
Black Hole Entropy Function and

AdS2/CFT1 Correspondence
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Motivation:

Low energy limit of string theory gives rise to

gravity coupled to other fields.

These theories typically have black hole solu-

tions.

Thus string theory gives a framework for study-

ing classical and quantum properties of black

holes.
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One of the important properties characterizing
a black hole is the Bekenstein-Hawking entropy
SBH.

In the low energy limit

SBH = A/(4GN)

For a wide class of extremal black holes

SBH = Sstat, Sstat ≡ ln(Degeneracy)

Strominger, Vafa; . . .

This gives a good understanding of this en-
tropy from microscopic viewpoint.
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Although string theory → gravity at low en-

ergy, the full theory contains higher derivative

corrections and quantum corrections.

What are the effects of these corrections to

SBH and how do they affect the relation be-

tween SBH and Sstat?

In order to address this question we need to

understand both SBH and Sstat to better pre-

cision.

In this lecture we shall try to gain a better

understanding of SBH.
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A general frameork for computing higher deriva-

tive corrections to black hole entropy has been

developed by Wald.

SBH = −8π
∫
H

dθ dφ
δS

δRrtrt

√
−grr gtt ,

for spherically symmetric black holes.

In computing δS/δRµνρσ

1. express the action S in terms of symmetrized

covariant derivatives of fields

2. treat Rµνρσ as independent variables.
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We shall use this to study black hole entropy

in the extremal limit.

How do we define extremal black holes in a

higher derivative theory?

Take the clue from usual (super-)gravity.
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Reissner-Nordstrom solution in D = 4:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

ρ±: parameters related to mass and charge

Extremal black hole: ρ+ = ρ−

Instead of studying directly extremal black holes,

for which Wald’s formula is not valid, we shall

study the extremal limit of regular black holes.
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ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ2 +
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2
+

, r =
2ρ− ρ+ − ρ−

2λ

and take λ → 0 limit.

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

→ near horizon geometry AdS2 × S2

The horizon is at r = 1.
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The complete near horizon solution:

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

Frt =
q

4π
, Fθφ =

p

4π
sin θ

ρ2
+ = GN

q2 + p2

4π

q, p: label electric and magnetic charges

The full background has SO(2,1)×SO(3) isom-

etry.
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In general, the near horizon geometry of all

known extremal black holes in all dimensions

have time translation symmetry enhanced

to SO(2,1)

t and r form an AdS2 space.

We shall take this as the definition of extremal

black holes even in theories with higher deriva-

tive terms in the action.

(Partial proof by Kunduri, Lucietti, Reall; Figueras,Kunduri,

Lucietti,Rangamani)
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For simplicity, explicit discussion will be re-

stricted to spherically symmetric black holes

in D = 4.

− near horizon geometry has SO(2,1)×SO(3)

isometry.

However the results can be easily generalized

to any extremal black hole, ı.e. black holes with

an enhanced SO(2,1) isometry in the near hori-

zon geometry.
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Consider an arbitrary general coordinate in-
variant theory of gravity coupled to a set of
Maxwell fields A

(i)
µ and neutral scalar fields {φs}.

The most general form of the near horizon ge-
ometry of an extremal black hole consistent
with SO(2,1)× SO(3) isometry:

ds2 ≡ gµνdxµdxν = v1

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
+v2

(
dθ2 + sin2 θdφ2

)
φs = us

F
(i)
rt = ei, F

(i)
θφ =

pi

4π
sin θ

v1, v2, us, ei, pi are constants.
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Equations of motion and Wald’s formula gives

a neat way of determining the near horizon

parameters and the entropy.

Let
√
−det gL be the Lagrangian density.

Define:

f(~u,~v, ~e, ~p) ≡
∫

dθ dφ
√
−det gL

E(~u,~v, ~q, ~p) ≡ 2π(ei qi − f(~u,~v, ~e, ~p))

at ∂f/∂ei = qi.

E/(2π) is Legendre transform of f .
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Results:

For an extremal black hole of electric charge ~q

and magnetic charge ~p,

1. the values of {us}, v1 and v2 and ei are
obtained by solving:

∂E
∂us

= 0,
∂E
∂v1

= 0 ,
∂E
∂v2

= 0, ei =
1

2π

∂E
∂qi

2. SBH = E at the extremum.

These results come out of straightforward use
of equations of motion and Wald’s formula.
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Example: For Reissner-Nordstrom black hole

in ordinary gravity coupled to Maxwell theory

E = 2π

[
−

1

4GN
(2v1 − 2v2)

+2π v1 v−1
2

(
q

4π

)2
+ 2π v1 v−1

2

(
p

4π

)2
]

∂E/∂v1 = ∂E/∂v2 = 0 give

v1 = v2 = GN
q2 + p2

4π

SBH = E =
1

4
(q2 + p2)

→ correct answer for the entropy.
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Two dimensional viewpoint

In D = 4 the near horizon geometry has the

structure of AdS2 × S2× a compact space.

Treat S2 also as part of a compact direction.

→ AdS2× a compact space.

