}
=

1

2πi

∮

Γ

Zκ
{
c(ξ, α)(X)

}
ω(ζ, ξ)

dξ2

ξ2
,(5.5)

with some function ω(ζ, ξ).
Applying the operattion φ we obtain similar equation for c∗ and b. There are two

ways to compute
Zκ
{
b∗(ζ1)c

∗(ζ2)(q
2αS(0))

}
.

Comparing the results and making explicit the dependance on α, κ we get the
condition on ω(ζ, ξ):

ω(ζ, ξ|α, κ) = ω(ξ, ζ | − α,−κ) .(5.6)

The case α = 0 is not very simple for our construction in general: some indefi-
nitenesses should be uncovered using the L’Hopital rules. However, the function
ω(ζ, ξ|0, κ) is perfectly well defined, it satisfies the symmetry

ω(ζ, ξ|0, κ) = ω(ζ, ξ|0,−κ) ,
and, hence,

ω(ζ, ξ|0, κ) = ω(ξ, ζ |0, κ) .(5.7)

Recall that n is the number of sites in Matsubara direction, so, the singularity at
infinity described by (5.4) is same for all X. This is in contrast with the order of
pole of T (ζ, κ)Zκ

{
b∗(ζ, α)(X)

}
which is given by (5.4) and which can be of order of

any degree depending on X. Let me make a digression on a similar situation which
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takes place in classical mathematics. This digression will also explain the origin of
certain class of symmetric functions of two complex variables.

5.3. Digression on canonical second kind differential. Consider a Riemann
surface Σ. For definiteness the surface will be hyperelliptic given by equation

w2 = P (z), deg(P ) = 2n .

Genus of this Riemann surface equals n− 1. The holomorphic differentials are

σj(z) =
zj−1

√
P (z)

dz, j = 1, · · · ,n− 1 .

The surface Σ contains two points which project on z = ∞, I denote them by ∞±. I
shall consider the differentials which have singularities only at ∞±, and no residues
(only first and second kind differentials). For such differentials we have canonical
anti-symmetric pairing:

ω1 ◦ ω2 =
∑

∞±

res ω1d
−1ω2 ,

where d−1ω2 is the primitive function. Among those, singular at ∞± differentials
there are exact forms:

d

dz
(zkw), zkdz, k ≥ 0 .

The basis of remaining non-trivial second kind differential is

σ̃j == zj
[
d

dz

(
z−2jP (z)

)]

+

dz

2
√
P (z)

, j = 1, · · · ,n− 1 .

It is easy to compute that these differentials together with the holomorphic ones
constitute the canonical basis:

σi ◦ σ̃j = δi,j, σi ◦ σj = 0, σ̃i ◦ σ̃j = 0 .(5.8)

Construct the 2-form on Σ × Σ:

σ(x, y) =

n−1∑

j=1

(
σj(x)σ̃j(y) − σj(y)σ̃j(x)

)
.(5.9)

Using the above formulae one computes

σ(x, y) =
( ∂
∂y

( 1

y − x

√
P (y)√
P (x)

)
− ∂

∂x

( 1

x− y

√
P (x)√
P (y)

))
dxdy .(5.10)

This formula implies the Riemann bilinear identities:
∫

g1

∫

g2

σ(x, y) = 2πi g1 ◦ g2 .(5.11)

Consider a canonical homology basis (a1, · · ·an−1, b1, · · · bn−1), and construct the
matrices:

Ai,j =

∫

ai

σj, Bi,j =

∫

ai

σ̃j .
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Form the general theory we know that det A 6= 0, in other words, there is no first
kind differential such that all its a-periods vanish. So, we can define the matrix

X = A
−1

B .

The Riemann bilinear relations imply that this matrix is symmetric.
On the product of two copies of Riemann surface we have the canonical second

kind differential ρ(x, y) with the following properties.

