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The word moonshine refers to unexpected relations between the two
distinct mathematical structures: finite group representations and mod-
ular objects. It is believed that the key to understanding moonshine is
through physical theories with special symmetries. Recent years have
seen a varieties of new ways in which finite group representations and
modular objects can be connected to each other, and these developments
have brought promises and also puzzles into the string theory community.

These lecture notes aim to bring graduate students in theoretical
physics and mathematical physics to the forefront of this active research
area. In Part II of this note, we review the various cases of moonshine
connections, ranging from the classical monstrous moonshine established
in the last century to the most recent findings. In Part III, we discuss
the relation between the moonshine connections and physics, especially
string theory. After briefly reviewing a recent physical realisation of
monstrous moonshine, we will describe in some details the mystery of
the physical aspects of umbral moonshine, and also mention some other
setups where string theory black holes can be connected to moonshine.

To make the exposition self-contained, we also provide the relevant
background knowledge in Part I, including sections on finite groups, mod-
ular objects, and two-dimensional conformal field theories. This part oc-
cupies half of the pages of this set of notes and can be skipped by readers
who are already familiar with the relevant concepts and techniques.
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Introduction

The word moonshine is employed in mathematics to refer to an unexpected rela-
tionship between modular objects and representations of finite groups. The study of
moonshine phenomenon has seen rapid developments in the past five years. While
the relation is between two mathematical structures, it is expected that the existence
of this surprising relation has its origin in physics, and in string theory in particular.

Moonshine: what, how and why?

Q: What is moonshine?
The structures of modular forms and that of finite group representations have a
priori nothing to do with each other. The word moonshine refers to an unexpected
relation between them. But this simple answer calls for more questions. Where does
moonshine occur? What types of modular objects feature in moonshine relations?
What types of finite groups can be represented by (mock) modular forms? In what
ways? Is there a classification possible of such moonshine relations? Before satisfying
answers to these questions can be found, the existence of moonshine relation remains
to a large extent a mysterious phenomenon.

Q: How do moonshine relations arise?
In the classical cases of monstrous (and similarly Conway) moonshine, reviewed in
§4, the relevant group representation has the structure of vertex operator algebra
(VOA). In physical terms, these cases of moonshine can be can be thought of as
being “explained” by the existence of certain special 2-dimensional conformal field
theories (CFTs) that have the relevant finite groups as symmetry groups.

It would be very gratifying to have a similar physical construction for the finite
group modules underlying umbral and other recently discovered moonshine relations.
In certain “simpler” cases this has been achieved (cf. §5.2). Nevertheless, a uni-
form construction of the umbral moonshine module, reflecting the uniform structure
among the twenty-three instances of umbral moonshine, is still absent. Similarly,
the modules underlying the various other cases of new moonshines have not been
constructed so far.

Apart from the question “what are these finite group modules?” there is also a
deeper question of “what kind of (algebraic) structure do these moonshine modules
possess?”. The mock modular nature of the modular objects involved in the new
cases of moonshine seems to suggest that a departure from the familiar unitary
conformal field theories with discrete spectrum is necessary in order to accommodate
the corresponding moonshine modules. However, the existence of generalised umbral
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moonshine (cf. §5.2) suggests that certain features resembling those of holomorphic
orbifold CFTs should still be present in these new modules.

Last but not least, the first case of umbral moonshine, often referred to as the
Mathieu moonshine, was uncovered in the context of string theory in the background
of K3 surfaces. Subsequent development established the intimate relation between
K3 string theory and all twenty-three instances of umbral moonshine. This relation
to K3 string theory is the topic of §8.

To sum up, the origin of the classical monstrous moonshine can be understood
as lying in the existence of certain special physical theory – certain 2d chiral CFTs
and the corresponding string theory embedding to be more precise. See §4 and §7.
The search for the origin of the newer cases of moonshine is still largely a challenging
puzzle. However, one does expect the answer to again lie in certain physical theories,
and most probably arises from the framework of string theory.

Q: Why should I care about moonshine?
Here are a few reasons why the authors, and many other mathematicians and physi-
cists, care about moonshine phenomenon. First, theoretical physics is to a large
extent about symmetries, and moonshine is to a large extent about hidden sym-
metries, which (conjecturally) take place in a physical context. There are therefore
very good reasons for physicists to care about what is going on in moonshine. More
generally speaking, the broad and interdisciplinary nature of the question and its
connection to different areas in mathematics and theoretical physics suggests that
the understanding of this mathematical paradigm is likely to spur novel develop-
ments in these areas, as was clearly true in the case of the classical monstrous
moonshine. Here we highlight a few examples of such connections, in the context of
recent developments:

• The discovery of umbral moonshine was initiated in the context of K3 string
theory, arguably one of the most important examples of string theory com-
pactifications. The development of umbral moonshine has led to new results
in the study of automorphic forms and K3 geometry, especially in the context
of string theory. We expect it to also shed light on the structure of BPS states
and on other interesting aspects of the string landscape in the future. See §5.1,
5.2 and §8.

• The discovery of various new moonshine examples (cf. §6), involving various
types of finite groups including an infinite family of them, poses a fascinat-
ing challenge for theoretical physics to accommodate the corresponding group
representations. The solution of this (completely well-posed) puzzle is likely
to point to novel structures in physics.

• The connection between certain new examples of moonshine and arithmetic
geometry is interesting and constitutes a potentially fruitful path towards new
perspectives in number theory. See §6.

Moreover, it is fascinating and puzzling why the two distinct structures of modu-
lar objects and finite groups are so deeply connected. An understanding of the true
nature of these connections has the potential to change the way mathematicians
think about these objects in a profound way.
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Part I

Background

In the first part we briefly summarise the relevant background knowledge in moon-
shine study, including sections on finite groups, modular objects, and two-dimensional
conformal field theories. This part can be safely skipped by readers who are familiar
with these topics.

1 Finite groups and their representations

In this chapter we briefly review of basic notions of finite groups and their represen-
tations. We mainly follow [1–3] (see also [4]).

1.1 Groups

A group is a set G, together with a “multiplication” operation · : G × G → G,
formally denoted as (G,·). The symbol for this operation is usually implicit, and
we often write ab for a·b. A group must satisfy the following axioms:

1. Closure: ab = c ∈ G for any a, b ∈ G.

2. Associativity: (ab)c = a(bc) for any a, b, c ∈ G.

3. Identity: There exists a unique identity element e ∈ G, such that eg = ge = g
for any g ∈ G.

4. Inverses: For every g ∈ G, there exists a unique inverse element g−1 ∈ G,
such that gg−1 = g−1g = e. We also have that e−1 = e.

Notice that ab 6= ba in general. In the case that ab = ba for every a, b ∈ G, i.e.
the group operation is commutative, the group is called Abelian. The number of
elements of G is called the order of G, and it can be either finite or infinite. We also
define the order of an element, |g|, to be the minimum number of times we need to
multiply it with itself in order to reach the identity, i.e. g|g| = e (the order can also
be infinite).

Next we give a brief summary of a few important notions of group theory.

Group homomorphisms. We say that a map φ : G → F between two groups
(G, ·) and (F, ?) is a group homomorphism if it preserves the group structure of G.
In other words, φ must satisfy

φ(a·b) = φ(a) ? φ(b) , (1.1)

for all a, b ∈ G. If there also exists the inverse homomorphic map φ−1 : F → G, then
G and F are isomorphic; such groups are abstractly the same, but they may still
have different realisations. An isomorphism G → G is called automorphism, and is
often called a symmetry of G. The set of all automorphisms of G, denoted AutG,
forms a group.
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Conjugacy classes. Two group elements a, b ∈ G are said to be conjugate to
each other if there exists an element g ∈ G such that gag−1 = b. In this case, we
symbolically write a ∼ b. Conjugation is an equivalence relation, since it is reflective
(a ∼ a), symmetric (a ∼ b iff b ∼ a) and transitive (if a ∼ b and b ∼ c then a ∼ c).
Such a relation implies that G can be split into disjoint subsets [a] ⊂ G, called
conjugacy classes, each containing all elements that are conjugate to each other:

[a] =
{
b ∈ G | gag−1 = b for some g ∈ G

}
. (1.2)

Obviously, a conjugacy class can be represented by any one of its elements, i.e.
[a] = [b] for all b ∼ a. The number of distinct conjugacy classes is referred to as the
class number of G, denoted here as Cl(G). All elements of a class have the same
order. It is easy to see that an element constitutes a conjugacy class of its own if
it commutes with all other elements of the group. As a result, in an Abelian group
each class contains only one element and the class number equals the order of the
group.

A common notation for conjugacy classes is writing the order of its elements,
followed by an alphabetical letter. For example, 4A denotes a class of order four,
4B a different class of order four, 6A a class of order six, and so on. The identity is
always a class of its own, namely 1A, the unique class of order one.

Subgroups. A subgroup H is a subset H ⊂ G which is itself a group, with the
group structure inherited from G. Note that the identity element e always forms
a subgroup {e} of order 1, called the trivial subgroup. Subgroups H other than
the trivial subgroup and G itself are called proper subgroups of G, and the notation
H < G is used for them (we use the notation H ≤ G if we can have H = G).

A normal subgroup N , also denoted as N /G, is a subgroup of G that is invariant
under conjugation by all elements of G:

N / G ⇔ gNg−1 = N for all g ∈ G . (1.3)

As such, N is necessarily a union of conjugacy classes. A maximal normal subgroup
of G is a normal subgroup which is not contained in any other normal subgroup of
G, apart from G itself. Normal subgroups play a prominent role in quotient groups
and group extensions (see below).

The centre Z(G) of a group G is the set of all elements that commute with every
other element, i.e.

Z(G) := {a ∈ G | ab = ba for all b ∈ G} . (1.4)

The centre is always a normal subgroup of G. The centralizer of an element g ∈ G
is similarly defined by

CG(g) = {a ∈ G | ag = ga}, (1.5)

being the set of all elements that commute with g. Clearly, the centralizer of an
element is always a subgroup of G.

Cosets. Let H be a subgroup of G, and take g ∈ G. We define the left coset of
H in G with respect to g as the subset

gH = {gh | h ∈ H} . (1.6)
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The set of all left cosets of H in G is denoted by G/H := {gH | g ∈ G}. Similarly,
the right coset of H in G with respect to g is defined as

Hg := {hg | h ∈ H} , (1.7)

and the set of all right cosets of H in G is denoted by H\G := {Hg | g ∈ G}. Notice
that H is both a left and a right coset of itself, with respect to the identity e ∈ G.

One can more intuitively define left cosets in terms of an equivalence relation on
G (not to be confused with conjugation); namely, for a, b ∈ G we set a ∼ b iff ah = b
for some h ∈ H, i.e. a and b are related by multiplication of an element in H to
the right. Then a, b represent the same equivalence class, which is exactly the coset
aH = bH. All such classes make up G/H, which is viewed as a disjoint partition
of G, as a set. Corresponding statements hold for right cosets. Some further facts
about cosets:

• The number of left cosets is always equal to the number of right cosets, and is
known as the index of H in G, denoted by [G : H].

• If G is a finite group, then Lagrange’s theorem states that the index equals
the quotient of the order of G over the order of H, i.e. [G : H]|H| = |G|.
This is indicatory of how G is partitioned under the coset equivalence relation
associated with H.

• The left and the right cosets of H have the same number of elements, which
is equal to the order of H.

• The left and right cosets of a normal subgroup coincide, as can be easily seen
from its definition.

Quotient groups and group extensions. Cosets, like conjugacy classes, are
in general not subgroups. However, given a normal subgroup N , the set G/N of
right cosets (which coincides with the set of left cosets) inherits the group structure
of G, and is called the quotient group. This can be seen by (aN)(bN) = (ab)N .
The normal subgroup N can then be viewed as the kernel of the homomorphism
ψ : G → G/N . Note that in general G/N is not isomorphic to any subgroup of G.
Moreover, the order of G/N is equal to the index [G : N ] = |G|/|N |.

Consider now a short exact sequence of groups

1→M
φ−→ G

ψ−→ Q→ 1 . (1.8)

This means that φ(M), the embedding of M inside G, by φ is the kernel of the
homomorphism ψ; in other words M is isomorphic to a normal subgroup N / G,
and Q ∼= G/N . We then say that G is an extension of Q by M . An extension, as
well as the corresponding sequence, is called split if there exists a homomorphism
(embedding) ψ̃ : Q→ G such that ψ ◦ ψ̃ = idQ, the identity map on Q. We use the
semi-direct product to denote such a split extension, G = N o Q. Otherwise, the
extension is called non-split, and we write G = N.Q .

1.2 Classification of finite groups

From now on we focus on finite groups, which are groups with finite number of
elements. The problem of classifying such groups can be reduced to the classification
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of a finite simple groups. A group is said to be simple if it has no proper normal
subgroups. If G is not simple, then it can always be “decomposed” into a series
of smaller groups, by considering quotients by maximal normal subgroups. To be
precise, one can consider the composition series, which has the form

1 / N1 / N2 / · · · / Nn−1 / Nn = G . (1.9)

Here 1 denotes the trivial group, and every step of the series involves a maximal
normal subgroup Ni−1 of Ni, as well as the implied quotient group Ni/Ni−1. It can
be shown that all the resulting quotient groups are simple, and the Jordan–Hölder
theorem guarantees that for given G, two different composition series lead to the
same simple groups. As a result, studying finite simple groups is to a large extent
sufficient to understand general finite groups.

After a heroic effort spanning over half a century and involving more than 100
mathematicians leading to tens of thousands of pages of proof, all finite simple
groups have been classified (see [5, 6] for historical remarks). They belong to one
of the following four categories: cyclic groups Zp for prime p, alternating groups
An (n ≥ 5), 16 families of Lie type and 26 sporadic groups. Unlike the rest of
finite simple groups, the 26 sporadic groups appear “sporadically” and are not part
of infinite families. We will say more about the sporadic groups in the following
section.

1.3 Sporadic groups and lattices

The largest sporadic group is the Fischer–Griess Monster group M, which gets its
name from its enormous size. The number of its element is

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053,

roughly the same as the number of atoms in the solar system. The Monster contains
20 of the 26 sporadic groups as its subgroups or quotients of subgroups, and these
20 is said to form 3 generations of a happy family by Robert Griess. In particular,
the happy family includes the five Mathieu groups M11,M12,M22,M23,M24. They
are all subgroups of M24, which is in turn a subgroup of the permutation group S24,
and are the the first sporadic groups to be discovered. The rest 6 which are not
involved in the Monster are called the pariahs of sporadic groups.

The sporadic nature of the sporadic groups makes their existence somewhat
mysterious and one might wonder what their “natural” representations are. An
important hint is that many of the sporadic groups, especially those connected to
the Monster, arise as subgroups of quotients of the automorphic groups of various
special lattices. The appearance of moonshine involving sporadic groups sheds im-
portant light on the question, and the construction of moonshine often relies on the
existence of these special lattices. As a result, in what follows we will briefly review
the definition of lattices and their root systems, and introduce the special lattices
relevant for moonshine.

Let V be a finite-dimensional real vector space of dimension r, equipped with
an inner product 〈·, ·〉. A finite subset X ⊂ V of non-zero vectors is called a root
system of rank r, if the following conditions are satisfied

• X spans V

• X is closed under reflections. Namely, β − 2
〈α, β〉
〈α, α〉

α ∈ X for all α, β ∈ X.
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Figure 1: The ADE Dynkin diagrams.

• The only multiples of α ∈ X that belong to X are α and −α.

• For all α, β ∈ X, we have
2〈α, β〉
〈α, α〉

∈ Z.

The elements α ∈ X of a root system are called roots. A root system X is said to be
irreducible if it cannot be partitioned into proper orthogonal subsets X = X1 ∪X2.
It turns out that the roots of such a system can have at most two possible lengths.
If all roots have the same length, then the irreducible root system is called simply-
laced. One can choose a subset Φ of roots fi ∈ X with i = 1, . . . , r, such that each
root can be written as an integral combination of fi ∈ Φ with either all negative or
all positive coefficients. Such a subset is called a set of simple roots, and is unique up
to the action of the group generated by reflections with respect to all roots, called
the Weyl group of X and denoted by Weyl(X).

To each irreducible root system we can attach a connected Dynkin diagram. Each
simple root is associated with a node, and nodes associated to two distinct simple
roots fi, fj are connected with Nij lines, where

Nij =
2〈fi, fj〉
〈fi, fi〉

2〈fj , fi〉
〈fj , fj〉

∈ {0, 1, 2, 3} . (1.10)

For simply-laced root systems we only have Nij ∈ {0, 1}. These correspond to the
Dynkin diagrams of type An, Dn, E6, E7, E8 with the subscript denoting the rank of
the associated root system, as shown in figure 1.

Each irreducible root system contains a unique highest root θ with respect to a
given set Φ of simple roots, whose decomposition

θ =

r∑
i=1

aifi (1.11)

maximizes the sum
∑
ai. The Coxeter number of X is then defined by

m := 1 +

r∑
i=1

ai . (1.12)
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The Coxeter number can also be defined in terms of Weyl(X). The product of
reflections with respect to all simple roots w = rf1rf2 · · · rfr ∈WX is called Coxeter
element, and its order equals the Coxeter number m.

A lattice L of rank n is a free Abelian group isomorphic to the additive group
Zn, equipped with a symmetric bilinear form 〈·, ·〉. Embedding L into Rn gives the
picture of a set of points inside the vector space Rn. A few properties some lattices
have that will be useful for us include the following:

• Positive-definite: the bilinear form induces a positive-definite inner product
on Rn.

• Integral : 〈λ, µ〉 ∈ Z for all λ, µ ∈ L.

• Even: 〈λ, λ〉 ∈ 2Z for all λ ∈ L.

• Unimodular : the dual lattice, defined by L∗ := {λ ∈ L ⊗Z R| 〈λ, L〉 ⊂ Z}, is
isomorphic to the lattice itself.

All elements λ ∈ L such that 〈λ, λ〉 = 2 are called the roots of L.
Even, unimodular, positive-definite lattices in 24 dimensions play a distinguished

role in several instances of moonshine, as we will discuss in the Part II and Part
III of this note. It was proven by H. V. Niemeier in 1973 that there are only 24
inequivalent such lattices [7]. One of them, first discovered by J. Leech in 1967
and named the Leech lattice, is the only one of the 24 that has no root vectors
[8–10]. The other 23, which we refer to as the Niemeier lattices, have non-trivial
root systems. In fact, one useful construction of the Niemeier lattices is by combining
the root lattices with the appropriate “glue vectors” [11]. It turns out that the 23
Niemeier lattices are uniquely labelled by the root systems X, called the Niemeier
root systems, which are precisely one of the 23 unions of simply-laced (ADE) root
systems X = ∪iYi satisfying the following conditions: 1) All components have the
same Coxeter number, Cox(Yi) = Cox(Yj); 2) the total rank equals the rank of the
lattice

∑
i rk(Yi) = 24. Some examples out of the 23 include 24A1, 2A12, 8E8 and

D16E8.
For each of these 24 even, unimodular, positive-definite lattices of rank 24 N we

define a finite group
GN := Aut(N)/Weyl(N), (1.13)

where Weyl(N) denotes the Weyl group of the root system of N . In particular,
when N = Λ is the Leech lattice, the Weyl group Weyl(Λ) is the trivial group and
GΛ
∼= Co0 is the Conway group Co0. By considering the quotients of this group

and subgroups stabilising various structures we can obtain many of the sporadic
groups. For instance, the sporadic simple group Co1 is given by the quotient by
the centre Co1

∼= Co0 /{±1}, and the Mathieu group M23 arises as the subgroup
fixing a specific rank-2 sublattice. See Chapter 10 of [11] for a detailed discussion. If
instead we choose N to be the Niemeier lattice with root system 24A1, for instance,
the finite group GN ∼= M24 is given by the largest Mathieu group. For the Niemeier
lattice with root system 12A2, the finite group is 2.M12, the non-trivial extension
of the Mathieu group M12. These groups will play an important role in moonshine
(cf. §4.2, §8.1, §5.2) and in the discussion of their physical context (cf. §8).
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1.4 Representations of finite groups

The structure of groups is just what we need to describe symmetries. To put this
into use we need the concept of representations of groups. In what follows we limit
our discussion to complex representations, arising from group acting on a complex
vector space V . More precisely, consider the group homomorphism ρ : G→ GL(V ).
We can think of ρ(g) as invertible n × n complex matrices. In particular we have
ρ
(
g−1
)

= (ρ(g))−1. The vector space together with the map (V, ρ) is called a
representation of dimension n. Often one refers to either V or ρ as the representation,
while implicitly referring to the full data. The vector space V is also called a G-
module in this context, and is said to carry a G-action. We say that the G-action is
faithful, if no two distinct elements g, g′ ∈ G lead to ρ(g) = ρ(g′) (the corresponding
representation is also called faithful).

Irreducible representations and dual representations. Given two repre-
sentations (V, ρ) and (V ′, ρ′) one can define their direct sum and their tensor product
in a straightforward way, which leads to new representations V ⊕ V ′ and V ⊗ V ′.

Two representations ρ, ρ′ are equivalent if there exists an invertible n×n matrix
M such that Mρ′(g) = ρ(g)M for all g ∈ G. A subrepresentation of a representation
(V, ρ) is a representation (U, ρ′), where U is a subspace U ⊂ V that is preserved by
the action of G, and ρ′ is the restriction of ρ to U . A representation V is said to be
irreducible if it does not contain any proper subrepresentation, and indecomposable
if it cannot be written as a direct sum of two (or more) non-zero subrepresentations.
For finite groups, these two notions coincide. A representation is called completely
reducible if it is a direct sum of finitely many irreducible representations, i.e. if it
can be fully decomposed into irreducible pieces.

The so-called Maschke’s theorem states that all (finite-dimensional) represen-
tations of a finite group are always completely reducible. There are two steps for
proving this. First we show that a unitary representation is always completely re-
ducible, by using the fact that given an inner product {·, ·} : V × V → C, the
orthogonal complement of U in V is also a subrepresentation if U itself is a subrep-
resentation of V . Next we show that any representation is unitary with respect to
the group-invariant inner product

{v, w} :=
1

|G|
∑
g∈G
〈ρ(g)v, ρ(g)w〉, v, w ∈ V , (1.14)

which then completes the proof.
We also mention the dual representation ρ∗ of a representation ρ, defined by

ρ∗(g) :=
(
ρ
(
g−1
))T

, g ∈ G , (1.15)

which is the natural group action on the dual space V ∗ = End(V,C). Taking ρ to be
unitary, we have ρ∗(g) = ρ(g). In other words, the dual representation is equivalent
to the complex conjugate representation.

