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Are all supergravities double copies?



Color/kinematics duality Bern, Carrasco, Johansson

AL—loop _ L m 24+2L Z H d” p 1 zCz ni:ni(pa-pg,e-pa,...)
" 2m)P Si[l., P2, €, = ... pubegeazd

1€G3
N, are not
C; and n; have the same symmetries gauge-invariants
Whenever gauge invariance requires: C; +C; +C; =0
kinematic numerators obey: n; +n; +n; =0
The double copy Bern, Carrasco, Johansson
m—242L L

L—loop __ :L+1 (R d P 1 nzﬁz
METIooP — 4 (—) Z/HZWDSH 5

1€G3 =1 a; Pa;



A brief example of N=2 SGs and of designing
the single copies



Maxwell/Einstein 5d supergravity theories Gunaydin, Sierra, Townsend

. R 1. 1w 1 x e’ vpod I J A K
& 1[’:_§_ZOJJFLWF H —igxy(’iugp (3'Mg0y+ 6\/ECIJK6M P F,uz/FpaAA
C”KCJ(MNCPQ)K — 5(IMCNPQ) (whenever C related to Jordan algebra)

Everything is determined by a prepotential
SO(n—1,1)
SO(n—1)

N(§) = (%)3/2 Cror&'e’e™  €=(4"p) arg=—-20/0;InN(¢)

Describe M =

x SO(1,1) as hypersurface in ambient space

0 I J
ar1(0) = ars|ye)—y Joy (@) = d170:E" 0,y
a7y interms of vielbeine on the scalar manifold:

aryg = hrhy + h7hG Wh’ar; =1 hihidry = dap hW'hr, = hih'® =0

1 .
e canonical basis for C': Cooo =1 Cooi =0 Coij = _55@5 i,)=1,...,n

all other entries C};; arbitrary



Maxwell/Einstein 5d supergravity theories Gunaydin, Sierra, Townsend

R 1 1 e’
1 o I pJuv J A K
e L = —5 — ZCLIJFFWF " — igxyﬁﬂgpxalugpy 6\/6 ,UVFPUA
CIJKCJ(MNCPQ)K = 5{MCNPQ) (whenever C' related to Jordan algebra)

Everything is determined by a prepotential
SO(n—1,1)
SO(n —1)

N(€) = (2)2 Cryt’e’e™ €= (6".p) ars=—1019;InN(€)

Describe M =

x SO(1,1) as hypersurface in ambient space

ary(p) = aIJ‘N(g):l Joy (@) = d170,6'0,¢7

arj in terms of vielbeine on the scalar manifold:

ary = hrhy + h7hj Win'ar; =1 hihi dry = Sap hWihre = hih!e =
* Generic Jordan family: N(&) = \@fo((fl)2 — (£%)* — )

(natural basis)

e Particular examples can be found by truncating N=8 supergravity



The 4d generic Jordan family Maxwell-Einstein supergravities

2

1 _ _ _
Ly=s = Tr| = TFu F" + (D 3)(Dup) — T Lo, @17 = iADL" X + V297 [0, N)eas + V292 (3, N €]

1 1 ~ ~ 2 A A S/ ¥/
La=o = TI“[ T pJVFW/ + §<DM¢A)(DM¢B)6AB + gZ[¢Ba ch][qu 7¢C ]5BB’5C’C”

e Component double-copy spectrum: [=(0, A); +=(-1+0); -=(-1-0)

spin =2: hip =A14 ® Aay h__=A1_® As_
spin =3/2: ¢} = A4 @G, Y = A1- Q@AY
spin=1: Vi =A411 ® s V_:Al_@)gog
f/JrA = Al?L ® P2 Vo= Alf ® P2
Ve = o1t @ Agy VA =gt @ Ay
spin = 1/2: fj“r:AH@)\S‘_ 63:A1_®)\‘2)‘+
(o=t @ A3y (lo =gt @ A5
spin=0: S;y_=A41; ® Ay_ Syt =4A1_® Asy
54 = ¢ ® s 54 = ¢t @ ¢