• The differential ρ(x, y) is holomorphic everywhere except the diagonal, where
it has a double pole with no residue

ρ(x, y) =

(
1

(x− y)2
+O(1)

)
dxdy .(5.12)

• The differential ρ(x, y) is normalised with respect to x,
∫

am

ρ(x, y) = 0, m = 1, · · · ,n− 1 .(5.13)

An important consequence of the Riemann bilinear relations is that this differential
is automatically symmetric:

ρ(x, y) = ρ(y, x) .(5.14)

Let us explain this by giving an explicit construction of ρ(x, y). We start with an
exact form in x,

− ∂

∂x

( √
P (x)√

P (y)(x− y)

)
dxdy .

which obviously has the required singularity at x = y, but has also additional
singularities at infinity. Because of (5.9) and (5.10), these singularities are cancelled
in the following expression:

ρ(x, y) = − ∂

∂x

( √
P (x)√

P (y)(x− y)

)
dxdy +

n−1∑

j=1

σ̃j(x)σj(y) +
n−1∑

i,j=1

σi(x)Xi,jσj(y) ,

where the matrix Xi,j must be defined from the normalisation condition

n−1∑

i=1

∫

ak

σi Xi,j +

∫

ak

σ̃j = 0 .

Hence X = A−1B, and the symmetry of ρ(x, y) follows from Riemann bilinear rela-
tion and the formula for σ(x, y).

Now suppose that we want to construct a normalised second kind differential with
given singular part at some point. Namely, take the point z = 1 and the Laurent
polynomial

f(z) =
N∑

k=1

ck
(z − 1)k

.
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We want to find the differential η(z) satisfying two requirements:

η(z) = df(z) +O(1), z ∼ 1 ,

and no other singularities, ∫

aj

η = 0 .

It is quite obvious that η can be constructed using ρ:

η(z) = −
∫

Γ

ρ(z, y)f(y) ,(5.15)

where the integration variable is y, the contour γ encircles y = 1, the point z is
outside Γ.

Our guiding intuitive observation was the similarity between the formula (5.15)
and (5.5). Roughly, the correspondence must be like:

ζ2, ξ2 ↔ z, y ,

T (ζ, κ)Zκ
{
b∗(ζ, α)(X)

}
↔ η(z) ,

Zκ
{
c(ξ, α)(X)

}
↔ f(y) ,

ω(ζ, ξ) ↔ ρ(z, y) .

Let me explain how it works.

5.4. Deformed Abelian integrals. The Deformed Abelian integrals appeared in
my works [15, 14, 13] as a result of writing the matrix elements for integrable models
in the frameworks of the Method of Separation of Variables proposed by Sklyanin
[16]. I shall not go into details of this method defining the Deformed Abelian In-
tegrals formally, however, I recommend to look through the simple papers cited
above.

We have the Baxter equation

T (ζ, λ)Q±
M(ζ, λ) = d(ζ)Q±(ζq, λ) + a(ζ)Q±(ζq−1, λ) ,(5.16)

for us λ equals either κ of κ + α. For simplicity we consider the Bethe vectors
of spin 0. The functions TM(ζ, λ) and ζ∓λζQ±

M(ζ, λ) are polynomials of ζ2. The
analogy with the hyperelliptic curves goes as follows. Consider z = ζ2 and y which
satisfies the commutation relations yz = q2zy. Let T (z) = T (ζ, α), Q(z) = Q(ζ, λ)
α(z) = a(ζ), δ(z) = d(ζ) then the Baxter eqaution reads

(α(z)y−1 + δ(z)y − T (z))Q(z) = 0 .

We interpret this as quantisation of the curve α(z)y−1+δ(z)y−T (z) = 0 on the plane
(z, y). This curve is brought to canonical form w2 = P (z) by w = 2δ(ζ)y − T (z),
P (z) = T (z)2 − 4α(z)δ(z).

For the eigenvalue such that T (1, λ) has maximal absolute value we have

T (ζ, λ) = T (ζ,−λ), Q+(ζ, α) = Q−(ζ,−α) .



26

Introduce the function ϕ(ζ) which satisfies the equation

a(ζq)ϕ(ζq) = d(ζ)ϕ(ζ) .(5.17)

This function is elementary,

ϕ(ζ) =
n∏

m=1

ϕsm(ζ/τm) , ϕs(ζ) =
2s∏

k=0

1

ζ2q−2s+2k+1 − 1
.