Characters. The character χρ of a representation (V, ρ), with V a vector space
over C, is a map G→ C defined by the trace of the representation matrices,

χρ(g) := Tr(ρ(g)) , g ∈ G. (1.16)
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We will also often denote this trace by TrV g. If ρ is irreducible, χρ is called an irre-
ducible character. Some properties of characters (for finite groups) are summarized
below:

• The character is a class function, i.e. χρ
(
hgh−1

)
= χρ(g) ∀ g, h ∈ G. This

follows directly from the cyclic property of the trace.

• Two complex representations for a finite group have the same characters if
and only if they are equivalent, which can be shown using the orthogonality
property discussed below.

• The restriction of a character of G to a subgroup H < G is a character of H.

• χρ
(
g−1
)

= χρ(g), as follows from the fact that all eigenvalues of ρ(g) are |g|-th
roots of unity.

• For be two representations ρ, ρ′ of G and g ∈ G, we have:

χρ⊕ρ′(g) = χρ(g)+χρ′(g) , χρ⊗ρ′(g) = χρ(g)χρ′(g) , χρ∗(g) = χρ(g) . (1.17)

This means that the characters form a commutative and associative algebra.

Orthogonality. Due to Schur’s orthogonality relations (e.g. §4 of [2]), characters
of unitary representations are equipped with a Hermitian inner product,

〈χρ, χρ′〉 =
1

|G|
∑
g∈G

χρ(g)χρ′(g) . (1.18)

When ρ and ρ′ are irreducible representations, one can show that 〈χρ, χρ′〉 = 1 if
the two irreducible representations are equivalent, and it vanishes otherwise. As a
result, characters of irreducible representations are orthonormal vectors in the space
of class functions. In fact, it is possible to show that they span this space, from which
one can conclude the important fact that the number of (inequivalent) irreducible
representations equals the number of conjugacy classes (see for instance §3-7 of [1]).
Moreover, one can show that there is another orthonormality property,∑

ρ

χρ(g) χρ(h) =

{
|CG(g)|, h ∈ [g]

0, otherwise
, (1.19)

where the sum is over inequivalent irreducible representations, and |CG(g)| denotes
the order of the centralizer of g ∈ G, which is equal to the order of the group divided
by the number of elements in the conjugacy class [g].

Character table. We have already mentioned that the number of irreducible
representations of a finite group G is equal to the number of conjugacy classes of
G. We can group all characters of G into its character table, which is a square
table of size Cl(G) × Cl(G), with rows labelling the different irreducible represen-
tations and columns labelling the different conjugacy classes. In other words, the
(i, j) component of the character table is the character χi(g) of the i-th irreducible
representation, evaluated at any g in the j-th conjugacy class . As an example, the
character table for the alternating group A6 is displayed in Table 1. Note that there
is an additional piece of information in the above table, the so-called power map.
The row starting with sP gives the conjugacy classes [gs].
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1A 2A 3A 3B 4A 5A 5B

2P 1A 1A 3A 3B 2A 5B 5A

3P 1A 2A 1A 1A 4A 5B 5A

5P 1A 2A 3A 3B 4A 1A 1A

χ1 1 1 1 1 1 1 1

χ2 5 1 2 -1 -1 0 0

χ3 5 1 -1 2 -1 0 0

χ4 8 0 -1 -1 0 A ∗A

χ5 8 0 -1 -1 0 ∗A A

χ6 9 1 0 0 1 -1 -1

χ7 10 -2 1 1 0 0 0

Table 1: Character table for A6, where A = 1−
√

5
2 and ∗A = 1+

√
5

2 .

Supermodules. We say that a G-module on a superspace (Z2-graded vector
space) is a G-supermodule. Explicitly, if V is a G-supermodule it has the structure

V = V0 ⊕ V1 (1.20)

where V0 and V1 are both G-modules. We will sometimes refer to V as a virtual
representation of G. The supertrace Str is defined to act with a minus sign on the
odd subspaces: StrV g := TrV0 g − TrV1 g.

Cycle shapes and Frame shapes. As the name suggests, an N -dimensional
permutation representation ρp of a group G has as its representation matrices N×N
permutation matrices (all elements zero, apart from a single entry of 1 in each
row and column). Given such a representation, to each conjugacy class in such a
representation we can associate a cycle shape, which encodes the number and type
of permutation cycles that elements of this class correspond to. A cycle shape has
the general form

n`11 n
`2
2 · · ·n

`r
r ,

r∑
s=1

`sns = N , (1.21)

where ns, `s are all positive integers, and n denotes an n-cycle, i.e. it represents a
permutation of n elements. The exponents `s count the number of ns-cycles. Clearly,
an order k element can only have cycles of size ns which divides k. Note that the
cycle shapes can be read directly off the character table, including the power map.

More generally, we can define the Frame shape of g ∈ G given any representation
ρ, provided that all characters of ρ are rational numbers. Their rationality ensures
that if λ is an eigenvalue of g, then λk is also an eigenvalue when k is co-prime
to |g| [12]. Denoting by λ1, λ2, . . . , λN the g-eigenvalues, then there exists a set of
positive integers i1, i2, . . . , is and a set of non-zero integers `1, `2, . . . , `s with the
same cardinality such that

det(1− tρ(g)) =
N∏
i=1

(1− tλi) =
s∏
r=1

(1− tir)`r . (1.22)

Clearly one must have
∑r

s=1 `sis = N and we call i`11 i
`2
2 · · · i`rr the Frame shape of

the conjugacy class [g] for the representation ρ.
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2 Modular objects

In this chapter we will briefly introduce the concept of modular forms and their
extensions including mock modular forms, Jacobi forms, and mock Jacobi forms.

2.1 Modular forms

One of the standard references on modular forms, which we partially follow here,
is [13]. It is well-known that SL2(R) acts on the upper-half plane H := {τ ∈
C| =(τ) > 0} by a fractional linear (Möbius) transformation:

γ =

(
a b
c d

)
: H→ H , τ 7→ γτ :=

aτ + b

cτ + d
. (2.1)

In defining modular forms we consider discrete subgroups of SL2(R), an impor-
tant example of which is the modular group SL2(Z). It is generated by

T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
(2.2)

satisfying (ST )3 = 1 and S2 = −1. We will also often work with PSL2(Z) ∼=
SL2(Z)/{±1}, which is also the mapping class group of the torus (cf. §3). We will
often also consider the upper-half plane extended by adding the cusps {i∞} ∪ Q,
which SL2(Z) acts transitively on as one can see from γ∞ = a

c .
We start by defining weight zero modular forms on the modular group SL2(Z),

which are simply holomorphic functions on H that are invariant under the action of
SL2(Z):

f(τ) = f(γτ) ∀ γ ∈ SL2(Z). (2.3)

In particular, f has to be holomorphic as τ approaches the boundary of H at the
cusps {i∞} ∪ Q. But this turns out to be too restrictive: basic complex analysis
tells us that constants are the only such functions. As a result, we would like to
further generalise the above definition in the following directions:

1. Analyticity: the function is allowed to have exponential growth near the cusps.
Such functions are said to be weakly holomorphic modular forms.

2. Weights: one allows for a scaling factor in the transformation rule. See (2.6).

3. Other Groups: one replaces SL2(Z) by a general Γ < SL2(R) in the transfor-
mation property (2.3).

4. Multipliers: one modifies the transformation rule (2.3) by allowing for a non-
trivial character ψ : SL2(Z)→ C∗. See (2.6).

5. Vector-Valued: instead of f : H → C we consider a vector-valued function
f : H→ Cn with n components.

Of course, the above generalisations can be combined. For instance one can
consider a vector-valued modular form with multipliers for a subgroup Γ of SL2(R).
Obviously, in the vector-valued case the character ψ is no longer a phase but a
matrix. Also, the above concepts are not entirely independent. For instance, a
component of a vector-valued modular form for SL2(Z) can be considered as a (single-
valued) modular form for a subgroup of SL2(Z), and vice versa.
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We will first start with the first generalisation and introduce the concept of
modular functions. We say that f : H → C is a modular function if f is meromor-
phic in H, satisfies the transformation rule (2.3), and grows like e2πiτm for some
m > −∞. In fact, modular functions form a function field with a single genera-
tor, called the Hauptmodul or principal modulus. This is because the fundamental
domain SL2(Z)\H is a genus zero Riemann surface when finitely many points are
added. Writing the upper-half plane with the cusps attached as Ĥ = H∪ {i∞}∪Q,
the Hauptmodul has the property that it is an isomorphism between the two spheres
SL2(Z)\Ĥ and Ĉ. Clearly, such a Hauptmodul is unique up to Möbius transforma-
tions, or the choice of three points on the sphere. As a result, there is a unique
Hauptmodul with the expansion

J(τ) = q−1 +O(q) (2.4)

near τ → i∞. Here and in what follows we will write q := e(τ), where e(x) := e2πix

for x ∈ C. In terms of the Eisenstein series and Dedekind eta function (cf. (2.7) and
(2.19)), the J-function is given by

J(τ) = j(τ)− 744 =
E3

4(τ)

η24(τ)
− 744. (2.5)

In general, a Hauptmodul can be defined as the generator of the field of modular
functions for Γ ≤ SL2(R) whenever Γ\Ĥ is genus zero. These Hauptmoduls play an
important role in moonshine.

Apart from the definition given above, there are three other equivalent ways of
viewing modular functions. First, due to (2.3) we can view f as a function from
the suitably compactified fundamental domain SL2(Z)\H to the Riemann sphere
Ĉ = C ∪ {∞}. Second, due to the relation between SL2(Z) and rank two lattices
we can associate to each τ a complex lattice Λτ := 1 · Z + τ · Z, and identify f as
a function that associates to each such lattice Λτ a complex function f(τ), which
is moreover invariant under a rescaling Λ 7→ λΛ, λ ∈ C of the lattice. The third
way, which plays an important role in the a relation between modular forms and
2-dimensional conformal field theories, stems from the interpretation of SL2(Z)\H as
the complex structure moduli space of a Riemann surface of genus one. This can be
easily understood from the fact that a torus can be described as the complex plane
modulo a rank two lattice, and is therefore up to a scale given by C/Λτ for some
τ ∈ H. The modular function can then be thought of as associating to each torus
a complex number which only depends on its complex structure modulus τ . In this
context, the group PSL2(Z) := SL2(Z)/{1,−1} plays the role of the mapping class
group of a torus (cf. §3), where the Z2 = {1,−1} central subgroup acts trivially on
H.

Next we turn to the second generalisation and introduce modular forms on the
modular group SL2(Z) of a general weight k. They are defined as holomorphic
functions on H that transform under the action of SL2(Z) as:

f(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)
∀
(
a b
c d

)
∈ SL2(Z) . (2.6)

From the lattice point of view, we consider complex functions f associated to a
lattice Λ that scale like f 7→ λ−kf under a rescaling Λ 7→ λΛ of the lattice. We will
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consider integral and half-integral weight k.1

With this definition we start to get some non-trivial examples, even when holo-
morphicity at the cusps is required. For instance the following Eisenstein series:

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240 q + 2160 q2 + . . . ,

E6(τ) = 1− 504

∞∑
n=1

n5qn

1− qn
= 1− 504 q − 16632 q2 + . . . ,

(2.7)

are examples of modular forms of weight 4 and weight 6, respectively. But the defi-
nition is still somewhat too restrictive as these two Eisenstein series are all there is:
the ring of modular forms on SL2(Z) is generated freely by E4 and E6. Namely, any
modular form of integral weight k can be written (uniquely) as a sum of monomials

Eα4E
β
6 with k = 4α+6β. We denote the space of modular forms of weight k for group

Γ by Mk(Γ). Among modular forms, the so-called cusp forms are often of special
interest. We say that a modular form f of weight k is a cusp form if yk/2f(x+ iy)
is bounded as y →∞. This condition guarantees that f has vanishing constants in
its Fourier coefficients at all cusps.

In the third type of generalisation, we often encounter the SL2(Z) subgroups
defined by the following congruences. For a positive integer N , we define

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
. (2.8)

Below we will illustrate the generalisations above with some examples.
First we consider the Jacobi theta functions. Consider a 1-dimensional lattice

with bilinear form 〈x, x〉 = x2. The associated theta function is

θ3(τ) =
∑
n∈Z

qn
2/2 . (2.9)

This simple function turns out to admit an expression in terms of infinite products

θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1− qn)(1 + qn−1/2)2 , (2.10)

and has nice modular properties. To describe the modular properties, it is most
natural to introduce another two theta functions,

θ2(τ) =
∑

n+ 1
2
∈Z

qn
2/2 = 2q1/8

∞∏
n=1

(1− qn)(1 + qn)2 , (2.11)

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 =

∞∏
n=1

(1− qn)(1− qn−1/2)2 . (2.12)

It turns out that they are the three components of a vector-valued modular form for
SL2(Z)

Θ(τ) :=

θ2(τ)
θ3(τ)
θ4(τ)

 , Θ(τ) =

√
i

τ
S Θ

(
−1

τ

)
= T Θ(τ + 1) , (2.13)

1Clearly, special care needs to be taken when k is half-integral. Strictly speaking, one should
work with the metaplectic double cover of SL2(Z). However we will avoid discussing the subtleties
here as they will not cause any difficulty for us. We will refer the reader to [14] for more details.
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where

S =

0 0 1
0 1 0
1 0 0

 , T =

e(−1
8) 0 0

0 0 1
0 1 0

 . (2.14)

To illustrate the relation between vector-valued modular forms and modular
forms for a congruence subgroup, consider θ(τ) := θ3(2τ). This transforms in the
following way as a weight 1/2 modular form for Γ0(4) with a non-trivial multiplier:

θ(τ) =
( c
d

)
εd (cτ + d)−

1
2 θ(γτ) (2.15)

for all γ ∈ Γ0(4), where

εd :=

{
1 , d ≡ 1 mod 4
i , d ≡ 3 mod 4

and the Legendre symbol used above is defined as2

(κ
λ

)
:=


+1 , if κ 6= 0 mod λ and κ is a quadratic residue modulo λ
−1 , if κ 6= 0 mod λ and κ is not a quadratic residue modulo λ

0 , if κ ≡ 0 mod λ
.

Later we will see that these theta functions can be naturally considered as the
specialisation at z = 0 of the two-variable Jacobi theta functions, defined either as
infinite sums or infinite products:

θ1(τ, z) = −i
∑

n+ 1
2
∈Z

(−1)n−
1
2 ynqn

2/2

= −iq1/8(y1/2 − y−1/2)
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) ,

θ2(τ, z) =
∑

n+ 1
2
∈Z

ynqn
2/2

= (y1/2 + y−1/2)q1/8
∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn) ,

θ3(τ, z) =
∑
n∈Z

ynqn
2/2 =

∞∏
n=1

(1− qn)(1 + yqn−1/2)(1 + y−1qn−1/2) ,

θ4(τ, z) =
∑
n∈Z

(−1)nynqn
2/2 =

∞∏
n=1

(1− qn)(1− yqn−1/2)(1− y−1qn−1/2) .

They transform in the following way.
Let

Θ(τ, z) :=


θ1(τ, z)
θ2(τ, z)
θ3(τ, z)
θ4(τ, z)

 , (2.16)

then we have (cf. §2.2),

Θ(τ, z) =

√
i

τ
e
(
− z2

2τ

)
S ′Θ

(
− 1

τ
,
z

τ

)
= T ′Θ(τ + 1, z) , (2.17)

2κ is said to be a quadratic residue modulo λ if ∃ x ∈ Z such that x2 ≡ κ mod λ.
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where

S ′ =


i 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , T ′ =


e(−1/8) 0 0 0

0 e(−1/8) 0 0
0 0 0 1
0 0 1 0

 . (2.18)

Another modular form one frequently encounters is the Dedekind eta function

η(τ) = q1/24
∞∏
n=1

(1− qn) . (2.19)

It is a weight 1/2 modular form with a non-trivial multiplier, satisfying

η(τ) =

√
i

τ
η
(
− 1

τ

)
, η(τ) = e

(
− 1

24

)
η(τ + 1). (2.20)

It is related to the theta functions by

η(τ)3 =
1

2
θ2(τ)θ3(τ)θ4(τ). (2.21)

Its 24-th power ∆ := η24 is the familiar weight 12 cusp form for the modular group
SL2(Z).

2.2 (Skew-)Holomorphic Jacobi forms

In this subsection we collect the definitions of (skew-)holomorphic Jacobi forms.
These types of objects play a crucial role in moonshine and its connection to physics.
This subsection, consisting mostly of definitions, follows §3.1 of [15] very closely.

We first define elliptic forms [16]. For m an integer define the index m elliptic
action of the group Z2 on functions φ : H× C→ C by setting

(φ|m(λ, µ))(τ, z) := e(mλ2τ + 2mλz)φ(τ, z + λτ + µ) (2.22)

for (λ, µ) ∈ Z2. Say that a smooth function φ : H × C → C is an elliptic form of
index m if z 7→ φ(τ, z) is holomorphic. Denote by Em the space of elliptic forms of
index m. Observe that any elliptic form φ ∈ Em admits a theta-decomposition

φ(τ, z) =
∑

r mod 2m

hr(τ)θm,r(τ, z) , (2.23)

where the theta series are given by

θm,r(τ, z) :=
∑

`=r mod 2m

q`
2/4my` ,

for some 2m smooth functions hr : H → C. To see this, note from φ(τ, z) =
φ(τ, z + 1) that we have φ(τ, z) =

∑
`∈Z c`(τ)y` for some c` : H → C. Then the

identity φ|m(1, 0) = φ implies that cr(τ)q−r
2/4m depends only on r mod 2m. The

2m functions hr(τ) := cr(τ)q−r
2/4m are precisely the theta-coefficients of φ in the

theta-decomposition.
It will be convenient to regard hr and θm,r in (2.23) as defining 2m-vector-valued

functions h := (hr)r mod 2m and θm := (θm,r)r mod 2m. Then the theta-decomposition
(2.23) may be more succinctly written as φ = htθm, where the superscript t denotes
matrix transpose.
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It follows from the Poisson summation formula that the vector-valued function
θm = (θm,r) has the following behaviour under SL2(Z):

θm

(
−1

τ
,
z

τ

)
1√
τ

e

(
−mz

2

τ

)
= Sθm(τ, z), θm(τ + 1, z) = T θm(τ, z), (2.24)

where S = (Srr′) and T = (Trr′) are unitary matrices defined for a fixed positive

integer m, given by Srr′ := 1√
2m

e
(
−1

8 −
rr′

2m

)
and Trr′ := e

(
r2

4m

)
δr,r′ . (Cf. e.g.

§5 of [17].) This suggests that we obtain elliptic forms φ = htθm ∈ Em with good
modular transformation properties SL2(Z) by requiring suitable conditions on h.

To formulate these notions precisely, define the weight k modular, and skew-
modular actions of SL2(Z) on Em, for k and m integers, by setting

(φ|k,mγ)(τ, z) := φ

(
aτ + b

cτ + d
,

z

cτ + d

)
1

(cτ + d)k
e

(
− cmz2

cτ + d

)
(φ|skk,mγ)(τ, z) := φ

(
aτ + b

cτ + d
,

z

cτ + d

)
1

(cτ̄ + d)k
cτ̄ + d

|cτ + d|
e

(
− cmz2

cτ + d

)
,

(2.25)

for φ ∈ Em and γ =
(
a b
c d

)
∈ SL2(Z).

Roughly speaking, a Jacobi form of weight k and index m is an elliptic form
φ(τ, z), holomorphic in the τ -variable, which is moreover invariant under |k,mγ for
all γ ∈ SL2(Z). Note that φ|k,m ( 1 1

0 1 ) = φ implies the expansion

φ(τ, z) =
∑
D,`∈Z

D=`2 mod 4m

Cφ(D, `)q−D/4mq`
2/4my` , (2.26)

where Cφ(D, `) depends only on ` mod 2m, corresponding to the theta decomposi-
tion

hr(τ) =
∑
D∈Z

D=r2 mod 4m

Cφ(D, r)q−D/4m . (2.27)

The invariance under SL2(Z) of φ = htθm leads to the modularity of the vector-
valued function h = (hr). In other words, h = (hr) transforms as a vector-valued
modular form and contains precisely the same information as the Jacobi form. To
complete the definition, we also need to specify the growth behaviour of h(τ) near
the cusp. We say that φ ∈ Em, invariant under |k,mγ for all γ ∈ SL2(Z), is a weak
holomorphic/holomorphic/cuspidal holomorphic Jacobi form if the Fourier coeffi-
cients satisfy Cφ(D, r) = 0 unless −D+ r′2 ≥ 0 for all r′ = r mod 2m, Cφ(D, r) = 0
for D > 0, or Cφ(D, r) = 0 for D ≥ 0, respectively. We denote the space of weak
holomorphic Jacobi forms of weight k and index m by Jwk

k,m. Notice that, at odd

weight, applying (2.25) to the case γ = −
(

1 0
0 1

)
shows that the Jacobi form must be

odd under z ↔ −z. It will therefore be convenient to introduce

θ̂m,r = θm,r − θm,−r . (2.28)

We now turn to the closely related skew-holomorphic Jacobi forms. An elliptic
form φ ∈ Em is called a weak skew-holomorphic Jacobi form if it meets the following
conditions. First, its theta-coefficients are anti-holomorphic functions on H; second,
it is invariant for the weight k skew-modular action (2.25), so that φ|skk,mγ = φ for
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all γ ∈ SL2(Z); finally, τ 7→ φ(τ, z) remains bounded as =(τ) → ∞ for fixed z ∈ C.
Thus a weak skew-holomorphic Jacobi form admits a Fourier expansion of the form

φ(τ, z) =
∑
D,`∈Z

D=`2 mod 4m

Cφ(D, `) q̄D/4mq`
2/4my` , (2.29)

for some 2m functions D 7→ Cφ(D, r), and we recover its theta-coefficients by writing

hr(τ) =
∑
D∈Z

D=r2 mod 4m

Cφ(D, r)q̄D/4m . (2.30)

A weak skew-holomorphic Jacobi form φ is called a skew-holomorphic Jacobi
form, or a cuspidal skew-holomorphic Jacobi form, when the Fourier coefficients
satisfy Cφ(D, r) = 0 for D < 0, or Cφ(D, r) = 0 for D ≤ 0, respectively.

