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Abstract

We present classes of discrete reversible systems which are at the same time chaotic and solvable.
0 2005 Elsevier B.V. All rights reserved.

1. Introduction (see alsd4]) but we will give example of reversible
systems (i.e., there exists a similarity transformation
Chaos and solvability are antithetical notions and between the forward evolution and the backward evo-

their coexistence in a dynamical system may sound [Ution), exhibiting at the same time features of chaos
paradoxical. The term chaos is traditionally used to (€-9., sensitive dependence on the initial conditions,
designate systems which exhibit crucial dependence POSitive algebraic entropy, ergodicity), and which are
on the initial conditions manifested through exponen- Slvable. Our pointis neither to recall the possible co-
tially diverging trajectories and extreme instability. existence of KAM tori and chaotic regions which is
On the other hand, solvability is often associated to Well known([5], nor to give the ultimate definition of
smooth, regular behavior, related to the existence of integrability, solvability or chaos. o
invariants, and is usually coming from integrability. We aim to present reversible systems which lie on
In what follows we shall show that the explicit solv- the border of solvability/integrability and chaos.
ability of a mapping is not incompatible with a chaotic
behavior. This is done in the same spirit as[2;3]

2. Specific examples
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given as a function of the previous ones:

Xn41 = f(Xn, Xn—1, ..., Xn—v). (1)

If x,41 is a function of onlyx,, we have a one-
dimensional map, also called a system of order one.
If v =1 (respectively = r) we may define fron{1)

a map in two dimensions (respectively- 1 dimen-
sions) by

2

The space of initial conditions is of dimension- 1.

[xn, Xu—1, ..., Xp—] — [xn-i-l» b S |

2.1. One-dimensional maps

We start with a well-known one-dimensional exam-
ple to illustrate the fact that solvability is compatible
with chaotic behavior:

1= 22— 1 )

This map is know to be chaoti6]. Using the sim-
ilarity between(3) and the doubling rule for cosine:
cog2w) = 2 co¥ w — 1, the solution of3) is given by
xp = cos 2« wherew is some constant determined by
the initial conditions. We shall not dwell upon the ex-
ponentially fast loss of the memory of the initial condi-
tions due to the presence of th& factor: the existing
literature covers the topic in an exhaustive Waj. It
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Their solutions can be given in terms of the Weier-
stral} elliptic functionp (z), defined through the equa-
tion (p)2 = 4p° — 4p. Eq. (4) has solutionx,
» (L4 i)"z). Similarly the solution of(5) is x,
©2((1+i)"z), and so on.

The major problem with the above mappings is
that they are not invertible. While one can define the
image of a given point in an unambiguous way, the
same is not true for the inverse evolution. Moreover
the number of preimages of a point grows exponen-
tially fast (a property which was deemed incompatible
with integrability [9]). In the next paragraph we will
exhibit reversible maps, defined by birational trans-
formations showing features of chaos and which are
solvable. One condition to construct such maps is
to consider transformations in more than one dimen-
sion.

2.2. Two-dimensional maps

In the case of transformatig(3), the key ingredi-
ent was the doubling relatian, 1 = 2w, (or a higher
multiplew, +1 = kw,). We start from a linear equation:

(6)

The solution of(6) is straightforwardw, = ai’} +

Wp+1 + wp—1 = kwy,.

remains that we have here an example of a system thatb1” wherei. = (k£ +/k? — 4)/2. Exponentiating6)

is explicitly solvable and which has a chaotic behavior.

The previous example is not an isolated occurrence.
Whole families of first-order (one-dimensional) sys-
tems exist which are solvable while at the same time
exhibiting exponentially fast loss of the memory of
the initial conditions. There exist a number of results
in this direction for maps of the intervg®,3,7]. It
was shown that the only nonlinear polynomial maps
where the solution can be explicitly given are the map
Xp+l = x,% and (3), up to a homographic transforma-
tion.

and settinge = ¢® we obtain the recurrence:

(M

The chaotic character of this map (fér> 2) can

be assessed easily through the computation of its
algebraic entropy[10]. This quantity is a measure
of the complexity of the map and is given ky=
lim,_ o log(d,)/n whered, is the degree of theth
iterate. In the case at hand we find that log(14).
This leads tae > O for k > 2. In fact the same value
for the entropy is obtained for all the maps derived

k
Xn+1Xn—-1 =X

For rational maps there exists a classification based from (6).

on results of Rit{8]. For degree one, the only solution
is the homographic map. For degree 2, there exist 8
different recurrences, the simplest ones being

1( 1)
Xn—— )
Xn

Xn+l= 57 (4)
1 1

X4l = ——(xn -2+ —)
4 Xn

2i

®)

While map(7) is rather trivial, it is possible to con-
struct a much more interesting one by setting

x, = tanw,. (8)
We get the recurrence:

Xp+1+ Xpn—1

S = fa), ©)

1—xpt1xn-1
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where f. is a rational function ok, dependingonthe  sequence:

value ofk. It is simply the expression of tdw, in

terms of tanw,, = x,. For the first few values of we o 1+25+ 52 — 253 + 5% — 255 (11)
havefl(xn) = Xp, fo(xn) = 2x,/(1 — xs): faxn) = &= 1-9A+s+ Sz)(l — 35+ Sz).