This gives a uniform description of the near

horizon geometry of all extremal black holes in

all dimensions.
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Two dimensional background

ds2 ≡ g
(2)
µν dxµdxν = v1

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
φs = us, F

(i)
rt = ei

Let L(2) be the two dimensional Lagrangian

density.

Define

f ≡ v1L(2), E ≡ 2π (ei qi − f) at ∂f/∂ei = qi

Then SBH(~q) = E at the extremum of E.
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We shall now try to give a physical interpreta-
tion of SBH using AdS2/CFT1 correspondence.

A.S., Gupta, A.S.

Strominger; Cadoni, Mignemi; Maldacena, Michelson,

Strominger; Spradlin, Strominger; Navarro-Salas, Navarro;

Caldarelli, Catelani, Vanzo; Cadoni, Carta, Klemm, Mignemi;

Giveon, Sever; Azeyanagi, Nishioka, Takayanagi; Hart-

man, Strominger

Important equations

f = v1L(2)

2π f = 2π ~e · ~q − SBH at ∂f/∂ei = qi

→ 2π ei = ∂SBH(~q)/∂qi
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ds2 = v1

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
φs = us, F

(i)
rt = ei

Euclidean continuation:

t = −iθ, r = cosh η, θ ≡ θ + 2π

This gives

ds2 = v1

(
dη2 + sinh2 η dθ2

)
,

φs = us, F
(i)
θη = iei sinh η

→ A
(i)
θ = i ei (cosh η − 1) .
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Classical supergravity partition function:

ZAdS2
' e−A, A = Euclidean action

Since AdS2 has infinite volume, A would be
infinite.

We regularize by putting a cut-off at:

η = η0 → r = cosh η0 = r0

This gives

Abulk = −2πv1

∫ η0

0
dη sinh ηL(2)

= −2π f (cosh η0 − 1)

= −(r0 − 1)(2π~e · ~q − SBH)
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Besides this there may also be boundary contri-

bution proportional to the length of the bound-

ary.

Aboundary = −K sinh η0 = −K r0 +O(r−1
0 )

This gives

ZAdS2
' e−Abulk−Aboundary

= er0(2π~e·~q−SBH+K)+SBH−2π~e·~q+O(r−1
0 )

Note: In full quantum theory ZAdS2
should be

computed by the path integral of string theory

on AdS2 × compact space.
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AdS2/CFT1 correspondence

By the usual AdS/CFT correspondence we would

expect that string theory on AdS2 should be

equivalent to a conformal quantum mechanics

(CQM) at the boundary r = r0 of AdS2.

ZCQM = ZAdS2

We shall now analyze ZCQM .
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θ labels the coordinate along the boundary.

We shall use a rescaled boundary coordinate

w = θ sinh η0

w ≡ w + 2π sinh η0 = w + 2π r0
(
1 + r−2

0

)
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Boundary field configuration

ds2
B = v1 dw2, φs = us,

A(i)
w = i ei (1− r−1

0 +O(r−2
0 ))

w ≡ w + 2π r0

(
1 + r−2

0

)
Define

H: generator of w translation in CQM in the
r0 →∞ limit

Qi: Conserved charge dual to A
(i)
µ in CQM

Then

ZCQM = Tr

[
e−2πr0H−2πeiQi+O(r−1

0 )
]
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ZCQM = Tr
[
e−2πr0H−2πeiQi

]
In the r0 → ∞ limit only the ground states of

H contribute.

d(~q): degeneracy of such states of charge ~q

Then

ZCQM = e−2πr0E0
∑
~q

d(~q) e−2π~e·~q

E0: ground state energy
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ZCQM = e−2πr0E0
∑
~q

d(~q) e−2π~e·~q

For large charges one expects the summand to

be sharpely peaked around the maximum

∂ ln d(~q)/∂qi = 2πei

ZCQM ' e−2πr0E0 d(~q) e−2π~e·~q

around its maximum.
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ZCQM ' e−2πr0E0 d(~q) e−2π~e·~q

ZAdS2
' e−r0(2π~e·~q−SBH+K)+SBH−2π~e·~q+O(r−1

0 )

This gives:

eSBH ' d(~q)

in the semiclassical limit.

Thus in the semiclassical limit, when Wald’s

analysis is valid, Wald entropy computes the

degeneracy of the ground state of the dual

quantum mechanics.
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The appropriate quantity that generalizes the

Legendre transform of Wald’s entropy to the

full quantum theory is the partition function

ZAdS2
of string theory on AdS2.

Comparison of SBH and Sstat reduces to com-

paring

ZAdS2
(~e) ↔

∑
~q

dmicrostate(~q)e
−2π~q·~e
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Special case: Type IIA on CY3

In this case ZAdS2
may be computable.

Recall: In the semiclassical approximation

ZAdS2
' e−2πf

after removing cut-off dependent terms.

If we evaluate f = v1L(2) using one the F -type

terms in the effective action then

ZAdS2
' e−2πf = |Ztop|2

Ooguri, Strominger, Vafa
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Quantum corrections should be strongly con-

strained due to SUSY.

Expect

ZAdS2
= |Ztop|2 × simple measure factor

It may not be impossible to calculate them

completely.
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