We will close this subsection with some examples.

• Define

φ0,1(τ, z) = 4
∑

i=2,3,4

(θi(τ, z)
θi(τ, 0)

)2
,

φ−2,1 = −θ1(τ, z)2

η6(τ)
.

(2.31)

The ring of weak Jacobi forms of even weight is freely generated by φ0,1 and
φ−2,1 over the ring of modular forms for SL2(Z):

Jwk
2k,m =

m∑
j=0

M2k+2j(SL2(Z))φj−2,1φ
m−j
0,1 . (2.32)

The function φ0,1 plays an important role in Mathieu and umbral moonshine,
since 2φ0,1 coincides with the K3 elliptic genus EG(τ, z;K3). See §3.3 for a
definition of the elliptic genus.

• In [18] it was shown that the modified elliptic genus of the so-called MSW
string [19] involves a skew-holomorphic Jacobi form with index specified by
the charges of the black hole, provided that the moduli is fixed at their black
hole attractor value. See §9 for more discussions on this.

As a concrete example, consider a single M5 brane wrapping P2. The modified
elliptic genus of the resulting effective string is given by 1

2η6(τ)
t2,2(τ, z̄2), where

t2,2(τ, z) =
∑

r mod 4

θ1
2,r(τ)θ2,r(τ, z)

is a weight 2 skew-holomorphic Jacobi forms. In the above we have used the
definition

θ1
m,r(τ) :=

1

2πi

∂

∂z
θm,r(τ, z)|z=0 . (2.33)

Note that θ1
2,1(τ) = −θ1

2,−1(τ) = η3(τ) coincides with the shadow of the Math-
ieu moonshine function (2.42).
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2.3 Mock modular forms

In this section we introduce mock modular forms and the closely related concept of
mock Jacobi forms. We follow the treatment of §7.1 of [16] and §3.2 of [15] closely.
The subject, initiated by the legendary mathematician Srinivasa Ramanujan, has a
fascinating history. We recommend [20] for a short account of it.

Let w ∈ 1
2Z and let h be a holomorphic function on H with at most exponential

growth at all cusps. We say that h is a (weakly holomorphic) mock modular form of
weight w for a discrete subgroup Γ ≤ SL2(R) if there is a modular form g of weight
2 − w such that the sum ĥ := h + g∗ transforms like a holomorphic modular form
of weigh w for Γ. Moreover, we say that g is the shadow of the mock modular form
h and ĥ is its completion. In the above we have used the following definition of g∗.
Writing the Fourier expansion of g as g(τ) =

∑
n≥0 cg(n)qn, then

g∗(τ) := cg(0)
(−=(τ))1−w

w − 1
+
∑
n>0

(−4πn)w−1cg(n)q−nΓ(1− w, 4πn=(τ)) , (2.34)

where Γ(1 − w, x) =
∫∞
x e−ttwdt denotes the incomplete gamma function. When

cg(0) = 0, the above coincides with the so-called non-holomorphic weight w Eichler
integral of g, given by

g∗(τ) := (−2)w−1 e(w−1
4 )

∫ ∞
−τ̄

(τ ′ + τ)−wg(−τ ′)dτ ′ . (2.35)

Note that

−2i=(τ)w
∂

∂τ̄
g∗(τ) = g(τ) , (2.36)

and hence ĥ is annihilated by the weight w Laplacian ∆w := =(τ)2−w∂τ=(τ)w∂τ̄ .
Such functions are called harmonic Maass forms, and one can identify h as the
(uniquely defined) holomorphic part of the harmonic Maass form ĥ. Finally, note
that from (2.34) it is obvious that the harmonic Maass form ĥ transforms with a
multiplier which is the inverse of that of the modular form g.

Just as in the case of usual modular forms, one can generalise the above definition
of mock modular forms in various directions, including incorporating non-trivial
multiplier systems and considering vector-valued mock modular forms. Next we
turn our attention to a specific type of vector-valued mock modular forms, namely
those arising from the so-called mock Jacobi forms. For integers k and m, we say
that an elliptic form φ ∈ Em is a weak mock Jacobi form of weight k and index m if
the following is true. Write the theta-decomposition of φ as φ =

∑
r hrθm,r. First,

τ 7→ φ(τ, z) is bounded as =(τ) → ∞ for every fixed z ∈ C; second, all the hr are
holomorphic; finally, there exists a skew-holomorphic Jacobi form σ =

∑
r grθm,r ∈

Ssk
3−k,m, such that φ̂ :=

∑
r ĥrθm,r is invariant for the weight k modular action |k,m

of SL2(Z) on Em (cf. (2.25)) with the definition

ĥr(τ) := hr(τ) +
1√
2m

g∗r (τ) . (2.37)

As discussed in [21] and analysed carefully in [16, 22], meromorphic Jacobi forms –
what one obtains when relaxing the condition on Jacobi forms to allow for poles at
torsion points z ∈ Q+Qτ – naturally give rise to mock Jacobi forms. In particular,
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all the mock Jacobi forms featured in umbral moonshine can be viewed as arising
from meromorphic Jacobi forms.

From a physical point of view, as demonstrated in a series of recent works, the
“mockness” of these mock modular objects is often related to the non-compactness
of relevant spaces in the theory. See, for instance, [16,23–26]. Let us take 2d CFTs
with a non-compact target space as an example. The non-compactness of the target
space often lead to a continuous part of the spectrum. In this case the standard
CFT arguments might fail. In particular there could be imperfect pairing between
the bosonic and fermionic states in the continuous part of the spectrum and we
could end up with a non-holomorphic BPS index, given by the completion of a mock
modular object, as a result. See for instance [24,27–31] for details for some specific
examples, and see the remark at the end of §3.3 for a more detailed discussion in the
context of elliptic genus. Another context in which non-compactness appears and
leads to a role for mock modular forms is wall-crossing (when approaching the wall,
the distance of the bound black hole centers goes to infinity). The BPS counting
of the black hole microstates hence depends on the moduli and correspondingly the
countour of integration [32], and the result of the integration is mock modular [16].

Another source of mock modular forms in physics is the characters of supersym-
metric infinite algebras, such as the N = 2 and N = 4 superconformal algebras
mentioned in §8.1. Some more examples can be found in for instance [33] and ref-
erences therein. Interestingly, as we will explain in §8.2, the mockness of the mock
modular form in (2.42) can be seen as either arising from CFT with non-compact
target space or as a result to the mockness of characters of theN = 4 superconformal
algebra.

We will end this subsection with a few examples.

• Ramanujan wrote down the following simple-looking Eulerian series in his 1920
letter to Hardy [34],

χ0(q) =
∞∑
n=0

qn

(1− qn+1)(1− qn+2) . . . (1− q2n)
= 1 + q + q2 + 2 q3 + . . . ,

χ1(q) =
∞∑
n=0

qn

(1− qn+1)(1− qn+2) . . . (1− q2n)(1− q2n+1)
= 1 + 2 q + 2 q2 + 3 q3 + . . . ,

as two of the examples of his mock theta functions (of order 5). In fact, they
are closely related to mock Jacobi forms.

Define I3E8 = {1, 7}, A = {1, 11, 19, 29}, and

H3E8
1 (τ) = q−1/120(2χ0(q)− 4) , H3E8

7 (τ) = 2q71/120χ1(q), (2.38)

then (H3E8
r )r∈I3E8 is a vector-valued mock modular form of weight 1/2 for the

modular group. Its shadow is given by the index 30 theta functions

g3E8
r = 3

∑
a∈A

θ1
30,a r. (2.39)

Writing Ĥ3E8
r (τ) = H3E8

r + (g3E8
r )∗, we have(

Ĥ3E8
1

Ĥ3E8
7

)
(τ + 1) =

(
e(− 1

120) 0
0 e(− 49

120)

)(
Ĥ3E8

1

Ĥ3E8
7

)
(τ) (2.40)
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and(
Ĥ3E8

1

Ĥ3E8
7

)(
−1

τ

)
= τ1/2i3/2

1
2

√
1− 1√

5
1
2

√
1 + 1√

5

1
2

√
1− 1√

5
−1

2

√
1− 1√

5

(Ĥ3E8
1

Ĥ3E8
7

)
(τ) (2.41)

Moreover, H3E8
i can be viewed as arising from the theta composition of the

mock Jacobi form ψ3E8(τ, z) :=
∑

r∈I3E8 H
3E8
r

∑
a∈A θ̂

3E8
a r . More specifically,

ψ̂3E8(τ, z) :=
∑

r∈I3E8 Ĥ
3E8
r

∑
a∈A θ̂

3E8
a r is non-holomorphic in τ and transforms

as a Jacobi form of weight 1 and index 30. As the notation suggests, H3E8
r

encodes the graded dimension of the umbral moonshine module underlying
the case of umbral moonshine corresponding to Niemeier lattice N with root
system 3E8, as we will discuss in §5.2.

• Let H : H→ C be given by

H(τ) =
−2E2(τ) + 48F

(2)
2 (τ)

η(τ)3
= 2q−

1
8
(
−1 + 45 q + 231 q2 + 770 q3 . . .

)
,

(2.42)
where

E2 = 1− 24
∞∑
n=1

nqn

1− qn

is the weight two Eisenstein series (which is not a modular form) and

F
(2)
2 (τ) =

∑
r>s>0

r−s=1 mod 2

(−1)r s qrs/2 = q + q2 − q3 + q4 + . . . .

Note that the first few Fourier coefficients of H/2 : 45, 231 770, 2277 , 5796,
coincide with dimensions of certain irreducible representations of the sporadic
group M24! Indeed, in umbral moonshine H = H24A1 plays the role of the
graded dimensions of the underlying M24-module. See 5.1.

This function is a mock modular form with shadow 24η3(τ) (and therefore
with a multiplier given by the inverse of that of η3(τ)). In other words,

Ĥ(τ) = H(τ) + 24 (4i)−1/2

∫ ∞
−τ̄

(z + τ)−1/2η(−z̄)3dz, (2.43)

transforms as a weight 1/2 modular form for the modular group SL2(Z).

Moreover, the two-variable function ψ24A1(τ, z) := H(τ)(θ2,1 − θ2,−1)(τ, z) is
a mock Jacobi form of weight one and index two. This mock Jacobi form can
be seen as arising from a meromorphic Jacobi form by subtracting its “polar
part”. To see this, consider the weight one index two meromorphic Jacobi
form

ψ(τ, z) := −2i
θ1(τ, 2z)η3(τ)

θ2
1(τ, z)

φ0,1(τ, z) = −iθ1(τ, 2z)η3(τ)

θ2
1(τ, z)

EG(τ, z;K3) ,

(2.44)
(cf. (2.31)) which has a simple pole at z ∈ Z+Zτ . Then the following identity
holds,

ψ(τ, z) = ψ24A1(τ, z)− 24 Av(2)

[
y + 1

y − 1

]
. (2.45)
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In the above Av(m) denotes the index-m averaging operator

Av(m)[F (y)] =
∑
k∈Z

qmk
2
y2mkF (qky) ,

with the elliptic symmetry Av(m)[F (y)]|m(λ, µ) = Av(m)[F (y)] for all λ, µ ∈ Z,
and the second term in (2.45) can be interpreted as the canonical “polar part”
of the meromorphic Jacobi form ϕ.

• Consider the set of binary quadratic forms with discriminant D,

QD := {Q[X,Y ] = AX2 +BXY + CY 2|B2 − 4AC = D} . (2.46)

This has a natural action of SL2(Z), and we are interested in elements in QD
that are not equivalent under the modular group action. For instance, an
interesting number is the Hurwitz-Kronecker class number

H(D) :=
∑

Q∈QD\ SL2(Z)

1

ωQ
, (2.47)

where ωQ denotes the order of the SL2(Z)-subgroup that leaves Q invariant. It
takes values in {1, 2, 3}. Roughly speaking, this number counts the number of
inequivalent quadratic forms with discriminant D, and will play an important
role in §6 and §9.

To each Q ∈ QD there is a unique root αD (satisfying Q[1, αD] = 0) in the
upper-half plane. Clearly, J(αQ) is independent of which representative of Q
one picks in the SL2(Z)-orbit and one can similarly define weighted sums like
(2.47), but now involving values of polynomials of J evaluated at αQ, referred
to as the traces of singular moduli. The generating functions of such quantities
(summing over D with the grading factor qcD for some c) will turn out to have
interesting modular properties.

For instance, the following generating of the Hurwitz-Kronecker class number,
extended by H(0) = − 1

12 ,

H(τ) :=
∑
D≤0

H(D)q|D| = − 1

12
+

1

3
q3 +

1

2
q4 + q7 + q8 + . . . (2.48)

is a mock modular form of weight 3
2 for Γ0(4), with shadow given by the theta

function θ(τ) (see §2.1). The mock modularity property of this function is
realised very early on in [35]. This form also has the interesting feature that it
is bounded at all cusps and hence has slow growth in its Fourier coefficients,
corresponding to the subtle growth of the class numbers.

The physical relevance of this function will be mentioned in §9. This is in
fact perhaps the first mock modular form which was found to play a role in
physic [36,37].

3 Conformal field theory in 2 dimensions

This chapter gives a brief summary of some key ingredients of 2-dimensional confor-
mal field theories (CFTs), and is in no way meant as a complete exposition. CFTs
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are relevant for moonshine, since in the cases that are known so far the correspond-
ing moonshine modules feature vertex operator algebra (VOA) structures, which
capture the structure of the chiral algebra of a 2d CFT. Instead of the more formal
VOA language, we opt for the CFT language more familiar to physicists. References
on the basic knowledge of CFT include [38–41]. See also Professor Xi Yin’s TASI
lecture notes in this volume [42].

After the general summary of the basic structure in §3.1, we quickly review
aspects of (holomorphic) orbifolds that are relevant for moonshine, in particular
for the understanding of the modular properties of the moonshine functions. After
that we focus on supersymmetric conformal field theories and introduce the so-called
elliptic genus, counting BPS states, that will play an important role in the discussion
of the physical context of Mathieu and umbral moonshine (§8).

3.1 General structure

A conformal field theory is a quantum field theory with conformal symmetry. Con-
formal transformations are coordinate transformations that preserve the confor-
mal flatness of the metric. Focusing on Riemannian manifolds of Euclidean sig-
nature, a metric is said to be conformally flat if it can be written in the form
ds2 = eω(x)δµνdx

µdxν . Conformal transformations locally preserve the angles but
may deform the lengths arbitrarily, so conformal symmetry is typically associated
with the absence of an intrinsic length scale. On the conformal compactification
(by adding the point at infinity which is necessary for the special conformal trans-
formation to be well-defined) of Rn,0 for n ≥ 3, all conformal transformations are
globally well-defined and form a group isomorphic to SO(n + 1, 1,R). The corre-
sponding local transformations thus form a finite-dimensional Lie algebra isomorphic
to so(n+1, 1,R). In two dimensions, however, the condition of conformal invariance
is equivalent to the Cauchy-Riemann equation and any holomorphic function gives
rise to an infinitesimal conformal transformation. Use the generators

`n = −zn+1∂z , ¯̀
n = −z̄n+1∂z̄ (3.1)

for n ∈ Z, we see that the local conformal transformations form an infinite-dimensional
Lie algebra, which contains two commuting copies of the Witt algebra with commu-
tation relations

Witt : [`m, `n] = (m− n)`m+n . (3.2)

It is important to emphasise that most of the conformal generators in 2 dimensions
are purely local, i.e. they do not generate globally well-defined transformations.
Consider, for example, the Riemann sphere Ĉ = C ∪ ∞, i.e. the Riemann surface
of genus zero. On Ĉ, only `0, `±1 generate global conformal transformations, which
form the Möbius group SO(3, 1,R) ∼= PSL(2,C).

The quantisation of a 2-dimensional CFT is typically done on C. The theory on
the Riemann sphere determines the theory on any other Riemann surface uniquely,
but does not guarantee their consistency, as one must also require crossing symmetry
and modular invariance of the torus partition function (see below). To see how to
quantise on C, we note that C with origin removed is conformally equivalent to a
cylinder S1×R. Denoting by y and t the coordinates for S1 and the Euclidean time
R, the conformal map z = et+iy maps the cylinder to C\{0} and in particular maps
the infinite past to the origin. The usual time ordering on the cylinder becomes
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radial ordering on the plane, and the associated space of states is built on radial
slices.

Anything that resembles a local field φ(z, z̄) is called a field in CFT. If a field
depends only on the holomorphic variable z we call it chiral field (or anti-chiral if it
depends only on z̄). Upon quantisation, fields become operator-valued distributions
that create states in the space of states H, by acting on the vacuum |0〉 ∈ H. This
is called the state-field correspondence, which maps an field φ to a state

φ 7→ |φ〉 := lim
z,z̄→0

φ(z, z̄)|0〉 , (3.3)

created at the origin on the plane (or past infinity on the cylinder). A crucial prop-
erty of a CFT is that the above map is bijective; every state corresponds uniquely
to a single local operator, whereas for a typical QFT different fields can produce
the same asymptotic state. This can be understood through the fact that under
conformal transformation t→ −∞ is mapped to a single local point on Ĉ.

The product of two fields inserted at the same point is generically singular. The
singularity structure is captured by the so-called operator product expansion (OPE)

φ1(z)φ2(z′) ∼
∞∑
n=0

Dn(z − z′)On(z′) , (3.4)

where ∼ means that we only keep the singular terms. Here On(z) are fields of the
theory and Dn(z− z′) are complex-valued functions with polynomial or logarithmic
singularities when z → z′. The non-singular part of φ1(z)φ2(z′) is captured by the
normal-ordered product, which can be defined as

:φ1(z)φ2(z′): := φ1(z)φ2(z′)−
∞∑
n=0

Dn(z − z′)On(z′) . (3.5)

When there are only polynomial singularities in Dn(z− z′) we say that the fields φ1

and φ2 are local with respect to each other, in the sense that there are no branch
cuts and contour integrals are well-defined.

The conserved current associated with the continuous conformal symmetry of
a 2d CFT is the stress-energy tensor, and we denote T (z) := Tzz(z) and T̄ (z̄) :=
Tz̄z̄(z̄). Classically, these are the only non-vanishing components. Upon quantisation
on a generic Riemann surface this is broken to 〈T aa〉 = − c

12R where R is the Ricci
scalar.

Since the treatment of the chiral and anti-chiral parts is identical, we will from
now on focus on the former. The holomorphicity of the stress-energy tensor T (z)
follows from the fact that the associated conserved charges are precisely the gener-
ators of infinitesimal holomorphic conformal transformations (3.1). Specifically, we
have the mode expansion

Ln :=
1

2π

∮
T (z)zn+1dz ⇔ T (z) =

∑
n∈Z

Lnz
−n−2 . (3.6)

The modes Ln however, do not generally satisfy the Witt algebra (3.2). This is
because the conformal symmetry is typically “softly” broken by quantum effects.
The OPE of T (z) with itself,

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, (3.7)
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is equivalent via the mode expansions to the commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 . (3.8)

In the above, the real constant c is called central charge, and the new algebra is the
Virasoro algebra Vir, which is a central extension of Witt by the term containing the
central charge. Moreover, the two resulting Vir copies commute, i.e. [Lm, L̄n] = 0,
and there is a central charge c̄ associated with the anti-chiral part, which can in
principle be different from c. The central charge captures important information
of a CFT and gives a measure for the number of degrees of freedom, but there
can exist multiple different CFTs with the same central charge. It is related to
a “soft” breaking of the conformal symmetry because it indicates that the stress-
energy tensor, which generates conformal transformations, transforms anomalously
under conformal mappings. For instance, for the transformation z = ew, w = t+ iy
from the cylinder to the Riemann sphere, we have

T (z) = z−2
(
Tcyl(w) +

c

24

)
, (3.9)

which leads to the following relation between the Hamiltonian
∮

time−slice dw(Tcyl(w)+

T̄cyl(w̄)) and
∮

radial−slice
dz
z (T (z) + T̄ (z̄)):

H = L0 + L̃0 −
c+ c̃

24
. (3.10)

Similarly, we have the momentum (or spin)

P = L0 − L̃0 −
c− c̃
24

. (3.11)

As a result, the eigenvalues of L0 plays the role of the chiral part of the energy,
and the central charge gives rise to non-vanishing ground state energy. The eigen-
value h under L0 of an eigenstate |h〉 ∈ H, i.e. L0|h〉 = h|h〉, is called the conformal
weight of |h〉. If, moreover, Ln|h〉 = 0 for all n > 0, then |h〉 is called a Virasoro pri-
mary state and the corresponding field called a primary field. This terminology also
extends to the corresponding fields φh via the state-field correspondence. A state of
the form L−k1L−k2 · · ·L−kn |h〉 (ki > 0) is called a Virasoro descendant of |h〉. If |h〉
is a primary state, then along with all of its descendants they form a so-called Verma
module for Vir. The primary state |h〉 is then called the highest-weight state of the
module, since it has the lowest (somewhat confusingly) conformal weight among all
of its descendants.

Since the states organise themselves into Virasoro representations, one can de-
compose the space of states of a CFT into a direct sum of Vir and Vir modules. In
general, focussing on the chiral part, one can have an enlarged symmetry algebra
that contains Vir. This is called the chiral algebra of the CFT, and is denoted here
by V. We are mainly interested in rational conformal field theories (RCFTs), which
contain a finite number of such modules; let Φ(V), Φ(V) denote the sets of these
(chiral and anti-chiral respectively). The space of states can then be written as

H =
⊕

M∈Φ(V),N∈Φ(V)

ZM,N

(
M ⊗N

)
. (3.12)

The states in such RCFTs get organized in V-modules, whose highest-weight states
correspond to chiral primaries, which are not only Virasoro primaries, but also
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primaries with respect to V. The chiral descendants are generated by acting with
V on the chiral primaries. This means that if A(z) ∈ V, then A(z)M ⊂ M for any
M ∈ Φ(V).

