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Abstract

We present classes of discrete reversible systems which are at the same time chaotic and solvable.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Chaos and solvability are antithetical notions a
their coexistence in a dynamical system may so
paradoxical. The term chaos is traditionally used
designate systems which exhibit crucial depende
on the initial conditions manifested through expon
tially diverging trajectories and extreme instability[1].
On the other hand, solvability is often associated
smooth, regular behavior, related to the existence
invariants, and is usually coming from integrability.

In what follows we shall show that the explicit sol
ability of a mapping is not incompatible with a chao
behavior. This is done in the same spirit as in[2,3]
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(see also[4]) but we will give example of reversibl
systems (i.e., there exists a similarity transformat
between the forward evolution and the backward e
lution), exhibiting at the same time features of cha
(e.g., sensitive dependence on the initial conditio
positive algebraic entropy, ergodicity), and which a
solvable. Our point is neither to recall the possible
existence of KAM tori and chaotic regions which
well known[5], nor to give the ultimate definition o
integrability, solvability or chaos.

We aim to present reversible systems which lie
the border of solvability/integrability and chaos.

2. Specific examples

We will use maps which are constructed from
currences, that is to say sequences where each te
.
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given as a function of the previous ones:

(1)xn+1 = f (xn, xn−1, . . . , xn−ν).

If xn+1 is a function of onlyxn, we have a one
dimensional map, also called a system of order o
If ν = 1 (respectivelyν = r) we may define from(1)
a map in two dimensions (respectivelyr + 1 dimen-
sions) by

(2)[xn, xn−1, . . . , xn−ν] → [xn+1, xn, . . . , xn−ν+1].
The space of initial conditions is of dimensionν + 1.

2.1. One-dimensional maps

We start with a well-known one-dimensional exa
ple to illustrate the fact that solvability is compatib
with chaotic behavior:

(3)xn+1 = 2x2
n − 1.

This map is know to be chaotic[6]. Using the sim-
ilarity between(3) and the doubling rule for cosine
cos(2ω) = 2 cos2 ω − 1, the solution of(3) is given by
xn = cos2nα whereα is some constant determined
the initial conditions. We shall not dwell upon the e
ponentially fast loss of the memory of the initial cond
tions due to the presence of the 2n factor: the existing
literature covers the topic in an exhaustive way[1]. It
remains that we have here an example of a system
is explicitly solvable and which has a chaotic behav

The previous example is not an isolated occurren
Whole families of first-order (one-dimensional) sy
tems exist which are solvable while at the same t
exhibiting exponentially fast loss of the memory
the initial conditions. There exist a number of resu
in this direction for maps of the interval[2,3,7]. It
was shown that the only nonlinear polynomial ma
where the solution can be explicitly given are the m
xn+1 = x2

n and(3), up to a homographic transform
tion.

For rational maps there exists a classification ba
on results of Ritt[8]. For degree one, the only solutio
is the homographic map. For degree 2, there exi
different recurrences, the simplest ones being

(4)xn+1 = 1

2i

(
xn − 1

xn

)
,

(5)xn+1 = −1

4

(
xn − 2+ 1

xn

)
.

t

Their solutions can be given in terms of the Wei
straß elliptic function℘(z), defined through the equa
tion (℘ ′)2 = 4℘3 − 4℘. Eq. (4) has solutionxn =
℘((1 + i)nz). Similarly the solution of(5) is xn =
℘2((1+ i)nz), and so on.

The major problem with the above mappings
that they are not invertible. While one can define
image of a given point in an unambiguous way,
same is not true for the inverse evolution. Moreo
the number of preimages of a point grows expon
tially fast (a property which was deemed incompati
with integrability [9]). In the next paragraph we wi
exhibit reversible maps, defined by birational tran
formations showing features of chaos and which
solvable. One condition to construct such maps
to consider transformations in more than one dim
sion.

2.2. Two-dimensional maps

In the case of transformation(3), the key ingredi-
ent was the doubling relationωn+1 = 2ωn (or a higher
multipleωn+1 = kωn). We start from a linear equation

(6)ωn+1 + ωn−1 = kωn.

The solution of(6) is straightforward:ωn = aλn+ +
bλn− whereλ± = (k±√

k2 − 4)/2. Exponentiating(6)
and settingx = eω we obtain the recurrence:

(7)xn+1xn−1 = xk
n.

The chaotic character of this map (fork > 2) can
be assessed easily through the computation o
algebraic entropy[10]. This quantity is a measur
of the complexity of the map and is given byε =
limn→∞ log(dn)/n wheredn is the degree of thenth
iterate. In the case at hand we find thatε = log(λ+).
This leads toε > 0 for k > 2. In fact the same valu
for the entropy is obtained for all the maps deriv
from (6).

