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A O T diagram | N = 4 Super-Yang-Mills (/N = 8 supergravity) numerator
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An example: generalized double copy at 3 loops: YM numerators from 0808.4112
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An example of N2 contact term: 1 3 — 1 3
3
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* Reproduces known SG contact term Bern, Carrasco, Dixon, Johansson, RR

e All other nonzero double-four-point contacts are relabelings of this one

* Five-point contact terms are also present; relevant formulae available



Generalized double-copy allowed construction the 4-point 5-loop integrand of N=8 SG
Bern, Carrasco, Chen, Johansson, Zeng, RR
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Identification of critical dimension and of the corresponding UV divergence is a
nontrivial enterprise

- Separate of UV from IR features
- Expand at large loop momenta/small external momenta

- ldentify of all relations between resulting integrals
- FullSimplify
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Bern, Carrasco, Chen, Edison, Johansson,
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- Divergence corresponds to the D®R* counterterm allowed by E, duality;
However, implications to D = 4 properties of N=8 SG are not immediately obvious.

- Puzzle: enhanced cancellations exist in ‘N = 4, 5 SG at corresponding orders in
less supersymmetric theories; why not here?



Summary of N=8 SG UV divergences in the loop-dependent critical dimension
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Observations: 1. none of the vacuum diagrams contain 1-loop triangle subgraphs
2. relative factors given by # of automorphisms of vacuum graphs

If true at higher/all loops, it would provide vast simplifications to direct calculations



Consistency relations across loop orders and dimensions

- On general grounds, one has relations between divergences of n-point L loop Green’s
fcts and subdivergences at (n-2)-points, (L+1)-loop Green’s fcts.

- In theories finite in D = 4, one may expect relations between divergences of n-point
L loop Green’s fcts in Dc(L) and subdivergences at (n-2)-points, (L+1)-loop Green’s fcts.
in Dc(L+1).

- Amounts to picking out the most divergent subdiagrams/subgraphs

However...



Consistency relations across loop orders and dimensions

- On general grounds, one has relations between divergences of n-point L loop Green’s
fcts and subdivergences at (n-2)-points, (L+1)-loop Green’s fcts.

- In theories finite in D = 4, one may expect relations between divergences of n-point
L loop Green’s fcts in Dc(L) and subdivergences at (n-2)-points, (L+1)-loop Green’s fcts.
in Dc(L+1).

- Amounts to picking out the most divergent subdiagrams/subgraphs
However...

Such relations appear to exist directly between leading UV divergences:

1. For each L-loop graph, finds all its L”-loop subgraphs
2. Keep the most divergent ones
3. Reduce to a basis of integrals (master integrals)



Summary of N=4 SYM UV divergences in the loop-dependent critical dimension
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In general, it is necessary to reduce to master (independent) integrals to see these,
Relations, though for suitably-chosen basis it may sometimes be avoided
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Possible uses:

- Cross checks of direct calculations at higher loops

- Combine with observation of absence of triangles and constrain an ansatz for
the UV divergence at higher loops

- Simplify the extraction of UV divergences by focusing on the integrals that
are expected to appear



Overview

- Discussed and illustrated: color/kinematics duality
the double copy & generalized double copy construction

generalized unitarity as the maximal cut method
new patterns that emerged from higher-loop calculations

- Many (perhaps all?) gravitational theories enjoy a double copy structure

- So do many nongravitational theories

- While originally developed for the study of UV properties of gravitational theories
it has a vast number of other possible applications and relations to other areas of
current research, some of which were also mentioned in other lectures
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