The subspace V ⊂ H, corresponding to the chiral algebra V via the state-field
correspondence, always forms an irreducible V-module V := M1 ∈ Φ(V), which con-
tains the vacuum and all states corresponding to the Virasoro primaries generating
V, also commonly called currents, along with their chiral descendants. Modular
invariance requires that the eigenvalues of L0 − L0 are integers, which also means
that all states in any M ∈ Φ(V) have the same weight up to an integer. Specifically,
all states in the vacuum module V should have integer weights. However, by drop-
ping modular invariance as an initial requirement, the chiral algebra can possibly
contain currents of half-integer weights (fermionic currents), or any rational weight
(parafermions). The price to pay is that these currents have non-local OPEs (in
the sense discussed previously), with the corresponding branch cuts leading to the
introduction of various sectors (for fermionic currents these would be the Ramond
and Neveu-Schwarz sectors). The modular invariant theory can then be constructed
by a suitable projection.

The chiral algebras themselves are the central objects in the theory of Vertex
Operator Algebras (VOAs), where they are discussed in an axiomatic manner. In
the context of moonshine, an important property of a chiral algebra is the finite
group part of Aut(V). The most famous example is the Monster CFT V \, which is
a VOA with Aut(V \) = M, the Monster group. Furthermore, V \ is an example of a
holomorphic VOA, i.e. a VOA that has a unique irreducible V-module, namely the
space V .

In 2d CFT one is interested in calculating correlation functions of fields, inserted
at specific points on a Riemann surface Σ. These can be cast in terms of chiral
quantities called chiral blocks. Writing Σ = Σg,n with genus g and n marked points
p1, . . . , pn, a chiral block is a multilinear map from M1⊗· · ·⊗Mn to a meromorphic
function. This notation means that a field in Mi ∈ Φ(V) is inserted at the point pi.
In the case of RCFT, they can often be obtained as solutions to certain differential
equations [43–45]. The chiral blocks form representations of the mapping class group
Γg,n, which captures the discrete (and almost always infinite) symmetries of Σg,n.
It can be defined by the quotient Γg,n ∼= Aut(Σg,n)/Aut0(Σg,n), where Aut0(Σg,n)
is the component of Aut(Σg,n) that is connected to the identity. Hence, Γg,n maps
between equivalent Riemann surfaces Σg,n, which only differ by a discrete automor-
phism. As a result, the moduli space Mg,n, which parametrises the conformally
inequivalent Riemann surfaces, has naturally the following quotient form,

Mg,n = Tg,n/Γg,n , (3.13)

where Tg,n is the so-called Teichmüller space.
Chiral blocks have in general non-trivial monodromy as functions of the moduli

spaceMg,n (see for example [40] for more details). Chiral blocks will thus generally
be multi-valued functions on Mg,n, and in order to make them well-defined one
should lift them to Tg,n. As a result, they will then carry a representation of the
mapping class group Γg,n. This is one way to understand the origin of the modular
properties of torus blocks, and in particular moonshine modules.

To explain this, let us now focus on the case of Σ1,1, i.e. tori with a single
marked point. As explained in §2.1, a torus can be described up to a scale by
C/Λτ , where Λτ is the lattice in C generated by the vectors 1 and τ ∈ H. An
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SL2(Z) transformation leaves the lattice invariant and as a result the mapping class
group Γ1,0 = PSL2(Z) is given by the part of SL2(Z) that acts non-trivially on the
Teichmüller space H. As any point is equivalent to any other point on a torus due
to its translation symmetries, we also have Γ1,0 = Γ1,1 and M1,0 =M1,1.

Chiral blocks on Σ1,1, when lifted to T1,1, will consequently be functions of the
modular parameter τ . For RCFTs, they form a space of finite dimensions, and
the dimension is given by the number of irreducible modules in Φ(V). They admit
a natural basis given by the graded dimensions, or characters, of the irreducible
modules M ∈ Φ(V)

chM (τ) = TrM qL0−c/24 , (3.14)

where q = e2πiτ as before. As discussed previously, the characters furnish a rep-
resentation of Γ1,1 = PSL(2,Z), so that the chM (τ) are components of a weakly
holomorphic vector-valued modular form for PSL(2,Z). In other words, they mix
with each other under the action of the modular group and the way they mix deter-
mines their OPE via the Verlinde formula. The modularity of characters of RCFTs
is rigorously shown in the context of VOAs by Zhu’s Theorem [46].

The partition function of a 2d CFT is defined as the 0-point correlation function
on the torus, which encodes the spectrum of the theory. In the operator formalism,
a torus with modular parameter τ = τ1 + iτ2 can be obtained from the Riemann
sphere by first conformally mapping it to the cylinder S1 × R, and then imposing
periodic boundary conditions on the Euclidean time direction R. The Hamiltonian
and momentum operators H,P then propagate states along both cycles of the torus,
so the spectrum is embodied in the trace of the corresponding evolution operator
over the space of states,

Z(τ, τ̄) := TrH e
2πiτ1P−2πτ2H . (3.15)

Using (3.10)-(3.11), we can rewrite it as

Z(τ, τ̄) = TrH q
L0− c

24 q̄L̄0− c̄
24 , (3.16)

making it manifest that it is a generating function of the multiplicities of states at
given chiral and anti-chiral conformal weights in H. From (3.12) we see that it has
the following decomposition in terms of chiral blocks

Z(τ, τ̄) =
∑

M∈Φ(V),N∈Φ(V)

ZM,N chM (τ)chN̄ (τ) . (3.17)

The partition function (3.15) can also be computed using the path integral formal-
ism when a Lagrangian description of the CFT is available. In this language, we
have Z =

∫
Dφ e−S[φ], with the fields having appropriate boundary conditions on

the two cycles of the torus. Also from this point of view, it is clear that the partition
function should be modular invariant. This invariance imposes severe constraints
on the spectrum of 2d CFTs. For instance, modular invariance was used to classify
supersymmetric minimal models and further extensions. See [47, 48] and references
therein for some of these results. In the context of moonshine, we are mainly inter-
ested in the chiral CFT, where the modular properties are not as stringent.

3.2 Orbifolds

A special class of CFTs which is of particular interest for moonshine is the so-
called orbifold CFTs [49]. The orbifold construction essentially entail “gauging” a
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discrete symmetry group G of the chiral algebra V. More precisely, it builds a theory
whose chiral algebra contains the G-invariant subalgebra VG of V, by retaining the
G-invariant states of the original theory and introducing new “g-twisted” sector
states, for every g ∈ G.

There are two important ways orbifold considerations enter the study of moon-
shine. First, we will see in §4 explicit constructions of moonshine chiral CFTs
obtained by Z2-orbifolds. Second, the partition functions twined by the finite group
symmetries provide the necessary information about the group actions on the moon-
shine CFT and constitute the modular objects playing a central role in moonshine.
Generalising this to the twisted sectors leads to the so-called generalised moonshine,
which we will mention in the next part of the lecture.

Orbifold chiral algebra. Here we are mainly interested in orbifolds of chiral
RCFTs (rational VOAs). We are interested in automorphisms of the operator alge-
bra. If such an automorphism acts trivially on the operator algebra, i.e. without
permuting the modules M e

i , then it is said to be inner. In particular it preserves
the chiral algebra of the chiral CFT. Let V denote the chiral algebra, G ⊆ Aut(V)
a finite symmetry group, and M e

1 , . . . ,M
e
n its irreducible V-modules. Here e ∈ G

denotes the identity element which will later be generalised to arbitrary g ∈ G. In
particular, we have M e

1 = V , the vacuum module corresponding to V.
Given such a symmetry, the chiral algebra is decomposed in G-representations

as
V =

⊕
a

ρa ⊗ Va , (3.18)

where the corresponding spaces Va contain states that transform under the irre-
ducible representations ρa of G, and a runs over all of them. The G-invariant
subalgebra

VG := {φ ∈ V | hφ = φ ∀ h ∈ G} , (3.19)

corresponding to the trivial representation ρ0 ofG, is called the orbifold chiral algebra
in this setup. Note that while V is irreducible as a V-module, it is generically
reducible as a VG-module, as shown in (3.18). We instead identify the corresponding
space Va, corresponding to Va, as the irreducible VG-modules relevant for the orbifold
CFT.

An analogous statement holds for the rest of the V-modules, and we have de-
compositions

M e
i =

⊕
a

ρa ⊗M e
i,a . (3.20)

An important subtlety is that ρ now runs over all irreducible projective representa-
tions of G. Projective representations generalise the usual notion of representations
introduced in §1.4, by allowing them to respect the group operation up to a phase,

ρ(h1h2) = ce(h1, h2)ρ(h1)ρ(h2) , (3.21)

where ce(h1, h2) is a U(1)-valued 2-cocycle, representing a class in the group coho-
mology H2(G,U(1)) of G. This type of behaviour is allowed in CFT because such
a phase cancels when the chiral and the anti-chiral contributions are combined and
hence is not in conflict with the modular invariance of the final theory. See [50]
for a nice survey on projective representations of finite groups. Also note that the
G-invariance of the vacuum implies that the vacuum module V carries true repre-
sentations in the decomposition V =

⊕
a ρa ⊗ Va.
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Twinings. For each h ∈ G, acting as an inner automorphism of the operator
algebra, we define the twined characters

chi

(
h2
e

; τ
)

:= TrMe
i

[
h qL0− c

24

]
. (3.22)

Note that the the special case h = e simply gives the usual character or graded-
dimensions, of M e

i . In terms of the decomposition into irreducible VG-modules, the
twined characters are expressed as

chi

(
h2
e

; τ
)

=
∑
a

χa(h) ch
(
M e
i,a

)
, (3.23)

where χa are projective characters of G, and ch
(
M e
i,a

)
are the graded dimensions of

M e
i,a. Using the orthogonality of the projective representations analogous to (1.18)

one can obtain the character chi

(
h2
e

; τ
)

from the 2-cycle and the character of the

projective representation ρa.
In a similar fashion, we define the twined partition function as

Z
(
h2
e

; τ, τ̄
)

:= TrH

[
h qL0− c

24 q̄L̄0− c̄
24

]
. (3.24)

In the path integral language, the twined partition function is obtained by imposing
h-twisted boundary condition for the fields on the cycle of the torus which is identi-
fied with the “temporal” circle, while the boundary condition along the spatial circle
remains unchanged, i.e. φ(z + τ) = h · φ(z) and φ(z + 1) = φ(z). From this point of

view, it is clear that Z
(
h2
e

; τ, τ̄
)

should be invariant under a subgroup of SL2(Z)

that preserves the h-twisted boundary condition (SL2(Z) transforms the boundary
conditions on the two independent cycles of the torus as in (3.27) below).

Twisted sectors. Provided that V is sufficiently nice, in the sense that it satisfies
the so-called C2-cofiniteness condition (see [40] for the definition), then for any
g ∈ Inn(V), the inner automorphisms of V, one can define an irreducible g-twisted
V-module Mg

i for each i = 1, · · · , n [51]. In an orbifold theory these modules make
up the g-twisted sector of the theory. Clearly, G is no longer a symmetry group
for these modules; only the centraliser subgroup CG(g) (cf. §1.1) remains as a
symmetry of the g-twisted sector. As a result, for any commuting pair g, h ∈ G, we
can analogously define the twisted-twined characters

chi

(
h2
g

; τ

)
:= TrMg

i

[
h qL0− c

24

]
, (3.25)

i.e. the twined characters in the twisted sectors (of which (3.22) is a special case). In
the path integral language, they are obtained by additionally imposing g-boundary
conditions for the spacial cycle of the torus, i.e. we have φ(z + 1) = g · φ(z) as well
as φ(z + τ) = h · φ(z). They similarly admit the decomposition

Mg
i =

⊕
a

ρa ⊗Mg
i,a , (3.26)

where the sum now runs over all irreducible projective representations of CG(g).
Accordingly, an obvious generalisation of (3.23), obtained by replacing e with g and
G with CG(g), also holds for the twisted sectors.

32



We have already mentioned that the twined partition functions enjoy modular
properties. Similarly the characters (3.25) form vector-valued modular forms for
some congruence subgroup with certain multiplier systems. This can be understood
via the SL2(Z)-action on the boundary conditions: under modular transformations
( a bc d ) ∈ SL(2,Z) on the torus, the boundary conditions (g, h) on the two cycles
change as

(g, h) 7→
(
hcgd, hagb

)
. (3.27)

As a result, the twisted-twined characters transform as

chi

(
h2
g

;
aτ + b

cτ + d

)
=

n∑
j=1

ψ(γ, g, h)ij chi

(
hagb 2

hcgd
; τ

)
, (3.28)

where ψ(γ, g, h) is an n×n matrix with scalar entries. The special case of holomor-
phic VOAs , i.e. those that contain only a single irreducible (untwisted) V-module
H, is the easiest to describe. In this case, the chiral partition function coincides with
the character of the chiral algebra and (3.28) becomes [52]

Z

(
h2
g

; τ + 1

)
= cg(g, h)Z

(
gh2

g
; τ

)
,

Z

(
h2
g

;−1

τ

)
= ch (g, g−1)Z

(
g−12

h
; τ

)
,

(3.29)

where now the phases are given by a 2-cocycle representing a class inH2(CG(g), U(1))
as in (3.21). Moreover, all the phases for all g should descend from a 3-cocycle rep-
resenting a class in H3(G,U(1)) [52,53].

In a non-chiral CFT, the spectrum consists of the G-invariant parts of all the
twisted sectors, leading to the following expression for the partition function

Z(τ, τ) =
1

|G|
∑
gh=hg

Z(g, h)ε(g, h) (3.30)

where ε(g, h) is a phase called the discrete torsion, which is just 1 in the simplest
cases of orbifold constructions. As usual, the above partition function is modular
invariant in a consistent orbifold CFT.

3.3 Elliptic genus

In the previous subsections we have discussed conformal theories in general. In
the context of string theory and in this lecture, we often encounter 2d CFTs with
supersymmetries. In this subsection, we will start with introducing some necessary
background on superconformal algebras and their representations, and in particular
explain what an elliptic genus is, first from a physics point of view and then from a
geometric point of view.

With supersymmetries, the presence of fermions leads to many new features,
stemming from the fact that there is now an extra Z2 grading on the Hilbert space:
V = V0 ⊕ V1. (In the context of moonshine, this leads to supermodules of finite
groups, cf. (1.20). ) For instance, in the context of type II superstrings compact-
ified on Calabi-Yau manifolds, the relevant “internal” CFT is a non-linear sigma
model with N = 2 supersymmetry. The Calabi-Yau structure of the target space
guarantees that the theory has the N = 2 extension of Virasoro symmetry, given by
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the so-called N = 2 superconformal algebra (SCA). In particular, superstrings on
K3 manifolds and the corresponding elliptic genus will play an important role in §8.

The terminology “N = 2” refers to the fact that we include 2 fermionic currents
in the algebra on top of the bosonic energy-momentum tensor T (z). Furthermore,
there’s now an extra automorphism, called the R-symmetry, that rotates different
fermionic currents onto each other.

We denote the two fermionic currents by G+(z) and G−(z) and the U(1) R-
symmetry current rotating the two by J(z). The algebra reads

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0

[Jm, Jn] =
c

3
mδm+n,0

[Ln, Jm] = −mJm+n

[Ln, G
±
r ] = (

n

2
− r)G±r+n (3.31)

[Jn, G
±
r ] = ±G±r+n

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3
(r2 − 1

4
) δr+s,0 ,

and all other (anti-)commutators are zero. As before we have two possible boundary
conditions for the fermions

2r = 0 mod 2 for R sector

2r = 1 mod 2 for NS sector .

(3.32)

Two comments about this algebra are in order here. First, we have now two
generators, L0 and J0, of the Cartan subalgebra. As a result, the representations
will now be graded by two “quantum numbers”, given by the eigenvalues of the L0

and J0 of the highest weight vector. The second new feature is that there is a non-
trivial inner automorphism of the algebra, which means that the algebra remains
the same under the following redefinition

Ln 7→ Ln + ηJn +mη2 δn,0

SFη : Jn 7→ Jn + 2mη δn,0 (3.33)

G±r 7→ G±r±η

with η ∈ Z. This automorphism is called spectral flow, and in the above we have
written m := c/6. If instead we choose η ∈ Z + 1/2 we exchange the Ramond and
the Neveu-Schwarz algebra. Note that the only operator (up to trivial rescaling and
the addition of central terms, of course) invariant under such a transformation is
4mL0 − J2

0 . Recall also that NS sector states give spacetime fermions and Ramond
sector states give spacetime bosons. Hence the spectral flow operator has an intimate
relation to spacetime supersymmetries.

Ramond ground states and the Witten index. In what follows we will focus
on the Ramond algebra and define the Ramond ground states of N = 2 SCFT. As
usual, we require the ground states to be annihilated by all the positive modes:

Ln|φ〉 = Jm|φ〉 = G±r |φ〉 = 0 for all m,n, r > 0 .
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Moreover, they have to annihilated by the zero modes of the fermionic currents

G±0 |φ〉 = 0 .

This condition fixes their L0-eigenvalue to be

1

2
{G+

0 , G
−
0 }|φ〉 =

(
L0 −

c

24

)
|φ〉 = 0 .

Let’s ignore the right-moving part of the spectrum for a moment and consider a
chiral Hilbert space V . We define its Witten index as

WI(τ, V ) = TrV
(
(−1)J0qL0− c

24
)
.

If a state |ψ〉 is not annihilated by G+
0 , then the states |ψ〉 and G+

0 |ψ〉 together con-
tribute 0 to WI(τ, V ) since [L0, G

+
0 ] = 0 while [J0, G

+
0 ] = G+

0 . The same argument
holds for G−0 and we conclude that only Ramond ground states can contribute to
the Witten index. As a result, the Witten index WI : {N = 2 SCFT} → Z is
independent of τ and counts (with signs) the number of Ramond ground states in
V .

Notice moreover that the Witten index for N = 2 SCFT acquires an interpre-
tation as computing the graded dimension of the cohomology of the G+

0 operator,
satisfying (G+

0 )2 = 0. For {G+
0 , (G

+
0 )†} = {G+

0 , G
−
0 } = L0− c

24 , the Ramond ground
states have the interpretation as the harmonic representative in the cohomology.
This fact underlies the rigidity property of the Witten index and the elliptic genus
which we will define now.

The same analysis can be trivially extended when one has a non-chiral theory
with both left- and right-moving degrees of freedom: the Witten index

WI(τ, τ̄ , V ) = TrV
(
(−1)J̃0+J0 q̄L̃0− c̃

24 qL0− c
24
)

counts states that are Ramond ground states for both the left- and the right-moving
copy of N = 2 SCA.

The N = 2 elliptic genus. It is fine to be able to compute the graded dimension
of a cohomology, but we can go further and compute more interesting properties of
this vector space. For instance, we have learned that the representations of N = 2
SCA are labelled by two quantum numbers corresponding to the Cartan generators
L0 and J0. It will hence be natural to consider the following quantity which computes
the dimension of G̃+

0 cohomology graded by the left-moving quantum numbers L0, J0.
The elliptic genus of a N = (2, 2) SCFT is defined as the following Hilbert space

trace

EG(τ, z) = TrHRR

(
(−1)J0+J̄0yJ0qL0−c/24q̄L̄0−c/24

)
, y = e2πiz , (3.34)

where HRR denotes the Hilbert space of states that are in the Ramond sector of the
N = 2 SCA both for the left- and right-moving copy of the algebra. From the same
argument as that for the Witten index, this quantity will be independent on q̄ and
will hence be holomorphic as a function of both τ and z.

Note that the elliptic genus can be seen as something between the partition
function and the Witten index. While the former counts all states and the latter
counts only RR ground states, the elliptic genus counts states that are Ramond
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ground state on one side and unconstrained on the other side. It contains a lot more
information but still has the rigidity property of the Witten index which makes it
possible to compute for many SCFTs, and as such it offers a good balance between
information content and computability.

When the theory has a finite group symmetry G which commutes with the su-
perconformal symmetries, one can define the ellpitic genus twined by g ∈ G as

EGg(τ, z) = TrHRR

(
g (−1)J0+J̄0yJ0qL0−c/24q̄L̄0−c/24

)
. (3.35)

These objects will play an important role in the discussions in Part II and III.

Modular properties. As in the case of partition functions (cf. §3.1), a path
integral interpretation of the elliptic genus suggests it has nice transformation prop-
erty under the torus mapping class group. Moreover, the inner automorphism of the
algebra (the spectral flow symmetry) implies that the graded dimension of a L0-,
J0- eigenspace should only depends on its eigenvalue under the eigenvalue of the
combined operator 4mL0−J2

0 and the charge of J0 mod 2m where m = c/6. Hence,
the Fourier expansion of the elliptic genus should take the form

EG(τ, z) =
∑
n,`

qny` c(4mn− `2, `) .

where c(D, `) only depends on D and ` mod 2m (cf. (2.26)). From these facts one
can deduce that the elliptic genus of an N = (2, 2) SCFT with central charge c = 6m
is a weak Jacobi form of weight zero and index m. Similarly, following the same
argument and that in §3.2, the twined elliptic genera are also weak Jacobi form
of weight zero and the same index, but with the modular group SL2(Z) in (2.25)
replaced by a certain subgroup which depends on the twining symmetry g.

The geometric elliptic genus. For a compact complex manifoldM with dimCM =
d0, we can define its elliptic genus as the character-valued Euler characteristic of the
infinite-dimensional formal vector bundle [54–58]

Eq,y = yd/2
∧
−y−1T ∗M

⊗
n≥1

∧
−y−1qnT

∗
M

⊗
n≥1

∧
−yqnTM

⊗
n≥0 Sqn(TM ⊕ T ∗M ),

where TM and T ∗M are the holomorphic tangent bundle and its dual, and we adopt
the notation∧

qV = 1 + qV + q2
∧2 V + . . . , and SqV = 1 + qV + q2S2V . . . ,

with SkV denoting the k-th symmetric power of V . In other words, we have

EG(τ, z;M) =

∫
M
ch(Eq,y)Td(M). (3.36)

From the above definition we see that this “stringy” topological quantity reduces to
the familiar ones: the Euler number, the signature, and the Â genus of M , when we
specialise z to z = 0, τ/2, (τ + 1)/2, respectively.