We had the contour Γ which encircles ζ2 = 1, now we consider additional n + 1

contours in the ζ2 plane: Γ0 which goes around 0, and Γm which encircles the poles
ζ2 = τ 2

mq
2sm−2k−1 (k = 0, · · · , 2sm) of ϕsm(ζ/τm).

Consider the functions f±(ζ) such that ζ∓αf±(ζ) are polynomials of ζ2. The
q-deformed Abelian integrals are defined by

∫

Γm

f±(ζ)Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
.(5.18)

It is rather easy to see that for j = 1, · · ·n − 1 and for α = 0 in the quasiclassical
limit q → 1 these integrals go to

∫

aj

L(z)√
P (z)

dz ,

if ζmpf±(ζ) = ζ2L(ζ2). This explains the name ”deformed Abelian integrals”.
Using Baxter equations and moving contours it is easy to show that for f± as

before

∫

Γm

{
T (ζ, κ)∆−1

ζ f±(ζq) − T (ζ, κ+ α)∆−1
ζ f±(ζ)

}
Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)

dζ2

ζ2

(5.19)

=

∫

Γm

f±(ζ)a(ζ)Q∓(ζ, κ+ α)Q±(ζq−1, κ)ϕ(ζ)
dζ2

ζ2
,

∫

Γm

{
T (ζ, κ+ α)∆−1

ζ f±(ζ) − T (ζ, κ)∆−1
ζ f±(ζq−1)

}
Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)

dζ2

ζ2

(5.20)

=

∫

Γm

f±(ζ)d(ζ)Q∓(ζ, κ+ α)Q±(ζq, κ)ϕ(ζ)
dζ2

ζ2
.

These identities serve two goals.
First, they allow to define the deformed Abelian integrals in slightly more general

situation than before. Suppose we take f±(ζ) = ψ((ζ/ξ)±1, α). The left hand side of
(5.19), (5.20) are not obvious because it contain transcendental functions. However,
using these relations we can define the left hand sides by the right hand side which
is perfectly well defined if ξ2 does not coincide with τjq

2n. Considering the classical
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limit one realises that this is the way to define the deformation of a-periods for the
second kind differentials.

Second, consider the expression

E
(
f±(ζ)

)(5.21)

= T (ζ, κ)∆−1
ζ

(
f±(ζ)T (ζ, κ)

)
+ T (ζ, κ+ α)∆−1

ζ

(
f±(ζ)T (ζ, κ+ α)

)

− T (ζ, κ)∆−1
ζ

(
f±(ζq)T (ζq, κ+ α)

)
− T (ζ, κ+ α)∆−1

ζ

(
f±(ζq−1)T (ζq−1, κ)

)

+ a(ζq)d(ζ)f±(ζq) − d(ζq−1)a(ζ)f±(ζq−1) ,

If ζ∓αf±(ζ) is a polynomial in ζ2 one easily finds using the (5.19), (5.20) that
∫

Γm

E
(
f±(ζ)

)
Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)

dζ2

ζ2
= 0 .

We call E
(
f±(ζ)

)
q-deformed exact form. For the same reason as before the q-

deformed exact form is defined for f±(ζ) = ψ((ζ/ξ)±, α), and its periods still vanish.
Finally, we have the following q-deformed version of Riemann bilinear relation:

Consider the following function in two variables

r(ζ, ξ) = r+(ζ, ξ)− r−(ξ, ζ) ,

where

r+(ζ, ξ) = r+(ζ, ξ|κ, α), r−(ξ, ζ) = r+(ξ, ζ | − κ,−α),

and

r+(ζ, ξ|κ, α) = T (ζ, κ)∆−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ)− T (ξ, κ)))(5.22)

+ T (ζ, κ+ α)∆−1
ζ (ψ(ζ/ξ, α)(T (ζ, κ+ α) − T (ξ, κ+ α)))

− T (ζ, κ)∆−1
ζ (ψ(qζ/ξ, α)(T (ζq, κ+ α) − T (ξ, κ+ α)))

− T (ζ, κ+ α)∆−1
ζ

(
ψ(q−1ζ/ξ, α)(T (ζq−1, κ) − T (ξ, κ))

)

+
(
a(ζq) − a(ξ)

)
d(ζ)ψ(qζ/ξ, α)−

(
d(ζq−1

)
− d(ξ))a(ζ)ψ(q−1ζ/ξ, α) .