While map(7) is rather trivial, it is possible to con
struct a much more interesting one by setting

(8)xn = tanωn.

We get the recurrence:

(9)
xn+1 + xn−1

1− xn+1xn−1
= fk(xn),
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wherefk is a rational function ofxn depending on the
value of k. It is simply the expression of tankωn in
terms of tanωn ≡ xn. For the first few values ofk we
havef1(xn) = xn, f2(xn) = 2xn/(1 − x2

n), f3(xn) =
(3xn − x3

n)/(1− 3x2
n) etc. The casek = 1 corresponds

to a trivial map which is periodic with period 3. Th
casek = 2 can be easily integrated. There exists
invariantc = (xn−1 − xn)/(1+ xn−1xn), which allows
to reduce the map to a homographic one and solv
completely.

The casek = 3 is more interesting. Indeed the m
constructed from the recurrence

(10)xn+1 = 3xn − x3
n − xn−1(1− 3x2

n)

1− 3x2
n + (3xn − x3

n) xn−1

is both chaotic and solvable (since it is linearizab
The generating function of the sequence of degr
[11] may easily be inferred from the first terms of th
sequence:

(11)g = 1+ 2s + s2 − 2s3 + s4 − 2s5

(1− s)(1+ s + s2)(1− 3s + s2)
.

The value of the algebraic entropyε = log((3 +√
5)/2) is read off from(11). This positive entropy

is a sign of chaotic behavior.
Similar maps can be constructed fork � 3. They

will have a positive algebraic entropy and be linear
able.

3. Graphical analysis

Fig. 1 shows the orbit of an arbitrary initial poin
under 106 iterations of the evolution(10), plotting
the pairs(xn, xn+1) in the two-dimensional plane.
shows that the orbits tend to fill phase space.
Fig. 1. A typical orbit of a point under map(10).
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Fig. 2shows the images of a segment under a do
of iterations of(10). Pushing the iteration further doe
not change the qualitative features of the image. It
increases the density of lines.

The fact that the map(10)has an algebraic entrop
of log((3+√

5)/2) invites us to compare it to the ma
described in[12], which has the same algebraic e
tropy, and is chaotic:

(12)xn+1 + xn−1 = xn + a

x2
n

with a a constant.
The typical orbit of an arbitrary point was show

in [12], presenting large chaotic regions, and we
not reproduce it here.

Fig. 3 shows the images of a segment of a strai
line under 27 iterations of(12), and is to be compare
with Fig. 2. The overall pictures differ qualitatively
A detailed analysis of the behavior of the itera
shows that in the case of the map(12) the evolution
is slow till the points get near one of the singulariti
in which case they get a major boost, which result
the rich structure ofFig. 3. On the contrary, in the cas
of map(10)neighboring points are uniformly repelle
and the overall results are regular and smooth. B
have a strong dependence on the initial conditions,
in different ways.

All numerical calculations leading toFigs. 2 and 3
have been performed with multi-precision[13] arith-
metics so as to guarantee the reliability of the resu
and a test was performed on all image points: afte
evolution ofN steps, we “go back in time” the sam
number of steps to recover the initial data. We adjus
the precision in such a way that the true initial data a
the result of this round trip did not differ by more tha
10−3.
Fig. 2. Images of a segment under map(10).
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The distinguishing feature of(10)compared to(12)
if that (6) has an integral

(13)(ωn+1 − λ+ωn)(ωn+1 − λ−ωn) = cst

with λ± = (3 ± √
5)/2. The ω-plane is foliated by

invariant curves, but the picture is scrambled by
transformation(8) since the tangent function is per
odic. It is easy to understand the aspect ofFig. 1. The
curve(13) is transformed by(8) into

(arctanxn+1 − λ+ arctanxn)

(14)×(arctanxn+1 − λ− arctanxn) = κ

with xn+1 andxn the two coordinates of the plane
Fig. 1, andκ a constant. Such a curve cuts a linexn = ξ

at an infinite dense set of points.
One may notice that there exist two holomorp

foliations which are left invariant by(9), as in the
analysis of[14], and our construction exemplifies the
result.

One interesting feature of transformation(8) is that
it is not a mere change of coordinates. It takes a b
tional map into a birational one, changing the algeb
entropy.