When M has vanishing first Chern class, in particular when M is a Calabi–Yau
manifold, its elliptic genus EG(τ, z;M) can be shown to be a weak Jacobi form
of weight zero and index d0/2 [58]. Note that the supersymmetric sigma model
on a Calabi–Yau manifold flows to a superconformal SCFT in the infrared. The
elliptic genus of this N = (2, 2) SCFT, defined as in (3.34), then coincides with the
geometric elliptic genus defined in (3.36) of the Calabi–Yau manifold.
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Examples: K3 and T 4. There are two topologically distinct Calabi-Yau two-
folds: K3 and T 4. We expect their elliptic genus to be weight zero weak Jacobi
forms with index 1. Coincidentally, the space of such a form is one-dimensional
and is spanned by φ0,1(τ, z) (cf. (2.31)), and hence we only need one topological
invariant of the Calabi-Yau two-folds to fix the whole elliptic genus. From

EG(τ, z = 0;T 4) = χ(T 4) = 0 , EG(τ, z = 0;K3) = χ(K3) = 24

and
φ0,1(τ, z = 0) = 12

we obtain
EG(τ, z;T 4) = 0 , Z(τ, z;K3) = 2φ0,1(τ, z) .

This clearly demonstrates the power of modularity in gaining extremely non-trivial
information about the spectrum of N = (2, 2) SCFT.

Remark. The argument for the holomorphicity of the elliptic genus fails in an
interesting way for theories whose spectrum has a continuous part. Due to the
possible spectral asymmetry (i.e. non-perfect pairing between bosonic and fermionic
states), the elliptic genus, when defined as a trace/integral over the full Hilbert space
with continuous spectrum included, of such a theory could develop a non-trivial q̄-
dependence. For such an object the usual path-integral intuition still holds and the
resulting non-holomorphic function transforms as a Jacobi form. Restricting to the
discrete part of the spectrum, the analogous trace will be holomorphic but will no
longer be modular. In particular, it will be a mock Jacobi form. As a result, in
this context the holomorphic part of the elliptic genus is a well-defined notion both
from a physical and mathematical point of view. From the physics perspective,
the holomorphic part corresponds to the contribution from the discrete part of the
spectrum [24, 27, 30, 59]. From the mathematical point of view, the holomorphic
part corresponds to the holomorphic part of the harmonic Maass form [60]. We will
encounter such a situation in §8.2.
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Part II

Moonshine

In this part we describe classical and recent cases of moonshine connections, fo-
cussing on the mathematical statements and postponing the physics till the next
part. We organise the different cases in terms of the weights of the modular ob-
jects involved, and we will see that in different weights the moonshine relations have
features that are different in interesting ways.

4 Moonshine at weight zero

Here we review the two moonshine connections, monstrous and Conway moonshine,
that occur at weight zero. They are the moonshine cases that are best understood
at the moment, in terms of the specification of the modular objects, the origin of
the symmetries, and their physical context.

4.1 Monstrous moonshine

Monstrous moonshine is arguably one of the most fascinating chapters of mathemat-
ics in the last century, where finite groups and modular objects were first noticed
to be related via physical structures. As the theory of moonshine further develops,
we believe that monstrous moonshine will remain the most distinguished example
of moonshine phenomenon from various points of view. In this section we briefly
describe the features of monstrous moonshine, and we refer to [40, 61, 62] and ref-
erences therein for other excellent reviews of this beautiful story, in particular the
historical aspects of it.

The term monstrous moonshine, coined in [63], refers to the unexpected connec-
tion between the representation theory of the Monster group M and the modular
form

J(τ) =
∑
n≥−1

an q
n = q−1 + 196884q + 21493760q2 + 864299970q3 + · · · , (4.1)

which we encountered in (2.5). The development of monstrous moonshine was ini-
tiated with the key observation, due to McKay, that the coefficient 196884 in the
q-expansion of J can be decomposed as 196884 = 1 + 196883, where the summands
are the dimensions of the two smallest irreducible represenations of M. Similar
decompositions were observed for the next few coefficients by Thompson in [64]:

1 = 1

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1
· · ·

(4.2)

where 1, 196883, 21296876, and 842609326 are dimensions of certain irreducible
representations of M. The observation led to the conjecture of the existence of an
infinite-dimensional Z-graded Monster module,

V =
⊕
n≥−1

Vn , (4.3)
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such that dimVn = an for all n ≥ −1. In other words, J acquires the interpretation
as the graded dimension of V

J(τ) =
∑
n≥−1

dimVnq
n. (4.4)

Notice that V0 is empty, corresponding to the vanishing constant coefficient of J .

The conjecture. This conjecture as stated above is not interesting since one could
take each Vn to contain c(n) copies of the trivial representation of M to make (4.4)
true, given the fact that all an are non-negative integers. To access the information
on the M-action, Thompson also proposed in [65] to look at the graded characters
of V , the so-called McKay-Thompson series defined by

Tg(τ) :=
∑
n≥−1

TrVn(g)qn , (4.5)

for each element g ∈ M (with Te = J). Note that the q-series Tg(τ) must also
have vanishing constant term. As is clear from the definition, the Tg are class
functions, i.e. Tg = Thgh−1 . As a result, there are at most 194 distinct Tg as
M has 194 conjugacy classes. In fact, it turns out that Tg only gives rise to 171
distinct functions. The main point of monstrous moonshine lies in the fact that
these graded trace functions also exhibit modular properties and are moreover the
unique Hauptmoduls with no constant terms (cf. §2.1), as stated in the following
astonishing conjecture made by Conway and Norton [63]:

Conjecture 4.1. (Monstrous Moonshine Conjecture)
For each g ∈ M the McKay-Thompson series Tg coincides the unique Hauptmodul
JΓg with expansion q−1 + O(q) near τ → i∞, for some genus zero subgroup Γg ≤
SL2(R). Furthermore, each Γg contains Γ0(N) as a normal subgroup, for some N
dividing the quantity |g| gcd(24, |g|).

Given the importance of this conjecture, we will pause to make a few comments.
Note that Γg is often not a subgroup of SL2(Z); only for some g we have Γg = Γ0(N)
(cf. (2.8)), for some N satisfying the conditions mentioned above. In general, Γg is a
normaliser of Γ0(N) in SL2(R), which in general involves the so-called Atkin-Lehner
involutions. For later purpose we will be particular interested in the groups of the
form

ΓN+K :=

{
1√
n

(
an b
cN dn

)
| adn− bcN/n = 1, n ∈ K

}
, (4.6)

where K < ExN is a subgroup of the group of exact divisors of N . We say that e is an
exact divisor of N if e|N and (f, Nf ) = 1, and they form a group with multiplication

f ∗ f ′ = ff ′

(f,f ′)2 . An especially simple case is when N is a prime number p, and the

full normaliser (corresponding to K = {1, p}) is given by

Γ0(p)+ :=
〈

Γ0(p),
1
√
p

(
0 −1
p 0

)〉
. (4.7)

A harbinger of monstrous moonshine, predating the observation by McKay, is the
following observation made by Ogg [66]. He noted that Γ0(p)+ defines a genus zero
quotient on the upper-half plane if and only if

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, (4.8)
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and this is precisely the set of primes dividing the order of the Monster group,
and subsequently offered a bottle of Jack Daniel’s to anyone who can explain the
coincidence [66]. Monstrous moonshine sheds light on this mysterious coincidence
through the fact that the Hauptmoduls of all the genus zero Γ0(p)+ feature in
moonshine as the McKay-Thompson series Tg for a g ∈ M with order p. In the
case Γg 6⊂ SL2(Z) the modularity of CFT does not help to explain the appearance
of modularity for Γg, since in CFT modularity arises from the mapping class group
of the torus (cf. §3). The crucial genus zero property of monstrous moonshine
received a useful paraphrasing [67] as the property that these Hauptmoduls can be
obtained as a Rademacher sum, a regularised sum over the images of the polar term
(in this case q−1) under the action of the appropriate subgroup of SL2(R) (in this
case Γg). This Rademacher summability property subsequently played a key role in
the discovery of umbral moonshine (cf. §5.2). Recently, the genus zero property
is explained by noting that Γg plays the role of the stringy symmetry group in
the string realisation of the Monster theory and by requiring a physical analyticity
condition on the supersymmetric index of the theory. See §7 for more details.

The moonshine module. This conjecture was verified numerically by Atkin,
Fong and Smith (cf. [68, 69]), following the idea of Thompson (see [40] for refer-
ences). To be more specific, they showed that, for each n ≥ −1, the qn-coefficient
of the Hauptmoduls specified in [63] coincide with the characters of a certain vir-
tual representation of M. A constructive verification was later obtained by Frenkel,
Lepowsky and Meurman [70,71], with the explicit construction of a Monster module
V = V \. This module has the structure of holomorphic VOA, i.e. a VOA with a
single irreducible V \-module, namely itself.

The starting point for constructing V \ is 24 chiral bosons Xi(z), compactified
on the 24 dimensional torus R24/Λ defined by the Leech lattice Λ. This results
into a VOA V (Λ) with central charge c = 24, leading to a partition function whose
q-expansion starts with ZV (Λ)(τ) = q−1 + . . .. This, together with the modular
invariance, fixes the function to be the same as J(τ) up to an additive constant. At
the same time, we know what this constant has to be since the Leech lattice has no
root vectors and hence ΘΛ(τ) =

∑
v∈Λ q

〈v,v〉/2 = 1 +O(q2), leading to

ZV (Λ)(τ) =
ΘΛ(τ)

η24(τ)
= J(τ) + 24 . (4.9)

In other words, thanks to the root-free property of the Leech lattice the lattice vertex
operators of the form eik·Φ all have weight larger than one, and the only remaining
weight one primaries are the 24 fields ∂Xi.

In order to have an exact matching with J we would like to remove these pri-
maries, which can be achieved by a simple Z2 orbifold of V (Λ), acting as Xi → −Xi,
which corresponds to the {id,−id} ∼= Z2 symmetry of Λ, contained in Aut(Λ) ∼= Co0.
Indeed, one can easily compute the partition function of the orbifolded theory ex-
plicitly as follows. Note that the Z2-twined partition function of 24 chiral bosons is
given by

Z

(
−2

+
; τ

)
=

1

q
∏
n>0(1 + qn)24

=

(
2η(τ)

θ2(τ)

)12

. (4.10)

The orbifold entails that V \ is the direct sum of the Z2-invariant projections of the
untwisted and twisted sectors respectively (cf. (3.30)). From (3.29) and (2.13) we
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have

ZV \(τ) =
1

2

(
J(τ) + 24 +

(
2η(τ)

θ2(τ)

)12

−
(

2η(τ)

θ3(τ)

)12

+

(
2η(τ)

θ4(τ)

)12
)

= J(τ).

(4.11)

It remains to see that Aut(V \) is the Monster. Note that AutV (Λ) has a con-
tinuous piece T which is a 24-dimensional torus corresponding to the translation
symmetry of the chiral bosons and to the 24 weight-one primary fields ∂Xi. The
total symmetry is captured by the (non-split) short exact sequence

1→ T → AutV(Λ)→ Co0 → 1 . (4.12)

The Z2-orbifold breaks the automorphism group to its discrete part 224.Co0, which
preserves the decomposition V \ = V \

+ ⊕ V
\
− and is suggestively similar to a certain

maximal subgroup 21+24.Co1 of M. It is clear from the contribution to the weight
two (and similarly for weight three, four, . . . ) states in V \ from V \

+ and V \
− that

the Monster must mix them and hence cannot preserve the (un)twisted sector indi-
vidually. Note that the 196884-dimensionl space of weight two states of V \ has the
structure of a commutative and non-associative algebra (as is true for any VOA),
and can be shown to be precisely the Griess algebra constructed in 1980 and used
to construct the Monster group itself [72]. From this and the VOA structure of V \

one can show that Aut(V \) is indeed the Monster, and can be obtained by adjoining

a certain order two symmetry mixing V \
± to the discrete part of Aut(V (Λ)).

The proof of monstrous moonshine. To prove that the V \ constructed by
Frenkel, Lepowsky and Meurman indeed “does the job”, one needs to show that

T V
\

g (τ) := TrV \ g qL0−c/24 (4.13)

coincides with the corresponding Hauptmodul JΓg specified in [63]. It was known
that the coefficients of Hauptmoduls satisfy certain recursive formulas and one can
determine all coefficients from just a handful of them. In the simplest case the
recursive formulas are encoded in the remarkable identity

p−1
∏
m>0
n∈Z

(1− pmqn)amn = J(ρ)− J(τ) , (4.14)

independently discovered by Zagier, Borcherds and others. Here p = e2πiρ, and ai
denotes the qi coefficients in the q-expansion of J (cf. (4.1)). This identity results
in infinitely many relations between ai, which enables one to completely fix all the
coefficients from just a1, a2, a3, a5. Clearly, the proof can be achieved if one can
show the existence of the same type of identities among the coefficients of T V

\

g (τ),
and just explicitly compare the handful of coefficients that are necessary to fix the
whole functions on both sides.

This is precisely what Borcherds did, and he obtained the replication formulas by
introducing the notion of a generalised Kac-Moody algebra, which can be viewed as a
generalisation of Kac–Moody algebras that allows for imaginary simple roots. Sub-
sequently, he constructed a generalised Kac-Moody algebra (also called “Borcherds-
Kac-Moody algebra”) m, called the Monster Lie algebra. Roughly speaking, the
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construction was achieved by studying the cohomology of a BRST-like operator,
which acts on V \ × Γ1,1, where Γ1,1 is the unique unimodular lattice of signature
(1, 1). This construction has a natural interpretation in string theory of considering
second quantised strings in the background of V \. See §7 for more details.

Borcherds managed to derive the replication formulas (4.14) as the denomina-
tor identities of the Monster Lie algebra m that he attached to V \. As in usual
Kac–Moody algebras, the denominator identity results from applying the Weyl-Kac
character formula of a Lie algebra to the trivial representation, and in this case re-
lates an infinite sum to an infinite product, precisely the structure we see in (4.14).
Moreover, by considering the M-action on V \ one can also obtain from m the anal-
ogous identity

p−1 exp

−∑
k>0

∑
m>0
n∈Z

ag
k

mn

pmkqnk

k

 = JΓg(z)− JΓg(τ) , (4.15)

satisfied by the other Hauptmoduls, where agi are the q-expansion coefficients of JΓg .
Combining the above components then proves the validity of V \ as the module of
monstrous moonshine.

Generalised monstrous moonshine. In [73] Norton proposed a generalisation
of monstrous moonshine under the name of generalised monstrous moonshine. He
suggested that there is a rule to assign to each element g ∈ M a graded projective
representation V (g) =

⊕
n∈Q V (g)n of the centralizer group CM(g), and to each

pair (g, h) of commuting elements of M a holomorphic function T(g,h) on the upper
half-plane H, which satisfies the following conditions:

(i) T(gahc,gbhd)(τ) = γ T(g,h)

(
aτ+b
cτ+d

)
with

(
a b
c d

)
∈ SL2(Z) and γ being a

24th root of unity.

(ii) T(g,h)(τ) = T(k−1gk,k−1hk)(τ) with k ∈M.

(iii) There is a lift h̃ of h to a linear transformation on V (g) such that

T(g,h)(τ) =
∑
n∈Q

TrV (g)n

(
h̃ qn−1

)
. (4.16)

(iv) T(g,h)(τ) is either a constant or a Hauptmodul for some genus-zero congruence
subgroup of SL2(Z).

(v) T(e,h)(τ) coincide with Th(τ), the McKay-Thompson series attached to h ∈M
by monstrous moonshine.

As we can see from the discussion in §3.2, all of these properties, apart from
(iv), can be understood in the framework of holomorpic orbifolds [74], applied to
V \. In particular, the function T(g,h) can be thought of the h-twined character of

the twisted module V \
g . The proof of generalised monstrous moonshine was carried

out recently in [75], where a generalised Kac–Moody algeba mg, generalising the
monster Lie algebra m, is constructed for all g ∈M.
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4.2 Conway moonshine

Conway moonshine establishes the relation between Co0, related to Conway’s spo-
radic group Co1 by Co1

∼= Co0/{±Id}, and Hauptmoduls of certain genus zero
subgroups of SL2(R).

Recall from §1.3 that Co0 is isomoprhic to the automorphism group of the Leech
lattice Λ. In this context, hints of Conway moonshine had already appeared in
the original montrous moonshine paper [63], where the authors assigned genus zero

groups Γg < SL2(R) to elements g ∈ Co0: let
{
λi, λ

−1
i

}12

i=1
be the 24 eigenvalues

of the natural g-action on the Leech lattice Λ⊗Z C (embedded in a complex vector
space), then Γg is given by the invariance groups of the holomorphic function

tg(τ) := q−1
∏
n>0

12∏
i=1

(
1− λiq2n−1

) (
1− λ−1

i q2n−1
)

= q−1 − χg +O(q) . (4.17)

Note that χg =
∑

i(λi + λ−1
i ) is generically non-vanishing, and tg has non-zero

constant terms unlike the monstrous moonshine functions discussed in the previous
subsection.

Conway moonshine, on the other hand, introduces a Conway module V s\ whose
McKay–Thompson series coincide with Hauptmoduls with vanishing constant terms.
It was developed in [76, 77] (see also [78], [79] and [80] for nice summaries of the
construction). The Conway module V s\ is the unique, up to isomorphisms, super-
VOA (SVOA) with cV s\ = 12 and N = 1 superconformal structure, characterized by
the absence of states with weight 1/2. It can be constructed as a Z2 orbifold of the
theory with eight bosons on the E8 torus together with their fermionic superpartners.
Alternatively, it can be constructed as a Z2 orbifold, acting as ka → −ka, of 24 free
chiral fermions ka, a = 1, 2, . . . , 24. This is to be compared with the monstrous
moonshine module V \, where the corresponding Monster module V \ is built as a
Z2 orbifold of the Leech lattice VOA (24 chiral bosons compactified on R24/Λ),
resulting in theory with cV \ = 24 and no states of weight 1. It turns out that V s\

has an interesting relation to stringy symmetries of K3 surfaces (see §8.3). In what
follows we will give more details on the Conway module V s\.

Consider 24 real chiral fermions ka and the corresponding complex fermions

ψ±j =
1√
2

(k2j−1 ± ik2j) , j = 1, . . . , 12 , (4.18)

with the following non-vanishing OPEs and stress-energy tensor

ψ±i (z)ψ∓j (w) ∼ δij
z − w

, L = −1

2

12∑
i=1

:ψ+
i ∂ψ

−
i + ψ−i ∂ψ

+
i : . (4.19)

Denote by a the 24-dimensional vector space spanned by the fermions. Since fermions
allow for both periodic and anti-periodic boundary conditions, there exist two sectors
in the theory. The antiperiodic (Neveu-Schwartz) sector contains a single ground
state |0〉 and excitations of half-integer weight, while the periodic (Ramond) sec-
tor contains integral-weight excitations and has 212 degenerate ground states. The
degeneracy is due to the Clifford algebra satisfied by the zero modes,{

ψ±i,0, ψ
±
j,0

}
= 0 ,

{
ψ±i,0, ψ

∓
j,0

}
= δij , (4.20)
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which moreover commute with L0. As a result, one can build the Ramond ground
states by acting with ψ−i,0 on a ground state |s〉 satisfying ψ+

i,0|s〉 = 0. Namely, the
Ramond ground states are given by the mononomials

ψ−i1,0 · · ·ψ
−
ik,0
|s〉 , (4.21)

which form a spinor in twenty-four dimensions with Euclidean signature.
Next we want to construct an action of Co0 on the states described above. To

do so, recall that Co0
∼= Aut(Λ), so the Conway group is isomorphic to a subgroup

of SO(24) and we can make the natural identification a = Λ⊗Z C, i.e. let fermions
“live” on the Leech lattice. Then consider a group element g ∈ Co0 with complex
eigenvalues λ±1

i , and choose the basis of a such that the fermions ψ±i are acted upon
as eigenvectors:

gψ±i = λ±1
i ψ±i , λi ≡ e2πiai , i = 1, . . . , 12 . (4.22)

Moreover, since the ground states in the Ramond sector form a representation of
the Clifford algebra associated to a, we should lift G < SO(24) to a subgroup
Ĝ < Spin(a). An element x ∈ Spin(a) has the property xux−1 ∈ a for u ∈ a. We
define the lift ĝ ∈ Ĝ < Spin(a) of g ∈ G < SO(a) by requiring that it results in the
same action as g when acting on a,

ĝ(u) := ĝuĝ−1 = gu , ∀ u ∈ a . (4.23)

The map u 7→ ĝ(u) is a linear transformation on a belonging to SO(a), so ĝ 7→ ĝ(·)
defines a map Spin(a) → SO(a) with kernel {±1}, i.e. Spin(a) is a double cover of
SO(a). It turns out that for G ∼= Co0 there exists a unique lift Ĝ ∼= Co0 (see [77] for
more details).

While the NS ground state |0〉 is invariant under Co0, the group action on the
212 Ramond ground states turns out to be

ĝ|s〉 =

12∏
i=1

eπiai |s〉 = ν|s〉 , ν ≡
12∏
i=1

νi , νi ≡ eπiai = λ
1/2
i , (4.24)

where |s〉 is the ground state described in (4.21). Notice that a priori there is a
sign ambiguity for νi, since it is the square root of λi. But actually the choice
of sign is unique since the lift of Co0 is unique. There is a further ambiguity in
the definition of the g-action on the fermions, in that we can swap the complex
eigenvalues. This translates into setting λi ↔ −λ−1

i in (4.22), and is referred to as
a choice of polarisation.

The last step is to consider a Z2 = {1, z} orbifold of the theory described so far,
acting as zψ±i = −ψ±i on the fermions. In other words, it acts as (−1)F where F is
the fermion number. Supposing that it acts trivially on both ground states |0〉 and
|s〉 [77], it splits the two sectors into even/odd eigenspaces,

NS = NS0 ⊕NS1 , R = R0 ⊕ R1 , (4.25)

where the eigenvalues of NSj/Rj are given by (−1)j . From this point on, one can
construct two closely related SVOAs. A useful description is by exploiting the fact
that NS0 forms a (bosonic) VOA on its own, that of the lattice D12. Equivalently,
it is the VOA associated to the affine Kac-Moody algebra ŝo(24)1, at level 1. The
latter has four irreducible integrable modules, namely the vacuum module A ∼= NS0,
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the vector module V , the spinor module S and the conjugate spinor module C. By
extending the D12 VOA NS0 by either of the spinor modules, one arrives at two
SVOAs,

V f\ = NS0 ⊕ S ∼= NS0 ⊕ R0

V s\ = NS0 ⊕ C ∼= NS0 ⊕ R1 .
(4.26)

From the orbifold point of view we have the identifications S ∼= R0 and C ∼= R1 in
our notation.