Then

∫

Γi

∫

Γj

r(ζ, ξ)Q−(ζ, κ+ α)Q+(ζ, κ)Q+(ξ, κ+ α)Q−(ξ, κ)ϕ(ζ)ϕ(ξ)
dζ2

ζ2

dξ2

ξ2
= 0 .

(5.23)

Actually, this is only one quarter of the Riemann bilinear relation because here
we integrate only over the a-cycles. However, this is sufficient for our goals which
consist, as in classical case, in constructing the canonical normalised second kind
differential.

Like in classical case define

r+(ζ, ξ) =

n∑

m=0

ζαp+
m(ζ2)ξ−α+2m , r−(ξ, ζ) =

n∑

m=0

ξ−αp−m(ξ2)ζα+2m .
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Introduce the (n + 1) × (n + 1) matrices

A
±
i,j =

∫

Γi

ζ±α+2jQ∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
,(5.24)

B
±
i,j =

∫

Γi

ζ±αp±j (ζ2)Q∓(ζ, κ+ α)Q±(ζ, κ)ϕ(ζ)
dζ2

ζ2
.(5.25)

Then (5.23) reads as

B
+(A−)t = A

+(B−)t .(5.26)

The difference with the classical case is that for α 6= 0 we have four different matrices
A±, B±. It can be shown the conditions det A± 6= 0 are equivalent to the requirement
〈κ+ α|κ〉 6= 0 which was accepted from the very beginning. So, we can define

X
± =

(
A

±)−1
B

± ,

and the Riemann bilinear relation reads

X
+ =

(
X

−)t .(5.27)

5.5. Functional Zκ and b∗(ζ). The end of computation. Let us return to the
problem of computing Zκ

{
b∗(ζ)

(
X
)}

. We have seen that knowledge of singularities
of T (ζ, κ)Zκ {b∗(ζ, α)(X)} leaves us with n unknowns. Our logic is that the way
of fixing them must consist in presenting some normalisation conditions, similar to
vanishing of a-periods. These normalisation conditions are
For m = 0, · · · ,n and any X ∈ Wα+1,−1

∫

Γm

T (ζ, κ)Zκ
{(

b∗(ζ, α) +
1

2πi

∮

Γ

dξ2

ξ2

(
DζDξ∆

−1
ζ ψ(ζ/ξ, α)

)
c(ξ, α)

)
(X)

}
(5.28)

×Q−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)
dζ2

ζ2
= 0,

where

Dζf(ζ) = f(ζq) + f(ζq−1) − 2ρ(ζ)f(ζ) .

It is easy to see that the integral in (5.28) is well defined being independent of the
way of understanding ∆−1

ζ ψ(ζ/ξ, α). This is similar to the previous discussion.
It would be hard to imagine the normalisation conditions (5.28) without the clas-

sical analogy with Riemann surfaces. How do we prove (5.28)? The computations
are rather complicated, but finally they reduce (5.28) to the following equation. Re-
call that defining f(ζ, α) we first subtracted something from k(ζ, α) and then took
∆−1

ζ . This was done in order to avoid appearance of transcendental functions. If we
do not care about these functions we can define

f0(ζ, α) = ∆−1
ζ k(ζ, α) .

Actually, the only transcendental function which we have to define is ∆−1
ζ ψ(ζ, α),

and the way of understanding this is irrelevant for what follows. In the reduction
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relations for b∗(ζ, α) (4.16) we had the operator gc(ζ, α). Define g0,c(ζ, α) by the
same formula replacing f(ζ, α) by f0(ζ, α).

