Composite Inelastic Dark Matter

Jay Wacker
SLAC
June 19, 2009

arXiv:0903.3945
With
Philip Schuster
Siavosh Behabani
Daniele Alves

11 Years of Oscillation

A distinctive recoil spectrum

Inelastic Dark Matter

Tucker-Smith & Weiner (2001)

Dark matter has 2 nearly degenerate states

$$\delta m \sim \mathcal{O}(100 \text{ keV})$$

Scattering off the SM is $\Psi_1 \rightarrow \Psi_2$

3 Consequences:

Scatters off of heavier nuclei

(CDMS ineffective)

Large recoil energy

(Xenon10 didn't look)

Large modulation fraction

Inelastic Dark Matter

A new number to explain:

$$\frac{\delta m}{m} \sim 10^{-6}$$

Breaking of an approximate global symmetry

Like Yukawas
Radiatively stable
Hard to discover origin

Sign of dark sector dynamics

First of many splittings
New interactions to discover
Changes what questions are interesting

Composite Dark Matter

A new SU(N_c) gauge sector

Confines at $\Lambda_{\rm Dark}$

A pair of quarks: $q_L \qquad m_L \ll \Lambda_{\rm dark} \\ q_H \qquad m_H \gg \Lambda_{\rm dark}$

Composite Dark Matter

A new SU(N_c) gauge sector Confines at Λ_{Dark}

$$q_L m_L \ll \Lambda_{\rm dark}$$

$$q_H \quad m_H \gg \Lambda_{\rm dark}$$

A cosmological asymmetry

$$(n_H - n_{\bar{H}}) = -(n_L - n_{\bar{L}}) \neq 0$$

At $T \ll \Lambda_{\rm Dark}$ DM is in $q_H \bar{q}_L$ bound states

Dark Mesons

Degeneracy of the Ground State

Heavy quark spin preserved in electric interactions Dark Chromomagnetic interaction breaks spin symmetry

Doesn't require adding new symmetry and breaking it Accidental global symmetry from Lorentz Invariance

Coupling to the SM

Kinetically Mix $U(1)_Y$ with $U(1)_{dark}$

$$\mathcal{L}_{\text{mix}} = \epsilon F_{\text{dark}}^{\mu\nu} F_{Y \mu\nu}$$

At low energy $\mathcal{L}_{\mathrm{int}} = \epsilon A^{\mu}_{\mathrm{dark}} j_{\mathrm{EM} \mu}$

Higgs $U(1)_{\text{dark}}$ near EW scale

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}\phi_{\text{d}}|^2 - V(\phi_{\text{d}}) \longrightarrow m_{\text{d}}^2 A_{\text{d}}^2$$

Charging the Dark Quarks

Two Choices Anomaly-Free Charges

Vector coupling

$$j_{\text{dark}}^{\mu} = g_{\text{d}}(\bar{q}_{H}\gamma^{\mu}q_{H} - \bar{q}_{L}\gamma^{\mu}q_{L})$$

Doesn't forbid dark quark masses

Has both elastic and inelastic scattering channels

Charging the Dark Quarks

Two Choices Anomaly-Free Charges

Vector coupling

$$j_{\text{dark}}^{\mu} = g_{\text{d}}(\bar{q}_{H}\gamma^{\mu}q_{H} - \bar{q}_{L}\gamma^{\mu}q_{L})$$

Doesn't forbid dark quark masses

Has both elastic and inelastic scattering channels

Axial Vector coupling

$$j_{\text{dark}}^{\mu} = g_{\text{d}}(\bar{q}_{H}\gamma^{\mu}\gamma^{5}q_{H} - \bar{q}_{L}\gamma^{\mu}\gamma^{5}q_{L})$$

Forbids dark quark masses until $U(1)_{dark}$ Higgsing Only inelastic scattering channels

Inelastic Axial Transitions

Must compute couplings to dark mesons

$$\mathcal{L}_{\text{int}} = \frac{g_{\text{d}}}{\Lambda_{\text{dark}}} F_{\text{dark}}^{\mu\nu} \rho_{\text{d}\nu}^{\dagger} \partial_{\mu} \pi_{\text{d}}$$

Dim 5
$$\pi_{\rm d} \leftrightarrow \rho_{\rm d}$$

 $use \mu = 0 \quad \nu = i$

All $\rho_d \leftrightarrow \rho_d \rightarrow \rho_d$ transitions forbidden

Recoil Spectrum

Collider Signatures

New fixed target experiments