The two SVOAs V f\ and V s\ are isomorphic as SVOAs, and are uniquely char-
acterized by their central charge cV f\ = cV s\ = 12 and the absence of weight 1/2
states. In [76] is was shown that the N = 1 supercurrent of V f\ is fixed by a
subgroup of Spin(24) isomorphic to Co0, which is identified by the group Ĝ in the
notation above. In particular, note that Z(Spin(24)) ∼= Z2 × Z2 where the first Z2

factor can be identified with the kernel of Spin(24) → SO(24) and the latter with
the center of SO(24). The centre Z(Ĝ) ∼= Z2 can be identified with the second Z2

in Z(Spin(24)), and has the same action as the Z2 in the orbifold construction. As
a result, it follows immediately from (4.26) that Co0 does not act faithfully on V f\,
since the latter is invariant under the action of the centre Z(Ĝ). Instead, V f\ carries
a faithful action of the quotient group Ĝ/Z2

∼= Co1. On the other hand, Co0 acts
faithfully on V s\, and this is ultimately the reason why we consider V s\ instead of
V f\ in what follows. Another notable difference between V f\ and V s\ is that the
N = 1 supercurrent in V f\ fixed by Co0 is not contained in V s\, but rather in V s\

tw

(inside the R0 part). A “canonically twisted” (or Ramond sector) module for V s\

can also be constructed as
V s\

tw = NS1 ⊕ R0 , (4.27)

which is twisted with respect to the Z(Ĝ) symmetry. The action of Co0 on this
twisted module is also faithful.

In order to formulate the Conway moonshine statement, first define the functions

η±g(τ) := q

∞∏
n=1

12∏
i=1

(
1∓ λ−1

i qn
)

(1∓ λiqn)

C±g := ν
12∏
i=1

(
1∓ λ−1

i

)
=

12∏
i=1

(
νi ∓ ν−1

i

)
.

(4.28)

The twined partition functions of Conway moonshine are then given by

T sg (τ) := strV s\

[
ĝqL0−1/2

]
= trV s\

[
zĝqL0−1/2

]
=
ηg(τ/2)

ηg(τ)
+ χg

T sg,tw(τ) := str
V s\

tw

[
ĝqL0−1/2

]
= tr

V s\
tw

[
zĝqL0−1/2

]
= Cgηg(τ)− χg ,

(4.29)

where the super-gradings can be defined by inserting (−1)F into the trace, whose
action coincides with that of z (recall that we identified Z2 = {1, z} with the centre
of Co0). The main theorem of Conway moonshine states [77]:

Theorem 4.2. The function T sg (2τ) = q−1 +O(q) is a Hauptmodul for a genus zero
group Γg < SL2(R) that contains some Γ0(N), for every g ∈ Co0. If g has a fixed
point in its action on Λ, then T sg,tw(τ) is equal to the constant −χg. Furthermore,
if g has no such fixed point, then T sg,tw(τ) is also a Hauptmodul for a genus zero
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subgroup of SL2(R).

In §8.3 we will see a prominent role played by Conway moonshine in relation to
the symmetries of K3 CFTs.

5 Moonshine at weight one-half

Somewhat unexpectedly, a wave of moonshine development started in 2010 which
led to the discovery of many more examples of moonshine connections. The modern
examples share some similarities, but also display important differences with the
classical moonshine examples discussed in §4. The modular objects in these exam-
ples are typically mock modular forms, an important and natural generalisation of
modular forms introduced in §2.3, which furthermore have non-vanishing weights.
The first and very fruitful arena that was explored is that of weight 1/2 mock modu-
lar forms. In this section we will describe interesting examples of moonshine relating
finite groups and weight 1/2 mock modular forms.

5.1 Mathieu moonshine

The first example of the new type of moonshine, Mathieu moonshine, was initiated
with certain observations about the weight 1/2 mock modular form H introduced
in (2.42), in an analogous fashion as how observations about the classical J function
initiated the development of monstrous moonshine. In [81] it was pointed out that
the first few Fourier coefficients of H coincide with twice the dimensions of certain
irreducible representations of the largest sporadic group M24. Moreover, this ob-
servation was made in an interesting physical context which we will mention briefly
below, and will explain in more detail in §8.

By now we have understood that, from many different points of view, Mathieu
moonshine should really be thought of as a component of umbral moonshine, which
we will review in the next subsection. However, in many ways Mathieu moonshine
stands out among the other cases of umbral moonshine, not just historically but also
in terms of its direct relation to the K3 elliptic genus. As a result, we will devote a
separate subsection to Mathieu moonshine before discussing umbral moonshine.

Recall that the mock modular form H (2.42) can be viewed as arising from a
meromorphic Jacobi form ψ given in (2.45). Using the relation between ψ and the
K3 elliptic genus (2.44), as well as the identity (θ2,1 − θ2,−1)(τ, z) = −iθ1(τ, 2z),
we obtain the following relation between the elliptic genus of K3 (cf. §3.3) and the
mock modular form H:

EG(τ, z;K3) =
θ2

1(τ, z)

η3(τ)
(24µ(τ, z) +H(τ)) , (5.1)

where

µ(τ, z) = −i θ2
1(τ, z)

θ1(τ, 2z)η3(τ)
Av(2)

[
y + 1

y − 1

]
=
−iy1/2

θ1(τ, z)

∞∑
`=−∞

(−1)`y`q`(`+1)/2

1− yq`
. (5.2)

Note that while none of the two summands at the right-hand side of (5.1) trans-
forms modularly, their modular anomalies cancel and the left-hand side is a perfectly
well-behaved Jacobi form, as discussed in §2 and §3.3. In particular, a simple way to
derive the shadow of H is by studying the modular properties of the Appell–Lerch
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sum µ(τ, z) [21, 82]. We will see in §8.1-8.2 the two interesting physical interpreta-
tions of the above splitting (5.1) of EG(K3), one in terms of the characters of N = 4
superconfomal algebra and one in terms of the elliptic genus of du Val singularities.

The aforementioned observation on the conspicuous relation between the first
few coefficients of the mock modular form H and certain representations of M24

led to the suspicion that there exists a Z-graded, infinite-dimensional M24-module
K =

⊕∞
n=1Kn underlying H, namely H(τ) = q−

1
8

(
− 2 +

∑∞
n=1 q

n (dim(Kn)
)
. A

natural question is thus whether the other summand in the splitting of the Jacobi
form EG(K3) (5.1) harbors an action of M24 as well. A simple guess arises from
the fact that M24 is a subgroup of the permutation group S24 and as a result has a
defining permutation representation R, of dimension 24. A natural proposal for the
“twined” version of (5.1) is therefore

φg(τ, z) =
θ2

1(τ, z)

η3(τ)

(
(TrR g)µ(τ, z) +Hg(τ)

)
, (5.3)

where Hg denotes the graded characters of the M24 module K. Following the spirit
of monstrous moonshine, we say that there is a non-trivial moonshine connection
if all such φg transform nicely as Jacobi forms under some Γg ⊆ SL2(Z). Physical
considerations reviewed in §3.2 moreover suggest that Γ0(|g|) ⊆ Γg.

Fortunately, the possibility for this type of Jacobi forms is very limited and we
are constrained to consider

φ = c φ0,1 + F φ−2,1 , (5.4)

where φ0,1 and φ−2,1 are given in (2.31), c ∈ C, and F is a weight two modular form
for Γg, possibly with a non-trivial multiplier system when c = 0. The dimension of
the space of possible F is often small for the SL2(Z)-subgroup Γg we are interested
in. For instance, when Γg = SL2(Z) the only possible weight two form is F = 0.
Hence, knowing the first few of the Fourier coefficients of φg, dictated by our guesses
for the first few M24-representations, is often sufficient to fix the whole function. As
a result, not long after the original observation [81], candidates for the McKay–
Thompson series were proposed for all conjugacy classes [g] ⊂ M24 in [83–86], and
they take the form

φ′g(τ, z) =
TrR g

12
φ0,1(τ, z) + T̃g(τ)φ−2,1(τ, z) , (5.5)

where the functions T̃g(τ) are weight 2 modular forms explicitly specified in the
references given above and collected in Table 2 of [87]. More precisely, these φg
for any g ∈ M24 are weak Jacobi form of weight zero and index one satisfying the
elliptic invariance φg|1(λ, µ) = φg for all (λ, µ) ∈ Z2 (cf. (2.22)), and transform as

φ′g(τ, z) = ρng |hg(γ) e

(
− cz2

cτ + d

)
φ′g
(aτ + b

cτ + d
,

z

cτ + d

)
,

for γ ∈ Γ0(|g|), where the multiplier ρng |hg is summarised in [87].
In terms of the weak Jacobi forms (5.5), the main statement of Mathieu moon-

shine is the following.

Conjecture 5.1. There exists a naturally defined Z-graded, infinite-dimensional
M24 module K =

⊕∞
n=1Kn such that for any g ∈M24, the graded character

Hg(τ) := q−
1
8
(
− 2 +

∞∑
n=1

qn (TrKn g)
)

(5.6)
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satisfies φg = φ′g, where φg is as defined in (5.3) and φ′g is the explicitly given weak
Jacobi form (5.5). Moreover, the representations Kn are even in the sense that they
can all be written in the form Kn = kn ⊕ k ∗n for some M24-representations kn and
their dual representation k ∗n .

A proof of the key fact in the above conjecture, namely the existence of an M24-
module K =

⊕∞
n=1Kn such that (5.8) holds, has been attained in [88]. However,

a construction of the module K, analogous to the construction of V \ by Frenkel–
Lepowsky–Meurman in the case of monstrous moonshine, is still absent. Therefore
in no way do we know why K should be “natural”. As explicit data, the first few
Fourier coefficients of the q-series Hg(τ) and the corresponding M24-representations
are given in [87].

Note that the above implies that there is a M24-supermodule underlying all
terms in the q-, y-expansion of the K3 elliptic genus. It is hence tempting to endow
the McKay–Thompsen series φg with the physical interpretation as twined elliptic
genera of K3 CFT (cf. (3.35)). This (im)possibility will be extensively discussed in
§8. Finally, note that the modular form property of φg, as well as the mock modular
property of µ(τ, z), immediately lead to the fact that Hg are also mock modular
forms. Explicitly, they are given by

Hg(τ) =
TrR g

24
H(τ)− T̃g(τ)

η(τ)3
, (5.7)

and they are weight 1/2 mock modular forms with shadows given by (TrR g)η3(τ),
generalising the mock modular property of H(τ) discussed around (2.43).

5.2 Umbral moonshine

A few years after the discovery of Mathieu moonshine, it was realised that it is in
fact just one instance of a larger system of moonshine, called “umbral moonshine”
[89,90]. There are in total 23 instances of umbral moonshine, which admit a uniform
description (see Figure 2). The main statement of umbral moonshine is as follows.

Conjecture 5.2. Let GX be one of the 23 finite groups specified in (5.9), m be the
corresponding positive integer specified in (5.14), and IX be the specific subset of
{1, 2, . . . ,m−1} described in (5.15). Then there exists a naturally defined bi-graded,
infinite-dimensional GX-module

KX =
⊕
r∈IX

⊕
D≤0

D=r2 mod 4m

KX
r,D

such that for any g ∈ GX and for any r ∈ IX , the graded character (“corrected” by a

polar term −2q−
1

4m as in below) coincides with the component HX
g,r of a vector-valued

mock modular forms HX
g = (HX

g,r)r∈IX :

HX
g,r = −2q−

1
4m δr,1 +

∞∑
D≤0

D=r2mod 4m

q−D/4m (TrKX
r,D

g). (5.8)

In what follows we will briefly describe the specification of the main players, the
finite groups GX and the mock modular forms HX

g , in the above conjecture. See
Figure 2.
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The starting point of this uniform construction are the 23 Niemeier lattices NX

introduced in §1.3. Recall that they are uniquely labelled by their root systems. We
will denote by X the root systems, by NX the corresponding Niemeier lattices, and
by GX the finite groups arising from the automorphisms Aut(NX) via (1.13):

GX := Aut(NX)/Weyl(X) (5.9)

These are the finite groups relevant for umbral moonshine and we will refer to them
as the umbral groups.

On the modular side, we use the root system X to specify certain mock modular
forms related to the finite group GX . To explain how this is done, first recall that
the McKay–Thompson series Tg in monstrous moonshine and the mock modular
forms Hg in Mathieu moonshine have very special properties. First, once their
(mock) modular data (consisting of the group Γg, the weight, and the multiplier)
are specified, the functions are completely determined by the analyticity property
of how they grow near the cusps i∞ ∪ Q. Second, they have “optimal growth” in
the following sense. These functions 1) are bounded at all cusps that are not Γg-
equivalent to i∞ and 2) have the slowest possible growth near i∞ that is compatible
with the modular data. For instance, in the case of monstrous moonshine it is
elementary to see that a modular form satisfying condition 1) for Γg ⊃ 〈T 〉 must
behave like q−n(1 + O(q)) for some integer n near the cusp i∞. As a result, the
condition 2) states that n = 1, which is indeed the case for the moonshine functions
Tg. Another way to state the above is to say that the functions in monstrous and
Mathieu moonshine can be written in terms of Rademacher sums over the minimal
polar term in the expansion near i∞ [67, 91]. See also §4.1 for a discussion on
Rademacher sums.

The functions of umbral moonshine turn out to have analogous uniqueness prop-
erties, and the relevant concept here is the notion of optimal mock Jacobi forms.
We will first focus on the case g = e and Γg = SL2(Z). Let ψ =

∑
r hrθm,r be a

mock Jacobi form of weight one and index m. We say it is an optimal mock Jacobi
form if

hr(τ) = O(q−
1

4m ) (5.10)

as =(τ) → ∞, for each r ∈ Z/2m. For instance, the function ψ3E8 defined in §2.3

is an optimal mock Jacobi since it has index 30 and H3E8
1 (τ) = −2q−

1
120 (1 +O(q)),

while H3E8
7 vanishes at =(τ)→∞ (cf. (2.38)). Similarly, ψ24A1 is an index 2 optimal

mock Jacobi form.
At weight one, the space of such optimal mock Jacobi forms turns out to be

very restricted: the mock modular transformation property together with the pole
structure of the functions near the cusps are sufficient to determine the whole q-
series. In particular, they can be obtained as simple Rademacher sums involving
only the polar parts as input. Such forms are even more scarce if we want them to
have non-transcendental Fourier coefficients. Note that this must be the case for the
function to play a role in moonshine, since the graded dimensions are necessarily
integers and of course non-transcendental. In [15] it is shown that if ψ is such a
form, it must lie in a 34-dimensional space, irrespective of its index. Moreover,
inside this 34-dimensional space there are 39 special elements (which span the 34-
dimensional space) distinguished by their special symmetries. Recall that Atkin–
Lehner symmetries normalising Γ0(m) are specified by a subgroup K of the group
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of exact divisors Exm (cf. (4.6)). Given such a pair m and K, we say that an index
m mock Jacobi form ψ is K-symmetric if

ψ =
∑

r mod 2m

hrθm,r =
∑

r mod 2m

hrθm,a(n)r for all n ∈ K , (5.11)

where, for a given n, we define a(n) to be the unique element in Z/2m satisfying

a(n) =

{
1 mod 2m/n

−1 mod 2n
.

Note that the symmetry is an involution, since a2 = 1 mod 2m. For instance,
the mock Jacobi form ψ3E8 introduced in (2.38) is invariant under the action of
K = {1, 6, 10, 15} < Ex30, corresponding to a(n) = 1, 11, 19, 29. The surprising
result in [15] then states that a non-vanishing K-symmetric index m optimal mock
Jacobi form at weight one has non-transcendental coefficients if and only if the
corresponding SL2(R) subgroup Γm+K defines a genus zero quotient in the upper-
half plane. Recall that these genus zero groups also play an important role in
monstrous moonshine. Note that we necessarily need to have m 6∈ K (referred to as
the “non-Fricke” property) for the mock Jacobi form to be non-vanishing, since at
weight one has

∑
r hrθm,r = −

∑
r hrθm,−r and a(m) = −1. There are just 39 such

non-Fricke genus zero groups Γm+K < SL2(R) and we will denote the corresponding
unique optimal mock Jacobi form, with the normalisation

h1 = −2q−
1

4m (1 +O(q)) , (5.12)

by ψm+K . In fact, these 39 distinguished optimal mock Jacobi forms ψm+K turn out
to have Fourier coefficients that are not only non-transcendental, but also integral.
Moreover, 23 among the 39 have positive coefficients in the following sense. By
writing (cf. (2.28))

ψ =
∑

1≤r≤m−1

hrθ̂m,r ,

hr has the expansion

hr =

{
−2q−1/4m +

∑
n≥0 cr,nq

n/4m, if r2 = 1 mod 4m∑
n≥0 cr,nq

n/4m, otherwise
, (5.13)

with cr,n ∈ Z≥0. This positivity property makes it possible for it to be the graded
dimensions of finite group representations3. To sum up, for any index, there are 23
special mock Jacobi forms of weight one for SL2(Z) distinguished by

1. the optimality growth condition (5.10),

2. the Atkin–Lehner symmetries (5.11),

3. the normalisation (5.12),

4. the positivity and integrality of the coefficients (5.13).

3It is believed [15] that the remaining 16 optimal mock Jacobi forms ψm+K with positive and
negative integral coefficients have also umbral type moonshine attached to them, but with additional
supermodule structure that accounts for the minus sign.
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The interesting observation is that these ψm+K with positivity properties are
in one-to-one correspondence with the 23 Niemeier root systems X! To explain
this correspondence, first recall the ADE classification of the modular invariant
combination of Â1 affine Lie algebras [47], which has led to a classification of N = 2
superconformal minimal models with spectral flow symmetries. Their classification
gives rise to a square matrix ΩY of size 2m for each simply-laced root system Y ,
where m coincides with the Coxeter number of Y . Moreover, the term (ΩY

r,r −
ΩY
r,−r) coincides with the multiplicity of r as a Coxeter exponents (the degrees of the

invariant polynomials shifted by one) of Y and takes values in {0, 1, 2}. The above
can be generalised to a union of simply-laced root systems with the same Coxeter
number (recall that this is indeed the case for Niemeier root systems) X = ∪iYi
by defining ΩX =

∑
i ΩYi . Then the mock Jacobi form ψX = ψm+K , with theta-

decomposition ψX =
∑

rH
X
r θm,r, corresponding to the Niemeier root system X,

display the following relations to X.

1. The Coxeter number of X coincides with the index of the ψX ,

m = Cox(X) . (5.14)

2. The matrix ΩX and the form ψX = ψm+K have the same Atkin–Lehner sym-
metries: (ΩX)r,r′ = (ΩX)r,a(n)r′ for all n ∈ K. Using these symmetries, it is

convenient to define a set IX of the orbits of the Atkin–Lehner symmetry group
acting on {1, . . . ,m−1} (in Z/2m), labelling the independent components HX

r

of the vector-valued mock modular form (HX
r ) and leading to

ψX =
∑
r∈IX

HX
r

∑
n∈K

θ̂m,a(n)r . (5.15)

3. The shadow of ψX is determined by ΩX . More precisely, the completion of
ψX is specified by the skew-holomorphic Jacobi form σ =

∑
r θ

1
m,rΩ

X
r,r′θm,r′

(cf. (2.37) and the preceeding text).

The description of ψ24A1 and ψ3E8 in §2.3 provides examples of the above. The mock
Jacobi form ψX then gives us the vector-valued mock modular forms HX = (HX

r )
which will play the role of graded dimensions of the module for the umbral group
GX . In other words, we have HX

r = HX
e,r in Conjecture 5.2. For the case X = 24A1

this is the Mathieu moonshine function ψ24A1 we discussed in §2 and §5.1. Another
simple example is when for X = 12A2, where ψX =

∑
r=1,2H

X
r θ̂3,r (so m = 3 and

IX = {1, 2}), with

HX
1 (τ) = 2q−1/12(−1 + 16 q + 55 q2 + 144 q3 + . . . )

HX
2 (τ) = 2q8/12(10 + 44 q + 110 q2 + . . . ).

(5.16)

At the same time, the symmetries of the corresponding Niemeier lattice gives GX ∼=
2.M12. The relation between the finite group GX and the vector-valued mock mod-
ular form HX can be observed from the fact that the group 2.M12 has irreducible
representations of dimensions 16, 55, 144 as well as 10, 44, 110.

After specifying the mock Jacobi forms for SL2(Z), in order to describe the
moonshine relation we also need a set of mock Jacobi forms ψXg =

∑
rH

X
g,rθm,r, one

for each conjugacy class [g] ⊂ GX , for subgroups of SL2(Z). The mock modular
forms HX

g = (HX
g,r) will then play the role of graded characters of the umbral

moonshine module, as described in Conjecture 5.2. This can be achieved in a way
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Figure 2: The construction of umbral moonshine.

Niemeier Lattice

Finite Group Mock Modular Form
Umbral Moonshine

lattice symmetry shadow + optimality

largely analogous to the SL2(Z) case, though additional subtleties do emerge and
extra care needs to be taken. We refer to [92] for more details.

Once the mock modular forms HX
g are specified, it is trivial to verify the ex-

istence of the GX -module KX
r,D in Conjecture 5.2 term by term, namely one D at

a time. Moreover, the existence of the whole umbral module KX =
⊕

r

⊕
DK

X
r,D

has been proven mathematically using properties of (mock) modular forms [88, 93].
However, the construction, or even an understanding of the exact nature of KX , is
not yet obtained in general. Construction of KX has so far only been achieved for
certain particularly simple cases of umbral moonshine, corresponding to Niemeier
root systems 3E8 [94], 4A6 and 2A12 [95], 4D6, 3D8, 2D12 and D24 [96], as well as
6D4 [97]. The construction in [94] relies on special identities satisfied by the mock
modular forms H3E8

g,r relating it to a lattice-type sum, while in [95, 96] the modules
are constructed using the interpretation of the meromorphic Jacobi forms associated
to ΨX

g as the twined partition function of certain vertex operator algebras (or chiral
CFTs). In [97] the module for the 6D4 case of umbral moonshine is constructed by
exploiting the relation between the (twined) K3 elliptic genus, umbral and Conway
moonshine, which we will explain in §8.2. Moreover, generalised umbral moonshine,
analogous to the generalised monstrous moonshine discussed in §4.1, has been estab-
lished in [98], hinting that some elements of CFT/modular tensor category structure
should be present at the umbral moonshine module KX . Despite these results, it is
fair to say that a uniform construction of the umbral module, reflecting the uniform
description of umbral moonshine, is currently one of the biggest challenges in the
study of moonshine.