Three-point amplitudes agree between Lagrangian and double copy



Gauging in d=5: Gunaydin, Sierra, Townsent

e Covariantization of derivatives and field strengths:
0 p® — 0, + gASK?
VX' = VAN + gLg® A7 X"
Fl, — Fh, =0,4, —0,A, + gf jx A AL

* Modifications to the vector triple coupling:

6_1

—_CrygeP R R AR

6\/6 nv— po
6_1 Voo 3 ’ ’ 3 ’ / ’ ’
6\/EC]JK€'U p A {F;{I/F;&]UA? —|— angJ/K/F,L{VAgAg Ai( ‘l‘ gQQAﬁfJI/J/Ai Ag fKK/L/Af Af: }

* No potential in 5d == Minkowski ground state with unbroken susy

 Reduction to 4d: - potential from nonabelian field strength;
- zero minimum energy — Minkowski ground state
- choose symplectic frame (depending on purpose);
part of the definition of the theory



Designer’s gauge theories
Modify the MESGT double-copy construction to include non-abelian couplings
- Minimal couplings with spin-0 and spin-1/2 fields
LYMBSGT £,V (0° 00 — 610,0°) @ fratV o0t ...

——> standard 3-point S-matrix elements
[Ms] =1
- Require that this can be factorized...
M3 = A3 Aj
..and that A3 and Aj are Lorentz-invariant
[As] =0 & [As]=1

from dim 3 / \ from standard

operator (4d counting) dim 4 operator (4d counting)

——> Unique local option: trilinear scalar operator



The 4d generic Jordan family of YME N=2 SGs

- 1 2 _ _ _ -
La=z =Tr| = 1 Fu F" + (D) (Dugp) — gz[go, @? — XD A + V29X [0, Mleas + V292 [0, Nleas)
1 1 A -
ﬁNeﬂ2213_—'ZPLVF”V4‘§(DM¢AXIyW¢n5AB [¢B ¢CH¢B ¢C} BB'cxﬁ+'3,FABC¢AW¢3¢C]
Check existence of color/kinematics with ¢’ Chiodaroli, Jin, RR;
- should hold order by orderin g’ Chiodaroli, Gunaydin, Johansson, RR

* Manifest for highest power of g/

* Lower powers of g': use BCJ amplitudes relations. E.g. 5pt:

504 A (1,2,4,3,5) = AL (1,2,3,4,5)(s14 + 545) + AL (1,2,3,5,4)514

Aéo) (1¢Al 2¢A2 3¢A3 4¢A3 5¢43 )

g/
_ Ly phidad, Kk—m 45 gorazbpbase | K123 K45 pasasbpane
2 512545 523545

4 Mf“3albfba20> feaas 4 (345 4) + (3 5)]
513545

4+ lg?’g’FAlA?A?’ o L + L falagbfba50fca2a4 o L + L falagbfba40fca2a5
2 S13  S24 S13 525

+(3<—>4)+(3<—>5)]




Simplest check: 3-point amplitudes. Needs more notation
Next-simplest double-copy example: 4-vector scattering in SG, highest power of g’

(SG vectors) = (N=2 YM vectors) x (N=0 scalars)

A

Atree Y M _ NsCs 4+ nl;ct 4+ ZNEy Co = _2fa1azbfba3a4
S u

n, — 3{ (61 220t + 2060 po)eh — (L )] [(en- )+ 20es - pa)es — (3 4+ 4]

2
+ s[(sl - €3)(e2-€4) — (€1 - €4)(E2 - 83)] } ;

Ngc Nycy  Nyc 1
A‘Lclree,scalar _ ; s 4 ; t 4 QZLu Cy = _2fa,1a2bfba,3a4 N, = —§g/FA1A2BFBA3A4

ree, kK\2 |nsNg  ngN, Ny Ny
Mt YM _ (_) [ L ]
4 S t U

Other amplitudes also check out; can find explicit expressions for (h" A™),
loop-level analogs of BCJ amplitudes relations, etc.