Consider the interval [1, m]. Introduce an operator

Ac(ζ)(X[1,m]⊔c) = Tc,[1,m](ζ)q
ασ3

cθc

(
X[1,m]⊔c θc

(
Tc,[1,m](ζ)

−1
))
,

where θ signifies the anti-involution

θ(x) = σ2xtσ2 (x ∈ End(V )).

Then the normalisation condition (5.28) follows from the equation

g0,c(ζ, α) = −Ac(ζ)g0,c(q
−1ζ, α) .(5.29)

The proof of this equation is purely algebraic. Actually, reducing our problem to
(5.29) closes a long cycle of our work. Long ago we started study of VEV by in-
vestigating the reduced qKZ equations. Then we considerably simplified the known
solution to reduced qKZ and generalised the problem. Finally, after long computa-
tions we reduced the generalised problem of computing Zκ to (5.29) . But it is easy
to see that this equation is intimately related to reduced qKZ equation.

Now suppose we find a function satisfying two requirements:
1. Singular part

ζ−αT (ζ, κ)
(
ω(ζ, ξ)− ωsym(ζ, ξ)

)
is a polynomial in ζ2 of degree n .(5.30)

2. Normalisation

∫

Γm

T (ζ, κ)
(
ω(ζ, ξ) +DζDξ∆

−1
ζ ψ(ζ/ξ, α)

)
Q−(ζ, κ+ α)Q+(ζ, κ)ϕ(ζ)

dζ2

ζ2
= 0 ,

(5.31)

(m = 0, · · · ,n) .(5.32)

Then the conditions (5.4) and (5.28) one finds that (5.5) must be satisfied. Indeed,

in this situation T (ζ, κ)Zκ
{
b∗(ζ, α)(X)

}
given by (5.5) satisfies (5.4) and (5.28),

and the uniqueness follows from the fact that a function ζαP (ζ2) with P being
a polynomial of degree n with vanising deformed a-periods is identically zero if
〈κ+ α|κ〉 6= 0.

It is not hard to find ω(ζ, ξ) satisfying (5.30), (5.31):

ω(ζ, ξ|κ, α) =
4

T (ζ, κ)T (ξ, κ)
v+(ζ)t

X
+v−(ξ) + ωsym(ζ, ξ|κ, α) ,(5.33)

v±(ζ) are vectors with components v±(ζ)j = ζ±α+2j. The uniqueness follows from
〈κ+α|κ〉 6= 0 as before. Remarkably, the symmetry (5.6) follows from the q-deformed
Riemann bilinear identity.

5.6. Concluding remarks. Let me summarise the results presented in these lec-
tures and formulate unsolved problems.

We started with the space Wα,0 which is the space of spinless operators of the form
q2αS(0)O. This space looks rather structureless. However, we were able to describe
it as a Fock space created from the primary field q2αS(0) by creation operators t∗(ζ),
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b∗(ζ), c∗(ζ). This construction simplifies the complicated problem of computing the
functional Zκ on Wα,0. Even in the most simple limit of VEV’s the original formulae
of Jimbo and Miwa [5] were given by multiple integrals. The formulae by Jimbo
and Miwa were generalised to the cases of non-zero magnetic field and temperature
using Algebraic Bethe Ansatz in [10, 11]. Our formulae show that evaluation of
multiple integrals is possible reducing the computation to two functions ρ(ζ) and
ω(ζ, ξ). This is a considerable progress.

For physical application it would be very important to solve the inverse problem:
namely, to express operators like, for example, q2αS(0)σ3

k as linear combination of
descendants created by t∗(ζ), b∗(ζ), c∗(ζ). The logic here is similar to the one
used at the free fermion point. There we have special basis of operators created
by the fermions, and for finding the correlation functions of local spins one has to
decompose them in this basis. This inverse problem is not solved yet.

There is another problem whose solution is almost finished. Our construction is
very much similar to that of Conformal Field Theory. Namely, we organise the space
of local operators in a module generated by certain algebra. The XXZ-model allows
a scaling limit which is described by the CFT. the question is: how to relate the
action of t∗(ζ), b∗(ζ), c∗(ζ) in this limit with the action of Virasoro algebra? This
is the subject of our work in progress.
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