We will end our review on umbral moonshine by noting a special property, called
discriminant property, of umbral moonshine. It relates the discriminants D (the
power of individual terms q−D/4m in the q-series HX

r ) and the number field generated
by the characters of representations showing up in KX

r,D. For instance, in the case

X = 24A1, the M24-representation underlying the q7/8 term in Hg = H24A1
g,1 is

K24A1
−7 = ρ⊕ ρ∗, where ρ is a 45-dimensional irreducible representation and ρ∗ is the

dual representation. At the same time, Trρ g (and hence also Trρ∗ g) generates the
field Q(

√
−7). Analogous relations continue for larger q-power as long as Q(D) =

Q(−7), and similar properties hold uniformly for all 23 cases of umbral moonshine.
At present there is no physical understanding of this surprising and profound-looking
property.
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5.3 Thompson moonshine

The Thompson sporadic group Th is a subgroup of the Monster that has order |Th| ∼
9 · 1016 and contains 48 conjugacy classes. Thompson moonshine describes a special
relation between the representation theory of Th and certain weakly holomorphic
modular forms of weight 1/2. It was first discussed in [99] and is the first instance
of the so-called skew-holomorphic moonshine [100] relating skew-holomorphic Jacobi
forms and finite group representations. See §2.2 and §9 for more mathematical and
physical information on skew-holomorphic Jacobi forms.

Just like Mathieu and umbral moonshine, Thompson moonshine relates finite
groups connected to the Monster (cf. §1.3) and weight 1/2 modular objects. How-
ever, there are a few differences. First, the modular objects in Thompson moonshine
are modular while in umbral moonshine they are mock modular with non-vanishing
shadows. Second, there is a super-structure in the Thompson moonshine module,
i.e. the representations come with signs. See Conjecture 5.3. That said, this extra
Z2-grading structure is very simple and completely controlled by m mod 4, where
m is the natural Z-grading corresponding to the exponents of q in the moonshine
function. Finally, we remark that Thompson moonshine also enjoys a discriminant
property analogous to that of umbral moonshine.

To describe Thompson moonshine, we start with the following conjecture [99]:

Conjecture 5.3. There exists a Z-graded Th-supermodule (cf. (1.20))

W =

∞⊕
m≥−3

m≡0,1 mod 4

Wm (5.17)

such that the graded dimensions of Wm are related to a certain weight 1/2 weakly
holomorphic modular form F3 (5.20) by

F3(τ) =
∑
m=−3

m≡0,1 mod 4

StrWm(1)qm . (5.18)

Furthermore, the associated McKay-Thompson series

F3,g(τ) =
∑
m=−3

m≡0,1 mod 4

StrWm(g)qm , (5.19)

are given by certain weakly holomorphic weight 1/2 modular forms, with F3,e = F3.
Finally, Wm is even under the superspace Z2-grading if m ≥ 0 and m ≡ 0 mod 4 or
when m = −3, and is odd otherwise.

Let’s discuss the elements of this conjecture. The function F3 is defined by

F3(τ) := 2f3(τ) + 248θ(τ) , (5.20)

where θ(τ) is the Jacobi theta function discussed in §2.1. We next describe the
specification of f3.

Define the Kohnen-plus space M+
1/2 as the set of functions that transform like

θ, and additionally satisfy the condition c(n) = 0 ∀ n 6= 0, 1 mod 4 in their Fourier
expansions

∑
c(n)qn. It can be shown that in fact M+

1/2 is one-dimensional, spanned
by θ itself. However, if we allow for poles at the cusps, we can get a nontrivial space
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M !,+
1/2 of weakly holomorphic modular forms of weight 1/2 in the Kohnen-plus space.

In [101], Zagier constructed an infinite-dimensional basis for M !,+
1/2, spanned by the

(unique) functions

fd(τ) = q−d +
∑
n>0

A(n, d)qn , d ≡ 0, 3 mod 4 , (5.21)

where f0 = θ. Here we are mainly interested in the case d = 3. Using uniqueness, it
is easy to show that f3 can be explicitly specified as

f3(τ) = − 1

20

(
[θ(τ), E10(4τ)]

∆(4τ)
+ 608θ(τ)

)
= q−3 − 248q + 26752q4 − . . . , (5.22)

where E10 = E4E6 is the weight 10 Eisenstein series and ∆ is the weight 12 cusp form
introduced in §2.1. The Rankin-Cohen bracket is defined by [f, g] := kfDg − lgDf ,
with D = 1

2πi
d
dτ and k, l being the weights of the modular forms f, g, respectively.

Thompson moonshine was initiated by the observation that the first few Fourier
coefficients of f3 can be expressed in terms of the dimensions of irreducible repre-
sentations of Th. For example 1 = 1, 248 = 248 and 26752 = 27000 − 248. It is
worth noting that this connection between f3 and Th had already appeared in the
context of generalised monstrous moonshine [74, 102,103], cf. §4.1. Specifically, the
centraliser of the class 3C of M is isomorphic to Z3 × Th [63], and consequently

the twisted module V \
3C carries a natural action of Th. The corresponding twisted

generalised character is given by the so-called Borcherd’s lift of f3,

Z(3C, e; τ) = q−
1
3

∏
n>0

(1− qn)A(n2,3) . (5.23)

Notice however that the above connection to generalised monstrous moonshine is
limited only to the coefficients A(n2, 3) of f3, which does not explain why the rest
of its coefficients also exhibit a relation to Th. To do better, the insight of [99] is to
“correct” the function by including additional contributions from the theta function
θ(τ), and consider instead

F3(τ) := 2f3(τ) + 248θ(τ) = 2q−3 + 248 + 2 · 27000q4 − 2 · 85995q5 + . . . , (5.24)

which belongs to the Kohnen plus space. Note that the alternating signs correspond
to the superspace structure mentioned in Conjecture 5.3.

The McKay–Thompson series F3,g of Thompson moonshine have a structure
very similar to the above. Schematically, they can be most naturally viewed as a
sum of two contributions

F3,g = Projected Rademacher Sum + θ-corrections , (5.25)

where the first term is the Rademacher sum of the unique polar term 2q−3 for the
suitable group Γg and multiplier system, projected onto the Kohnen plus space, and
the second term again involves linear combinations of θ(d2τ), where d are certain
integers compatible with the group Γg. We refer to [99], and in particular [104] for
more details.

It is interesting to note that the modular objects in Thompson moonshine en-
joy a close relation to the so-called traces of singular moduli, which are important
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quantities in number theory. As mentioned in the final example of §2.3, the gener-
ating functions of the traces of singular moduli turn out to have interesting modular
properties [101]. In particular, we have

A(n, 3) =
1√
n

∑
Q∈Q−3n/PSL2(Z)

χn,−3(Q)J(αQ) , n ∈ Z+ , (5.26)

coinciding with the Fourier coefficients of the modular form f3 which participates
in Thompson moonshine. In the above, χn,−3 denotes a certain genus character
whose precise definition can be found in [101]. An analogous relation to traces of
singular moduli can be established also at higher level, when one only keeps track
of Γ0(N)-equivalences of quadratic forms.

6 Moonshine at weight three-halves

This is an arena for moonshine that is currently in rapid development. As a result
we will be very brief and just highlight a few key features and prospects of the recent
developments.

After the fruitful explorations in moonshine at weight one-half, it is natural
to wonder about the landscape of moonshine in the dual weight, w = 2 − 1

2 =
3
2 . Weight 3

2 mock modular forms are much less constrained than their weight 1
2

counterparts, and they turn out to provide a fertile ground to study the connections
to finite groups, already giving us the O’Nan moonshine [105] and the class number
moonshine [106], the latter involving the Hurwitz-Kronecker class number mock
modular form described in (2.48).

It is more likely than not that there are more treasures in weight 3/2. Here we
limit ourselves to commenting on the two established moonshine examples.

We will point out three conspicuous properties of the two examples of moonshine
at weight three-halves4.

Supermodules. In monstrous and Conway moonshine discussed in §4, the un-
derlying modules are “real” modules (as opposed to supermodules (1.20)) and the
group characters involved are ordinary traces (as opposed to supertraces). The same
is true in Mathieu and umbral moonshine, up to the polar terms in (5.8) which have
negative coefficients but do not carry any non-trivial information on group represen-
tations. In Thompson moonshine we encounter supermodules, but only in a rather
trivial way: the supermodule is purely even or purely odd depending on whether
the corresponding q-power is +1 or −1 mod 4. In particular, in weight one-half we
do not encounter moonshine examples in which Fourier coefficients of mock mod-
ular forms are given by differences of traces of group representations, i.e. in every
homogeneous component the supermodule is always either even or odd.

In weight three-halves this is no longer true and the super-ness of the super-
modules is an intrinsic and unavoidable property of the two moonshine examples we
discuss.

4In fact, these properties make the weight 3/2 connections so different from the moonshine
examples at weight zero and weight one-half, such that one might wonder whether we should still
use the term “moonshine” for them.
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Cusp forms. In the moonshine examples we discussed so far, the (mock) modular
objects involved are very distinguished in that they are essentially uniquely deter-
mined by their modularity and analyticity properties. In particular, the graded
characters of monstrous and Conway moonshine are Hauptmoduls and can be writ-
ten as, up to an additive constant, Rademacher sums with a single polar term q−1.
The graded characters of umbral (including Mathieu) and Thompson moonshine
are also (projected) Rademacher sums up to addition of theta functions (cf. (5.25)
and [92]). The latter can arguably be viewed as a minor correction since the coeffi-
cients of theta functions are vanishing at almost all exponents (vanishing unless the
exponenets are square numbers up to a specific rescaling) and they do not carry any
interesting number theoretic information.

This crucial uniqueness property, which serves to distinguish mock modular
forms for weight zero and weight one-half moonshine, is no longer the relevant cri-
terion in weight three-halves moonshine. The mock modular forms in O’Nan and
class number moonshine involve weight 3/2 cusp forms in a very pronounced way.
(See the end of §2.1 for the definition of cusp forms.)

This property opens the door to connecting with arithmetic geometry, a totally
different area in mathematics. The main ingredients of this connection are: 1) The
Waldspurger-type relation among coefficients of weight 3/2 newforms and the special
L-values of the corresponding weight two newforms under the so-called Shimura
correspondence [107]. 2) The modularity theorem relating the L-function of elliptic
curves and that of certain weight two newforms. 3) The (strong form of) Birch and
Swinnerton-Dyer conjecture (and its proven elements) relating special L-values of
the elliptic curves and their important arithmetic data including the order of the
Tate-Shafarevich group. See [108–110]. 4) The congruences among the moonshine
modular objects stemming from the congruences among the characters which is a
basic property of finite group representations. Combining the above ingredients,
the connections between weight 3/2 cusp forms and finite groups lead to an infinite
sequence of statements on the p-part of the Tate-Shafarevich group, organised by the
finite group structure. Moreover, in class number moonshine the torsion subgroups
of the elliptic curves (and other Abelian varieties in general) attached to certain
modular data play an important role in the construction of moonshine mock modular
forms. Exploring the implication of the finite group structure in mock modular forms
in arithmetic geometry is an interesting new mathematical direction in the study of
moonshine.

New finite groups. The above two properties , regarding the finite group and
the modular form sides of the moonshine connection respectively, makes it possible
for weight three-halves moonshine to encompass new types of finite groups into the
realm of moonshine.

O’Nan moonshine, as the name suggests, connects a set of weight 3/2 mock
modular forms to the O’Nan group. The O’Nan group was discovered in 1976 in the
midst of the intense developments related to the classification of finite groups, and is
one of the 6 pariah groups not related to the Monster. The class number moonshine,
on the other hand, delivers a family of infinitely many weight 3/2 mock modular
forms arising from Hurwitz–Kronecker class numbers (2.47), which accommodates
representations of infinitely many groups. Recall that, apart from the sporadic
groups there are three infinite families in the classification of finite simple groups,
and one of them is the cycle groups Zp of prime order p. It turns out that for each
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prime number p one has a mock modular form Hp,1 of level 4, a scalar multiple
of the class number mock modular form H (2.48), and a mock modular form Hp,p
of level 4p, such that they coincide with the two graded characters of a Z-graded
supermodule for Zp. Apart from this infinite family of groups, it has also been shown
in [106] that mock modular forms at different levels (given by 4 times the order of the
group elements) conspire to encode supermodules for interesting Mathieu groups.

These instances of weight three-halves moonshine greatly broaden the horizon of
connections between modular objects and finite groups. All instances of moonshine
at weight zero and one-half are connected to groups related to the Monster, but
the O’Nan and the class number examples show that this does not have to be the
case. In these examples it was demonstrated that a pariah sporadic group as well as
one of the 3 infinite families of non-sporadic finite simple groups are also related to
(mock) modular forms in a similar way! This suggests the tantalising possibility that
moonshine-type connections are in fact ubiquitous and an intrinsic property in the
landscape of modular objects and finite groups, and that the latter is an important
organising structure of the former.

Last but not least, these new connections, involving supermodules of infinitely
many groups, pose interesting challenges to physics. Can physics still provide the
finite group modules and an explanation for these connections? If so, what are the
relevant physical systems that can give rise to these supermodules?

57



Part III

Moonshine and string theory

String theory has been playing a key role in moonshine from its earliest years, start-
ing with the string-inspired proof of monstrous moonshine by Borcherds (cf. §4.1).
String theory is also expected to play an interesting role in the understanding of
Mathieu and umbral moonshine, and we hope that moonshine can teach us some-
thing novel and important about certain aspects of string compactification. More
generally speaking, the connection to physics is one of the key reasons why many
string theorists and mathematicians find moonshine exciting. In this part we will
discuss some of these connections. In §7 we outline the relation between monstrous
moonshine and certain (1+0)-dimensional string compactification. In §8, the main
section of this part, we summarise the known relations between various moonshines
and K3 compactifications. Finally we briefly mention some other connections dis-
cussed recently in §9.

7 Monstrous moonshine

In this section we briefly describe a recent string theory construction, developed
in [111, 112], involving the monstrous moonshine module V \ and the associated

twisted module V \
g discussed in §4.1. Although the striking genus zero property of

monstrous moonshine has been mathematically proven, its physical interpretation
has remained elusive for a long time. The recent work [111,112] sheds light on this
important property by considering certain heterotic string theory compactifications
down to 0 + 1 dimensions.

In [111, 112], one takes as the starting point a compactification down to 1 + 1
dimensions where the internal CFT, which has central charge (24, 12), is given by
V \ × V s\. The second factor is the Conway module introduced in §4.2, which plays
mostly the role of the spectator whose main function is to provide the right-moving
N = 1 supersymmetry of the world-sheet theory. This model turns out to have
N = (0, 24) spacetime supersymmetry in two-dimensions. We further compactify
the remaining spatial direction on a circle. This additional compactification is crucial
for computing the “BPS index” described below and for the construction of more
general models. More generally, for each g ∈M one constructs a CHL-like model by
orbifolding the theory by a symmetry which acts on V \ as g and on the circle as a
shift of order dictated by certain properties of the action of g on V \ (and coincides
with the order of g in the simplest cases). To avoid subtleties involving gravitational
anomalies, this theory should be considered at the zero-string coupling limit.

In [111] it is shown that the (first-quantized) BPS states of the above models form
a module of the generalised Kac-Moody algebras mg, which is the monster algebra
constructed by Borcherds for g = e and the “twisted” monster algebras constructed
by Carnahan for g 6= e [75,103,113]. See also the discussion on generalised monstrous
moonshine in §4.1. We are interested in the (twined) BPS index counting spacetime
BPS states in these theories. Denote the relevant Hilbert space by HgBPS, we define

Z(g,h)(T,U) := TrHg
BPS

(
(−1)F e2πiTW e2πiUM

)
, (7.1)

where g, h are commuting elements of the Monster. In the above, T,U ∈ H are
complexified chemical potentials for the winding and momentum quantum num-
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bers W,M respectively, with the imaginary parts scaling according to the inverse
temperature and radius as

ImT ∼ βR , ImU ∼ β

R
. (7.2)

Using the Fock space construction of HgBPS by allowing for an arbitrary number of
free strings, as well as the twisted denominator formula, relating an infinite product
to an infinite sum and generalising the Koike–Norton–Zagier formula (4.14), one
obtains

Z(e,g)(T,U) =
(
T(e,g)(T )− T(e,g)(U)

)24

Z(g,e)(T,U) =
(
T(e,g)(T )− T(g,e)(U)

)24
.

(7.3)

Note that T(e,g) = Tg is the McKay–Thompson series of the monstrous moonshine.
The above expressions lead to a physical interpretation of the modularity and

the genus zero property of monstrous moonshine. First, it was shown in [111], us-
ing the techniques developed in [114], that the self-duality group (i.e., a subgroup
of the T-duality group mapping between the same CHL model but generically at
different values of the moduli) involves two subgroups of SL2(R), acting on T and U
independently in (7.3). In particular, the SL2(R) subgroup acting on T is nothing
but Γg, the associated genus zero group in monstrous moonshine (cf. Conjecture
4.1). As a result, the physical invariance of the BPS index under self-duality group
immediately leads to the Γg-invariance modularity property of the moonshine func-
tion Tg(T ). Second, recall that the Hauptmodul property of T(e,g) can be recast
in the claim that they have only a single pole at τ → i∞ and its images under
Γg. In terms of the supersymmetric index, this means that Z(g,e)(T,U)1/24 and its
T-duality images will diverge as T → i∞, for fixed U . Using the T-duality

Z(e,g)(T,U) = −Z(e,g)

(
− 1

U
,− 1

T

)
and the generalised moonshine relation between T(gahc,gbhd)(τ) and T(g,h)

(
aτ+b
cτ+d

)
(cf.

§4.1), this property gets translated to the statement that for all co-prime integers
a and b, Z(ga,gb)(T,U) is divergent in the limit U → i∞ with T fixed, if and only
if this limit is related to the limit of T → i∞ with U fixed by a self-duality of the
CHL model associated to g ∈ M. Now we will argue why this is true from physical
considerations. Let us interpolate between the two limits by varying the radius R,
while fixing the inverse temperature β to be large. At the low temperature limit,
the divergence at the limit T → i∞ with U fixed is caused by the ground state
contribution eβR, which blows up as R → ∞. The small radius limit is convergent
unless there is a phase transition and a new ground state with contribution eβ/R

emerges at the other side of the critical line. If this happens, one can show that
there is an SU(2) symmetry at the self-dual radius limit on the critical line, which
in particular contains the T-duality. In other words, the two sides of the critical
line are related by a self-duality contained in Γg, and this proves the Hauptmodul
property.

8 Moonshine and K3 string theory

As mentioned in §5, Mathieu moonshine was first noticed in the context of K3 sigma
models and was later recognised as being one of the twenty-three cases of umbral
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moonshine. As we will discuss shortly, all instances of umbral moonshine, not just
Mathieu moonshine, enjoy a close relation to K3 elliptic genus, the quantity that
captures the BPS states of K3 sigma models, and more generally BPS states of su-
perstring theory compactifications involving K3 surfaces. This tentative connection
to K3 string theories is what makes Mathieu and umbral moonshine so interesting
for many string theorists.

This is because K3 manifolds have the special property that they are the only
non-trivial (i.e. non-toroidal) Calabi–Yau manifolds in two (complex) dimensions,
and the resulting string theory compactifications are much more manageable than
compactifications on generic Calabi–Yau three-folds due to higher amount of su-
persymmetries, and contain much richer structure and information than toroidal
compactifications which are for many purposes too simple to be useful. As a result,
K3 compactifications have been playing a prominent role throughout the develop-
ment of string theory, being the playground for developing revolutionary new ideas
including black hole microstates counting [115] and AdS/CFT correspondence [116].
Furthermore, they also feature in important dualities relating different string theo-
ries.

In this section we will review the observed relation between moonshine and K3
sigma models, and outline the challenges to be overcome in order to understand the
origin of this relation and to find a physical system which provides the much wanted
uniform construction of the umbral moonshine module. Finally, we will summarise
the different ideas that aim to address these challenges, along with their current
status.

8.1 Mathieu moonshine and K3 elliptic genus

As mentioned in §3.3, the Calabi-Yau property of K3 together with the Jacobi form
property dictates that its elliptic genus is given by 2φ0,1 in terms of the familiar
weak Jacobi form (2.31). Recall that K3 is the only Calabi-Yau two-fold besides
the four-torus. It possesses the special property that it is not only Kähler but also
admits a hyper-Kähler structure. As a result, the U(1) symmetry of the N = 2
superconformal algebra discussed in §3.3 can be extended to SU(2), and the sigma
model has enhanced N = 4 superconformal symmetry for both the left and the right
movers. This leads to a specific decomposition of the elliptic genus of an N = 4
SCFT that we will now explain.

Since the underlying CFT admits an action by the N = 4 superconformal alge-
bra, the Hilbert space decomposes into a direct sum of (unitary) irreducible repre-
sentations of this algebra. Hence the elliptic genus (3.34) can be written as a sum
of characters of representations of this algebra with some multiplicities. A natural
embedding of the U(1) current algebra of the N = 2 superconformal algebra into the
SU(2) current algebra of the N = 4 superconformal algebra is obtained by choosing
J3

0 ∼ J0. As a result, the N = 4 highest weight representations are again labelled
by two quantum numbers h, `, corresponding to the operators L0, J3

0 respectively,
and the character of such an irreducible representation Vh,` is defined as

chh,`(τ, z) := TrVh,`

(
(−1)J0yJ0qL0−c/24

)
.

For the central charge c = 6, there are two supersymmetric (also called ‘BPS’ or
‘massless’) representations in the Ramond sector, and they have the quantum num-
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bers
h = 1

4 , ` = 0, 1
2 .

Their characters have been computed to be [117–119]

ch 1
4
,0(τ, z) =

θ2
1(τ, z)

η3(τ)
µ(τ, z) , (8.1)

ch 1
4
, 1
2
(τ, z) = q−

1
8
θ1(τ, z)

η3(τ)
− 2

θ1(τ, z)2

η3(τ)
µ(τ, z) ,

where µ(τ, z) is the so-called Appell-Lerch sum defined in (5.2).
Notice that the supersymmetric representations have non-vanishing Witten index

ch 1
4
,0(τ, z = 0) = 1 , ch 1

4
,0(τ, z = 0) = −2 .