(3x, —x2)/(1—3x?) etc. The casé = 1 corresponds

to a trivial map which is periodic with period 3. The
casek = 2 can be easily integrated. There exists an
invariantc = (x,—1 — x,,)/(1+ x,—1x,), Which allows

to reduce the map to a homographic one and solve it
completely.

The value of the algebraic entropy = log((3 +
V5)/2) is read off from(11). This positive entropy
is a sign of chaotic behavior.

Similar maps can be constructed for> 3. They
will have a positive algebraic entropy and be lineariz-

The casé = 3 is more interesting. Indeed the map able.
constructed from the recurrence
3x, — x3 — x,_1(1—3x?) 3. Graphical analysis

An+1= (10)

1—3x2+ (3xy —x2) xp—-1 ) ) ) o )
Fig. 1 shows the orbit of an arbitrary initial point

is both chaotic and solvable (since it is linearizable). under 16 iterations of the evolutior(10), plotting

The generating function of the sequence of degreesthe pairs(x,, x,+1) in the two-dimensional plane. It

[11] may easily be inferred from the first terms of this shows that the orbits tend to fill phase space.

3

3.0

Fig. 1. A typical orbit of a point under mg@0).
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Fig. 2shows the images of a segment under adozen A detailed analysis of the behavior of the iterates

of iterations of(10). Pushing the iteration further does

shows that in the case of the mél) the evolution

not change the qualitative features of the image. It just is slow till the points get near one of the singularities,

increases the density of lines.

The fact that the mafi0) has an algebraic entropy
of log((3+ +/5)/2) invites us to compare it to the map
described in12], which has the same algebraic en-
tropy, and is chaotic:

a

Xn+1+ Xp—1=Xp + )
X

12)

with a a constant.

The typical orbit of an arbitrary point was shown
in [12], presenting large chaotic regions, and we do
not reproduce it here.

in which case they get a major boost, which results in
the rich structure ofFig. 3. On the contrary, in the case
of map(10) neighboring points are uniformly repelled
and the overall results are regular and smooth. Both
have a strong dependence on the initial conditions, but
in different ways.

All numerical calculations leading téigs. 2 and 3
have been performed with multi-precisi¢id] arith-
metics so as to guarantee the reliability of the results,
and a test was performed on all image points: after an
evolution of N steps, we “go back in time” the same
number of steps to recover the initial data. We adjusted

Fig. 3shows the images of a segment of a straight the precision in such a way that the true initial data and

line under 27 iterations fL2), and is to be compared
with Fig. 2 The overall pictures differ qualitatively.

2

the result of this round trip did not differ by more than
1073,

2.0

Fig. 2. Images of a segment under n{ap).
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The distinguishing feature ¢10) compared t¢12)
if that (6) has an integral

(@n+1 — Ay wn)(@nt1 — A—wy) = cst (13)

with 1+ = (3 £ v/5)/2. The w-plane is foliated by
invariant curves, but the picture is scrambled by the
transformation(8) since the tangent function is peri-
odic. It is easy to understand the aspeckigf. L The
curve(13)is transformed by8) into

(arctant,, 1 — A4 arctan,)

x (arctanx,+1 — A_ arctany,) =« (14)

with x,4+1 andx, the two coordinates of the plane of
Fig. 1, andx a constant. Such a curve cuts a line= &
at an infinite dense set of points.

One may notice that there exist two holomorphic
foliations which are left invariant by9), as in the

4
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analysis of14], and our construction exemplifies their
result.

One interesting feature of transformati@) is that
it is not a mere change of coordinates. It takes a bira-
tional map into a birational one, changing the algebraic
entropy.