An application: EYM trees & Loop-level amplitudes relations



Tree-level EYM amplitudes from 2-copy: single-trace gluon-graviton amplitudes
- can be expressed in terms of YM color-ordered amplitudes

- gauge/diffeomorphism invariance helps bypass need of manifest c/k rep.

YM
AYM 1 _ - n—2 Ci Ny ) .
n ( y oo ,n) — — g D, Del Duca, Dixon, Maltoni
1

1€cubic
- n—2 DDM YM
= —ig g C (L, wa, ..., wp_1,n) A (1w, ..., wy_1,n)
wES, 2 w9 w3 wy Wp—1

Uses only Jacobi relations wyp =1 wp =n



Tree-level EYM amplitudes from 2-copy: single-trace gluon-graviton amplitudes
- can be expressed in terms of YM color-ordered amplitudes
- gauge/diffeomorphism invariance helps bypass need of manifest c/k rep.
YM . n—2 Ci nyM
A, (1. n) = —ig Z D, Del Duca, Dixon, Maltoni
(]

1€cubic

. n—2 DDM YM
= —ig g C (L, wa, ..., wp_1,n) A (1w, ..., wy_1,n)
wESy 2 wy w3 wy Wp—1

Wp =n

Uses only Jacobi relations wy =1

Similar structure in YMESG theories; slight twist is that there exist multi-ladder terms
M,k + 1. k4 m)

= ) CPPM(k+ L wpsa, .o W1,k +m) MIVE(L, . k|k+ 1.,k +m) + multi-ladder

WESy _2
m Wi+2 Wk+m—1

~DDM
C (k+1,...,k+m) i m
_ im_2 FAk—l—lAk—l—QXl FXlAk+3X2 o FXm—3Ak+m—1Ak+m

== Need DDM form of YM-scalar wrt flavor group; exists because of c¢/k duality



Putting together DDM YM color decomposition and YM+scalar flavor decomposition:

MM, ke + 10k +m)

= ) CPPM(k+ L wpya, - Whame1, k +m) MYVE(L . K|k + 1.,k + m) + multi-ladder
WES 2

MEWE, .k k+ 1, k+m)= ) Ny(w)Ag, (w) + Perm(L, ... k)
w€012 .k
H 2 + contact terms

Ni(w) /contact terms should/could be determined from:

1) Massage the c/k dual YM-scalar amplitude into flavor-DDM form
2) Generalized double-copy from any YM-scalar amplitude put in flavor-DDM form

3) ....



Putting together DDM YM color decomposition and YM+scalar flavor decomposition:

MM, ke + 10k +m)

= ) CPPM(k+ L wpya, - Whame1, k +m) MYVE(L . K|k + 1.,k + m) + multi-ladder

MEWE(L .k k41, k+m)= ) Ny(w) AR, (w) + Perm(1,. .. k)
weET12.. .k
k
Ni(w) = H 2(g; - z;(w)) + contact terms
i=1

N (w) /contact terms should/could be determined from:
1) Massage the c/k dual YM-scalar amplitude into flavor-DDM form

2) Generalized double-copy from any YM-scalar amplitude put in flavor-DDM form

3) Diff invariance with known leading term and BCJ amplitude relations for YM amps



Putting together DDM YM color decomposition and YM+scalar flavor decomposition:

M, klk+ 1.k +m)

= ) CPPM(k+ L wpya, - Whame1, k +m) MYVE(L . K|k + 1.,k + m) + multi-ladder
WES 2

MEWE(L .k k41, k+m)= ) Ny(w) AR, (w) + Perm(1,. .. k)
weET12.. .k
k
Ni(w) = H 2(g; - z;(w)) + contact terms
i=1

Ni(w) from diff/gauge invariance with known leading term:

- Degree k in momenta; Degree k in polarization vectors; each of them enters once

- Built from { (€izi), (pizi), (ei€5), (€ipj), (pipj) } : i,7=1,...,k
- Scalar momenta implicit through z; ansatz is independent of nr. of scalars
ordering enters only through z(w)

- Vanishes upon €;(p;) — p; (V)i =1,...,k and use of the BCJ amplitude relations

- BCJ amp rels remove remaining freedom from MYME( oo klk+1,... k+m)
but can be used to find nice expressions for Ny (w )

- semi-recursive



Explicit tree-level EYM amplitudes from 2-copy Chiodaroli, Gunaydin, Johansson, RR
* One graviton, (m-1) gluons, single-trace

k—1 . i
AR m =) =) 28 ATV, g, m =), m=) k
=1 =1

e Two gravitons, (m-2) gluons, single-trace
m—1 j—1

17"'7m_2;p17p2)zzznijA(1?"'7’517"'7p}2""7m_2)+perm(p1ap2)

=3 i=2

]
.
nij = —4(81 . Z1) (82 y Zz) + 2(51 : 52)(31 P — 22 pZ) 22 = Zk’ + P
=1

* Three gravitons, (m-3) gluons, single-trace
m—1 k—1 j—1

i j k
A?,,(ME(L...,m—3;p1,p2,p3)=y:y:y:n;jkA(1,...,p1,...,p2,...,p3,...,m—3)

k=4 j=3 i=2

+ perm(p, p2, p3)

n;jk:4(51 ° Z1)(Ez . Zz)(&‘g . Z3) — (2(p1 . Z1)(Ef1 . Ez)(€3 <23 — 1263 * p2 -+ 1563 . p1) — (1 < 3))

* Four & five gravitons — not too bad either

e Simpler expressions than from scattering eqgs e.g. Nandan, Plefka, Schlotterer, Wen

e Recursive construction using these variables Teng, Feng



Double-copy, YMESGTs and constraints on single-trace (s)YM loop integrands

Chiodaroli, Gunaydin, Johansson, RR
Tree-level: BCJ amplitude rel’s = existence of color/kinematics-dual rep‘s

What are analogous necessary relations at loop level?

- earlier string theory-based work at 1 loop and 2 loops Vanhove, Tourkine; +_0Ch'rOV;
Hohenegger, Stieberger
Here: diff invariance of EYM amplitudes
Observation: L-loop YM-gb?’ amplitude with 1 gluon and highest power of g’ is c/k dual

- All cubic graphs with aligned color and flavor

- QED-type coupling for the sole gluon
- No possible contact terms

- M0 (1]2,3,...,m+1) =

= Agtrace (12, om+DR2er-q]+ > Al (1,2, ,m+ 1261 - 1]
diff cyclic(2,...,m+1)
inv.
= 0= Ay (12 com+ Dol — Y A (L2 m+ Dy - g
Ucl) cyclic(2,...,m+1)

decoupling
- O=Aycll2,. o om+nl] + 0 > AR @2 m D[



Double-copy, YMESGTs and constraints on single-trace (s)YM loop integrands
Chiodaroli, Gunaydin, Johansson, RR

Tree-level: BCJ amplitude rel’s = existence of color/kinematics-dual rep‘s

What are analogous necessary relations at loop level?
Vanhove, Tourkine; + Ochirov;

- earlier string theory-based work at 1 loop and 2 loops _
Hohenegger, Stieberger

Here: diff invariance of EYM amplitudes
Observation: L-loop YM-gb?’ amplitude with 1 gluon and highest power of g’ is c/k dual

- All cubic graphs with aligned color and flavor

- QED-type coupling for the sole gluon
- No possible contact terms

- M 7123, m+1)=

= Ayl (]2, om A D2e - a]+ Y A (L2, m 4 )26 - qi]
cyclic(2,...,m+1)

cyclic(2,.. m—|—1)

== Reproduces earlier low loop results