The non-supersymmetric (or ‘non-BPS’ or ‘’) representations have

h = 1
4 + n , ` = 1

2 , n = 1, 2, . . . ,

and their characters are given by

ch 1
4

+n, 1
2
(τ, z) = q−

1
8

+n θ
2
1(τ, z)

η3(τ)
. (8.2)

By definition, their contribution to the Witten index vanishes, ch 1
4

+n, 1
2
(τ, z = 0) =

0. This is why the Witten index only receives contribution from quantum states
that are of the form (masslessL × masslessR) in terms of N = 4 representations,
while the elliptic genus receives contribution from (masslessL × masslessR) as well
as (massiveL ×masslessR).

We are now ready to describe the first physical interpretation of the specific way
(5.1) of decomposing the K3 elliptic genus, which makes the connection to M24

manifest. From (5.1) and (8.1)-(8.2), we see that EG(K3) can be expressed as

EG(K3) = 20 ch 1
4
,0 − 2 ch 1

4
, 1
2

+
∞∑
n=1

cH(n) ch 1
4

+n, 1
2

(8.3)

where

H(τ) = q−1/8

(
−2 +

∞∑
n=1

cH(n)qn

)
= 2q−

1
8
(
−1 + 45 q + 231 q2 + 770 q3 . . .

)
,

(8.4)
is the mock modular form given in (2.42). In particular, the multiplicities cH(n) of
the massive multiplets are equal to the dimensions of the homogeneous component
of the M24-module K according to Mathieu moonshine Conjecture 5.2.

As mentioned already in §5.1, it is then tempting to identify φg (5.3), encoding
the McKay–Thompson series of Mathieu moonshine Hg, as the elliptic genus twined
by certain symmetries of the K3 non-linear sigma model whose action preserves the
N = 4 SCA. While this is possible for some g ∈ M24, this interpretation is proven
to fail for some other group elements. We will discuss this in §8.4.
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8.2 Umbral moonshine and K3 elliptic genus

As alluded to before, theN = 4 decomposition is not the only possible interpretation
for the splitting (5.1) of the elliptic genus, into the part coming directly from the
moonshine mock modular form and the contribution from the Appell-Lerch sum µ.
A second interpretation, in terms of the elliptic genus of singular spaces labelled by
ADE root systems, yields the same result in this case but the difference is that it
can be readily generalised to the other 22 cases of umbral moonshine.

Recall that, for each of the 23 Niemeier lattices NX , uniquely determined by its
root system X, umbral moonshine associates a finite group GX and a weight one
mock Jacobi form ψXg =

∑
rH

X
g,rθ̂m,r for each g ∈ GX . In [120], it was shown that

there are 23 ways of splitting EG(K3) into two part:

EG(K3; τ, z) = EG(X; τ, z) +
θ2

1(τ, z)

2η6(τ)

(
1

2πi

∂

∂w
ψX(τ, w)

) ∣∣∣
w=0

(8.5)

where ψX = ψXe is the optimal mock Jacobi form given in §5.2, encoding the graded
dimension of the umbral moonshine module. In the above formula, EG(X; τ, z)
denotes the holomorphic part of the elliptic genus of the singularities corresponding
to the root system of NX . See also the remark at the end of §3.3. Note that a
common definition of the K3 surface is that it has at worst du Val type surface
singularities, i.e. singularities of the complex plane of the form C2/G, where G
is a finite subgroup of SU(2)C. These singularities have an ADE classification, in
accordance with the famous McKay correspence. A conformal field theory descrip-
tion of string theory with these ADE singularities as the target space was given
in [121]. The form of their elliptic genus was investigated in a number of papers,
including [24,27,29–31,120,122]. For instance, when N is the Niemeier lattice with
root system 24A1, we have

EG(N ; τ, z) := 24 EG(A1; τ, z) ,

defined to be 24 times the holomorphic part of the elliptic genus of an A1-singularity.
One has

EG(A1; τ, z) = ch 1
4
,0(τ, z) =

θ2
1(τ, z)

η3(τ)
µ(τ, z). (8.6)

As a result, the splitting (5.1) of the elliptic genus can also be interpreted as coming
from two contributions, one from the singularity elliptic genus corresponding to
the root system X = 24A1, and one from the umbral moonshine function ψ24A1 .
Different from the N = 4 character interpretation, this interpretation of the splitting
is applicable for all 23 cases of umbral moonshine. In other words, (8.5) is really 23
equalities, corresponding to all 23 Niemeier lattices NX .

This interpretation suggests a twined version of the function EG(K3; τ, z) by
twining the right-hand side of the equality (8.5):

φXg (τ, z) := EGg(X; τ, z) +
θ2

1(τ, z)

η6(τ)

(
1

2πi

∂

∂w
ψXg (τ, w)

) ∣∣∣
w=0

, (8.7)

where g can be any element of GX . The first term on the right-hand side is the
(holomorphic part of the) twined elliptic genus of the corresponding singularity
sigma model. This can be computed explicitly, since we know the GX–action on
the Niemeier root system X, which translates into an GX–action on the singularity
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CFT that preserves its superconformal structure, and leads to a definition of its
twined elliptic genus. The second term, on the other hand, is directly provided by
the McKay–Thompson series of umbral moonshine. It is easy to check that this
definition of φXg for N = N24A1 leads to the same weak Jacobi forms as in (5.3) for
the case of Mathieu moonshine. Just like in the case of Mathieu moonshine, it is
then tempting to interpret all the functions φXg arising from umbral moonshine as in
(8.7), as the elliptic genus twined by certain symmetries of the K3 non-linear sigma
model whose action preserves the N = 4 SCA.

For some of the g ∈ GX , such an interpretation is not availble, as we will discuss
in §8.4. In particular, only subgroups of GX which preserve a four-plane, i.e. a four-
dimensional oriented subspace within NX ⊗Z R, will acquire a role as a symmetry
group of K3 sigma models. For later use, for a given Niemeier lattice N = NX with
non-trivial root system, we will denote the set of Jacobi forms arising from (8.7) by

Φ(NX) := {φXg | g is a four-plane preserving element of GX} . (8.8)

8.3 Conway moonshine and K3 elliptic genus

Recall the construction of the twisted Conway module V s\
tw described in §4.2. Given

a fixed n-dimensional subspace in Λ ⊗Z C, there are different ways to build U(1)
currents by considering bilinear combinations of the 24 fermions [78, 79]. In this
theory, one can construct a U(1) current J of level 2 from fermions associated to a
four-plane, i.e. a subspace of (real) dimension four. Given such a four-plane Π, fixing

the U(1) current and the SVOA structure, breaks the symmetry of V s\
tw from Co0

to its subgroup preserving Π. Conversely, given a four-plane preserving G < Co0,
one can construct a U(1) current J such that V s\

tw , when equipped with a module
structure for J and for the N = 1 superconformal algebra, has symmetry G.

Interestingly, the U(1)-charged graded character of V s\
tw coincides with EG(K3)

(up to a sign) [78]. More generally, one can consider the U(1)-graded character of
the twisted Conway module twined by a four-plane preserving element of Co0 (see
§4.2 for notation):

φΛ
g := −Tr

V s\
tw

[
z ĝ yJ0qL0− c

24

]
, (8.9)

where J0 is the zero mode of the U(1) current. Explicitly, it is given by

φΛ
g (τ, ζ) =

1

2

[
θ3(τ, ζ)2

θ3(τ, 0)2

η−g(τ/2)

η−g(τ)
− θ4(τ, ζ)2

θ4(τ, 0)2

ηg(τ/2)

ηg(τ)

−θ2(τ, ζ)2

θ2(τ, 0)2
C−gη−g(τ)− θ1(τ, ζ)2

η(τ)6
Dgηg(τ)

]
,

(8.10)

where most special functions were defined in (4.28). The function Dg is defined by

Dg := ν

12∏′

i=1

(
1− λ−1

i

)
=

12∏′

i=1

(
νi − ν−1

i

)
. (8.11)

where in
∏′

one skips the two pairs of eigenvalues associated with the fixed four-

plane, for which λ±1
i = 1. Notice that Dg is non-vanishing if and only if it fixes

exactly a four-plane and not more. In the latter case, Dg is determined up to a sign
by the eigenvalues of g, since we are free to exchange what we call λi and λ−1

i . As
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a result, for exactly four-plane preserving elements there are in fact two choices of
φΛ
g , depending on the choice of the sign of Dg, and we define

φΛ
g,ε(τ, ζ) :=

1

2

[
θ3(τ, ζ)2

θ3(τ, 0)2

η−g(τ/2)

η−g(τ)
− θ4(τ, ζ)2

θ4(τ, 0)2

ηg(τ/2)

ηg(τ)

−θ2(τ, ζ)2

θ2(τ, 0)2
C−gη−g(τ)− ε θ1(τ, ζ)2

η(τ)6
|Dg| ηg(τ)

]
,

(8.12)

where ε = ±1 encodes the sign ambiguity of Dg.
In all cases, it was shown in [78] that the φΛ

g,ε are Jacobi forms of weight 0 and
index 1, at some level, for every g ∈ Co0 that fixes at least a four-plane. For future
use, denote the set of all these functions by

Φ(Λ) :=
{
φΛ
g,+, φ

Λ
g,− | g is a four-plane preserving element ofCo0

}
. (8.13)

We will mention a few observations about this set of functions and those arising
from umbral moonshine, the Φ(NX) defined in (8.8). First, these sets of functions
notably have a large overlap: quite often Conway and umbral moonshine give rise to
the same weak Jacobi form, albeit via very different ways. An important difference
is that a weak Jacobi form φXg can be defined for all g ∈ GX via umbral moonshine
(8.7), while in the Conway case one has to restrict to four-plane preserving elements
(in order to obtain a Jacobi form of index one). Second, the functions that only
appear in Φ(Λ) tend to be realised as twined elliptic genera of K3 sigma models on
the sub-loci in the moduli space where the model admits a description as T 4-orbifold.
Note also that the geometry of T 4-orbifold connects nicely to the free field orbifold
construction of the Conway module. In fact, V s\

tw is isomorphic to the Z2 orbifold
of a certain T 4 model, when one “forgets” about the distinction between left- and
right-movers, roughly speaking [78, 123, 124]. Third, the functions that only arise
from umbral and not from Conway moonshine have the property that they must
correspond to a symmetry which acts differently on the left- and right-movers of
a K3 sigma model [125]. We will discuss the connections between the moonshine
symmetry groups and the stringy K3 symmetry groups in the next subsection.

8.4 Symmetries of K3 string theory and moonshine

In the previous subsections we have seen a close mathematical relation between the
K3 elliptic genus and the functions of umbral and Conway moonshine. It is therefore
natural to compare the moonshine groups and the symmetries of K3 sigma models.
In fact, it was known that symmetries of K3 surfaces have a close relation to sporadic
groups. In particular, a celebrated theorem by Mukai [126] established the role of
M23, one of the 26 sporadic groups and a subgroup of M24, as the finite group that
“organises” the symmetries of K3 surfaces. More precisely, in [126] it was shown that
there is of a bijection between (isomorphism classes of) M23 subgroups with at least
five orbits and (isomorphism classes of) finite groups of K3 symplectomorphisms.
A generalisation of this classical result to “stringy K3 geometry” was initiated by
Gaberdiel, Hohenegger, and Volpato, who in [127] classified the symmetry groups
of all (non-singular) K3 sigma model using lattice techniques in a method closely
following the simplified proof of the Mukai theorem by Kondo [128]. From the
spacetime (D-branes) point of view, the results of [127] can be viewed as classifying
symplectic autoequivalences (symmetries) of derived categories on K3 surfaces [129].
See also [130] for a related discussion on symmetries of appropriately defined moduli
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spaces relevant for curve counting on K3. In [125] the classification was extended
to theories corresponding to singular loci in the moduli space of K3 sigma models.
This is necessary if one is interested in the full string theory and not just the sigma
models. Despite the fact that the type IIA worldsheet theory behaves badly along
these loci [131], the full type IIA string theory is not only completely well-defined
but also possesses special physical relevance in connection to non-Abelian gauge
symmetries. The spacetime gauge group is enhanced from U(1)24 to some non-
Abelian group at these loci, and the ADE type gauge group is given by the ADE
type singularity of theK3 surface [131,132]. The existence of such loci with enhanced
gauge symmetries in the moduli space, though not immediately manifest from the
world-sheet analysis in type IIA, is clear from the the dual description in terms of
heterotic T 4 compactification.

To state the classification result, let us first review some general properties of
sigma models on K3 (see [133, 134]). The moduli space of non-singular non-linear
sigma models on K3 with N = (4, 4) supersymmetry is given by an open subset in

M = (SO(4)×O(20))\O+(4, 20)/O+(Γ4,20) , (8.14)

where (SO(4) × O(20))\O+(4, 20) is the Grassmannian of positive four-planes Π,
a four-dimensional oriented positive-definite subspace within R4,20 ∼= Γ4,20 ⊗Z R,
and Γ4,20 is the even unimodular lattice with signature (4, 20). In other words,
choosing a point in the moduli spaceM is equivalent to choosing a four-plane inside
Γ4,20 ⊗Z R. The complement in M of this open subset is the set of singular four-
planes Π (i.e. orthogonal to a root v ∈ Γ4,20, v2 = −2) and correspond to certain
singular limits of sigma models on K3. The whole spaceM is also the moduli space
of type IIA string theory at a fixed finite value of gs. In the singular cases, the full
supersymmetry-preserving symmetries of the corresponding type IIA string theory
contains a continuous non-Abelian gauge symmetry which we will mod out to obtain
the discrete symmetry group GIIA. As a result, we have

GIIA(Π) = Stab(Π)/W (8.15)

where Stab(Π) is the subgroup of O+(Γ4,20) which stabilises the four-plane Π point-
wise, and W is the Weyl group generated by reflections with respect to all root
vectors orthogonal to Π, if there are any.

In [125] (Corollary 4) it was then shown that the groups GIIA, realised somewhere
in M, are in bijection with the four-plane preserving subgroups of the twenty-four
finite groups GN associated to the twenty-four even self-dual lattices of rank twenty-
four (cf. (1.13)), including the twenty-three umbral groups GX and the Conway
group Co0. In particular, it means that generically the umbral group GX , and in
particular G24A1 ∼= M24, cannot be the symmetry group of any individual K3 sigma
model as they are not four-plane preserving subgroups of Co0.

After classifying the symmetry groups as abstract groups, we would like to know
how they act on the spectrum of supersymmetric states. This information is captured
by the elliptic genera twined by these symmetries, as defined in (3.35). In [125], it
was conjectured (among other finer conditions) that any twined K3 elliptic genus
realised anywhere in the moduli spaceM coincides with at least one of the functions
in one of the twenty-four sets of functions Φ(N) defined in (8.8) and in (8.13), where
N is either one of the twenty-three Niemeier lattices NX or the Leech lattice Λ.
Conversely, it was conjectured that all elements of Φ(N) play a role in capturing
the symmetries of BPS states of K3. Strong evidence for the above conjecture was
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recently found in [135] by considering string theories closely related (by orbifolding)
to type IIA string theory compactified on K3×T 2, and requiring that the analyticity
structure of the BPS-counting functions is compatible with the physics of wall-
crossing. It is however not yet understood why umbral moonshine functions should
have such a close relationship to K3 sigma model twined elliptic genera. See §8.5
for more discussions.

8.5 Beyond perturbative string theory

The most important lesson from the previous subsection is that supersymmetry-
preserving symmetries of K3 CFTs are closely related to the symmetries of umbral
moonshine, but fall short of explaining umbral moonshine: many umbral groups
simply cannot be realised as symmetries of K3 sigma model anywhere in the moduli
space. In particular, while the conjectures discussed in §8.4 state that all umbral
and Conway moonshine functions associated to four-plane preserving group elements
play a role as the twining genera of K3 sigma models, and in fact capture them com-
pletely, the physical relevance of the umbral (including Mathieu) moonshine func-
tions corresponding to group elements preserving only a two-plane remains unclear.
There is at the moment no consensus regarding what the precise physical setup
relevant for umbral moonshine is. At the same time, it is precisely this necessity
to go beyond perturbative string theory, and the possibility of having moonshine
involved in non-perturbative setups such as stringy black holes, that makes the pos-
sible connections between umbral moonshine and string theory so exciting. Here we
briefly discuss a few possibilities that have been discussed to different degrees in the
literature.

Combining symmetries. The idea is to find a way to combine symmetries
realised at different points in the moduli space and in this way generate a larger
group which also contains two-plane preserving elements. This possibility was first
raised as a question “Is it possible that these automorphism groups at isolated points
in the moduli space of K3 surface are enhanced to M24 over the whole of moduli
space when we consider the elliptic genus?” in [81]. It is motivated by the fact
that the elliptic genus receives only contributions from BPS states and is invariant
across the moduli space. Concrete steps towards realising this idea in the context
of Kummer surfaces, i.e. K3 surfaces obtained as torus orbifolds T 4/Z2, were taken
in [136–138] and further explored in [139]. In particular, it was shown that it is
possible to combine the geometric symmetries of three specific Kummer surfaces,
given by the groups

G0 := Z4
2 o (Z2 × Z2) , G1 := Z4

2 oA4 , G2 := Z4
2 o S3 . (8.16)

into the so-called octad group G = Z4
2 o A8. This is a maximal subgroup of M24

but too large to be the automorphism group of a single K3 sigma model. The work
of [139] supplied evidence that G indeed acts on the twisted sector BPS states that
survive after moving away from the Kummer loci in the moduli space. This suggests
the possibility that G, a maximal subgroup of M24, indeed acts as an “overarching”
symmetry within the Kummer moduli space. Finally, see also [140] for a exploration
of this idea in the context of Landau–Ginzburg models. A challenging aspect of
this approach is that it is technically very hard to follow a path in the moduli
space to a generic point which does not correspond to a torus orbifold or admits a
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Landau–Ginzburg UV description. As a result it is not straightforward to combine
symmetries which are realised in a generalised K3 sigma model.

Lower-dimensional compactifications. A second approach is to consider string
compactifications where larger groups are realised at given points in the moduli space
as symmetry groups of the full string theory (not just for the perturbative string
states and not just the BPS sector). For theories with 16 supercharges, this is only
possible for compactifications with less than six non-compact dimensions. This idea
was first discussed in [83], where the implications of Mathieu moonshine for four-
dimensional BPS black holes, arising in type II superstring theory compactified on
K3×T 2, were explored. This idea was futher developed in [141], and has led to nice
new insights into string dualities [114].

More recently, it was shown that there are points in the moduli space of string
theory compactifications to three dimensions which admit the Niemeier groups as
discrete symmetry groups [142]. In the type IIA frame, these are given by compact-
ifications on K3× T 3. The action of these symmetry groups on the 1/2-BPS states
of the theory has been analyzed [142], and it would be interesting to understand the
action on the 1/4-BPS states. However, it is currently unclear how functions related
to the umbral moonshine McKay–Thompson series can be obtained in this physical
setup. Recently, a further compactification on K3× T 4 was also explored in [143].

Heterotic K3 compactifications. The plausibility of the relevance of this setup
lies in the fact that its moduli space contains the moduli space of N = (4, 4) K3
CFT as a sub-locus. It is hence imaginable that moving away from the sub-loci
will allow us to see more symmetries. At a technical level, we have less means to
compute the spectrum due to smaller number of supersymmetries. This route has
been somewhat explored in [144,145], but a lot remains to be done.

Five-brane dynamics. The connection between umbral moonshine and double
scaled little string theory, describing the perturbative dynamics in the presence
of NS five-branes in type IIB superstring theory, has been investigated in [146,
147]. This idea is natural in that it incorporates new non-perturbative elements
(NS fivebranes) into the physical setup, and that the double scaled little string
theories admit an ADE classification which also plays an important role in the
construction of umbral moonshine. It would be interesting to understand the finite
group symmetries present in this setup.

Relations to certain VOA. As we have seen in the previous subsections, umbral
and Conway moonshine are related, as they are both closely related to K3 sigma
models. In [79], a close variant of the Conway module is shown to exhibit an action
of a variety of two-plane preserving subgroups of Co0, including M23, and yields as
twining genera a set of weak Jacobi forms of weight zero and index two. In addition,
the mock modular forms which display M23 representations appear to be very closely
related to the mock modular forms which play a role in M24 moonshine. It might
be fruitful to gain a deeper physical understanding of this apparent connection and
see if one can “tweak” the better understood Conway module in some ways to
accommodate the umbral modules.
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Total unknown. As none of the above approaches has led to a definite answer
so far, a possible scenario is that the connections we observed between K3 elliptic
genera and umbral moonshine are just a coincidence and the physical context (if
any) of umbral moonshine lies completely somewhere else.

Finding the correct physical setup in which the umbral moonshine modules can
be constructed in a natural and uniform way is an active direction area and is
currently the holy grail in the study of umbral moonshine.

9 Other connections

MSW strings. Another physical setup which delivers examples of modular ob-
jects connected to finite groups is M5 branes wrapping divisors of Calabi–Yau three-
folds [18]. These give rise to effective strings, the so-called MSW strings, with (0,4)
worldsheet supersymmetry [19]. In [18], it was pointed out that the generalised gen-
era of the MSW string theories are examples of skew-holomorphic Jacobi forms (cf.
§2.2), a type of modular object playing a starring role in the family of moonshine
generalising the Thompson moonshine, but whose role in physics has thus far not
been highlighted. In particular, the generalised elliptic genera for one or two M5
branes wrapping the surfaces P2, del Pezzo 8, and half-K3 were examined in [18].
In the first case, it was known that two M5 branes wrapping the surface P2 leads to
mock skew-holomorphic forms that are closely related to the generating function of
the class number mock modular form (2.48). This connection suggests the possibility
that M5-branes on P2 give a starting point from which we may pursue a geometric
understanding of Mathieu moonshine for (rescaled) Hurwitz class numbers described
in §6.

For the other cases, one finds that a weight 3/2 modular form governing the
generalised elliptic genus of a single M5 brane wrapping the del Pezzo 8 and half-K3
surfaces is f (1) = E4η

−5. See §2.1 for the definition of E4 and η. In [18] it was shown
that f (1) is the graded superdimension of a supermodule for the Mathieu group M12,

and the corresponding graded characters f
(1)
g for all g ∈M12 are explicitly given. It

would be very interesting to have a geometric and string theoretic understanding of
this M12-supermodule.
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