4. Arithmetical analysis

The difference between maps(10) and(12) can be
illustrated by an analysis based on the approach
cently introduced by Roberts and Vivaldi[15]. These
authors have studied the effect of the existence o
tional integrals of motion for rational maps when t
evolution is considered over a finite field. The si
plest realization of such an evolution is through inte
arithmetics modulo some prime integerp. The basic
Fig. 3. Images of a segment under map(12).
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observation of[15] (see also[16]) is that if there exists
a rational invariant, the orbit is confined to an algebr
curve, and the genusg of this curve is at most one,
the original map is of infinite order. Such curves ov
finite fields have a maximum number of points (t
Hasse–Weil boundHW(p,g) = p + 1 + 2g

√
p), and

as a consequence the number of points on the s
orbit is also bounded byHW(p,g). In short: alge-
braically integrable maps have a large number of or
and those are short. Chaotic maps have a smaller n
ber of orbits and they are longer. Notice that this
with the idea that chaotic orbits may explore the wh
phase space, contrary to what happens in the integ
case.

We have performed a sampling of initial points f
increasing values ofp and plotted the mean value
the length of orbits (with the rule to terminate the
eration when meeting a singular point or closing
loop), for the maps(10), (12), and one additional ma
which is known to be algebraically integrable (s
called McMillan map), given by the recurrence:

(15)xn+1 + xn−1 = 2a
xn

x2
n − 1

with a a free parameter.
Fig. 4 shows the values of the mean length for

creasingp, normalized by dividing byHW(p,1) =
p + 1 + 2

√
p, for maps(10), (12), and(15). It dis-

criminates between(10) and(12) by showing that the
former verifies a virtual Hasse–Weil bound while t

Fig. 4. Mean length of orbits vs.p.
-

latter does not. The curve corresponding to map(15)
is there for reference, as well as the line correspond
to a constant normalized length of 1. Clearly, althou
the orbits are not confined to any invariant algebr
curve, the arithmetic test of[15] places the map(10)
in the integrable class together with(15), in contrast to
(12).

A more detailed analysis of the statistics of t
length of orbits will be done elsewhere.

5. Generalizations

We can construct generalizations of(9), based on
the properties of elliptic functions. Introducexn =
℘(ωn) andyn = ℘ ′(ωn) where℘ is the Weierstraß el
liptic function with elliptic invariantsg2 andg3. The
addition formulae for the Weierstraß elliptic functio
yield:

xn+1 = 1

4

(
hk(xn, yn) + yn−1

fk(xn, yn) − xn−1

)2

− fk(xn, yn) − xn−1,

(16)

yn+1 = xn+1(hk(xn, yn) + yn−1)

xn−1 − fk(xn, yn)

− fk(xn, yn)yn−1 + hk(xn, yn)xn−1

xn−1 − fk(xn, yn)
,

where the functionsfk andhk are the expressions o
℘(kωn) and ℘ ′(kωn) in terms of xn = ℘(ωn) and
yn = ℘ ′(ωn).

We have to ensure that both(xn, yn) andxn−1, yn−1
lie on the same elliptic curve, i.e.

(17)y2
n = 4x3

n − g2xn − g3,

(18)y2
n−1 = 4x3

n−1 − g2xn−1 − g3.

Eqs.(17), (18)together with the formula for the du
plication, triplication, . . . of the arguments yield th
value of thefk andhk . Iteration(16) defines a map
in four variables which has two algebraic invarian
given by solving(17), (18) in terms ofg2, g3:

(19)g2 = y2
n−1 − y2

n

xn − xn−1
+ 4

(
x2
n−1 + xnxn−1 + x2

n

)
,

(20)g3 = xn−1y
2
n − xny

2
n−1

xn − xn−1
− 4xnxn−1(xn−1 + xn).

For k = 2 we havef2 = −2x + z2/(4y2) and h2 =
−y + 3xz/y − z3/(4y3) wherez stands for℘ ′′(ωn) =
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6℘2(ωn)−g2/2 ≡ 6x2−g2/2. In this case there exis
an additional invariant

(21)C =
(

yn−1 + yn

xn − xn−1

)2

− 4(xn + xn−1)

and the map is integrable with vanishing entro
(quadratic growth of the degree).

For k = 3 we havef3 = x + 4y2(12xy2z − 4y4 −
z3)/(12xy2−z2)2 andh3 = −y −4y(12xy2z−8y4−
z3)(12xy2z−4y4− z3)/(12xy2− z2)3. This case, and
actually all cases withk � 3, have positive entropy an
solvability is ensured through the relation to(6).

6. Conclusion

We have shown that there exist infinite families
rational maps which, at the same time, have posi
algebraic entropy, presentfeatures of chaos, and a
solvable. Their solvability is related to a reduction
a linear equation through the appropriate non ratio
transformations, but they remain reversible.

While the examples we exhibited here are based
specific Ansätze, there exist infinite families of so
able mappings with positive algebraic entropy. As
matter of fact one could perform the same derivat
using any function for which one can expressf (x +y)

in terms off (x) andf (y).
Open questions remain, like what is the meaning

the statistics of the length of orbits in the arithme
approach of[15,16]. We will return to that in some
future publication.
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