4. Arithmetical analysis

The difference between mags0) and(12) can be
illustrated by an analysis based on the approach re-
cently introduced by Roberts and Vivaldi5]. These
authors have studied the effect of the existence of ra-
tional integrals of motion for rational maps when the
evolution is considered over a finite field. The sim-
plest realization of such an evolution is through integer
arithmetics modulo some prime integer The basic

Fig. 3. Images of a segment under n{ag).
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observation of15] (see als¢16]) is that if there exists
arational invariant, the orbitis confined to an algebraic
curve, and the genugof this curve is at most one, if
the original map is of infinite order. Such curves over
finite fields have a maximum number of points (the
Hasse—Weil bountiW(p, g) = p + 1+ 2g.,/p), and
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latter does not. The curve corresponding to niHp)

is there for reference, as well as the line corresponding
to a constant normalized length of 1. Clearly, although
the orbits are not confined to any invariant algebraic
curve, the arithmetic test ¢1.5] places the magl0)

in the integrable class together withb), in contrast to

as a consequence the number of points on the sameg(12).

orbit is also bounded byHW(p, g). In short: alge-

A more detailed analysis of the statistics of the

braically integrable maps have a large number of orbits length of orbits will be done elsewhere.
and those are short. Chaotic maps have a smaller num-

ber of orbits and they are longer. Notice that this fits
with the idea that chaotic orbits may explore the whole

5. Generalizations

phase space, contrary to what happens in the integrable

case.
We have performed a sampling of initial points for
increasing values op and plotted the mean value of
the length of orbits (with the rule to terminate the it-
eration when meeting a singular point or closing a
loop), for the map$10), (12), and one additional map
which is known to be algebraically integrable (so-
called McMillan map), given by the recurrence:
Xn
Xpgl+xp-1= 2ax2 —1

n

(15)

with a a free parameter.

Fig. 4 shows the values of the mean length for in-
creasingp, normalized by dividing byHW(p, 1) =
p+1+2,/p, for maps(10), (12), and(15). It dis-
criminates betwee(i0) and(12) by showing that the
former verifies a virtual Hasse—\Weil bound while the

o8t !

06 -

0.4 -

02+

240

Fig. 4. Mean length of orbits vg.

We can construct generalizations (8, based on
the properties of elliptic functions. Introducg, =
e (w,) andy, = p’(w,) wheregp is the Weierstral} el-
liptic function with elliptic invariantsg, and g3. The
addition formulae for the Weierstral3 elliptic function
yield:

Xn+l= }(hk(xm yn) i yn1)2 - fk(xnv yn) — Xp—-1,
4 Je(ens yn) — xp1

X1 (g (Xns Yu) + Yn—1)
N Xn—1— fik(Xn, yn)

_ S, Yn)Yn—1 4+ hi (Xn, Yn)Xn-1

Xp—1— Jx(Xn, Yn)

where the functiong; andh; are the expressions of
e (kw,) and g’ (kw,) in terms ofx, = p (w,) and
Yn = ' (@n).

We have to ensure that botky,, y,) andx,—1, y,—1
lie on the same elliptic curve, i.e.

Yn+1

. (16)

17)
V2 =43 | — goxa_1— ga. (18)

Eqgs.(17), (18)together with the formula for the du-
plication, triplication, ... of the arguments yield the
value of the f; andhy. Iteration(16) defines a map
in four variables which has two algebraic invariants
given by solving(17), (18)in terms ofgy, g3:

vZ2 = 4x3 — gox, — g,

V22
go=n=t oy 4(x3_1 + Xpxp—1+ x,f), (19)
Xn — Xp—1
2 2
Xn—1Yy —Xn)Y, _
gz= ——" TPl Axn_1(ne1 4 x).  (20)

Xn — Xn—-1

For k = 2 we havefs = —2x + z2/(4y?) andhp =
—y 4 3xz/y — z3/(4y3) wherez stands fog” (w,) =
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602 (wn) — g2/2 = 6x2— g»/2. In this case there exists
an additional invariant

Yn-1+Yy 2
c=(u) — 4(xy + Xp—1)

Xn — Xn—1

(21)

and the map is integrable with vanishing entropy
(quadratic growth of the degree).

For k = 3 we havefz = x + 4y?(12xy%z — 4y* —
%) /(12xy? —z%)? andhz = —y — 4y (12vy%; — 8yt —
23)(12xy%z — 4y* — 23) /(12xy2 — z2)3. This case, and
actually all cases with > 3, have positive entropy and
solvability is ensured through the relation(&).

6. Conclusion

We have shown that there exist infinite families of
rational maps which, at the same time, have positive
algebraic entropy, presefgatures of chaos, and are
solvable. Their solvability is related to a reduction to
a linear equation through the appropriate non rational
transformations, but they remain reversible.

While the examples we exhibited here are based on

specific Ansétze, there exist infinite families of solv-
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