
explicit
he integral

s. Most
[1], the
e tests
e which
e some

tor had
Quispel et

ue.fr
Physics Letters A 322 (2004) 186–193

www.elsevier.com/locate/pla

On the integrability of correspondences associated
to integral curves

C.M. Viallet a,∗, B. Grammaticosc, A. Ramanib

a Laboratoire de Physique Théorique et des Hautes Energies, 4 Place Jussieu, Boite 126, F-75252 Paris cedex 05, France
b Centre de Physique Théorique, UMR 7644, École Polytechnique, 91128 Palaiseau, France

c GMPIB, Université Paris VII, Tour 24-14, 5eétage, case 7021, F-75251 Paris cedex 05, France

Received 5 March 2003; received in revised form 16 December 2003; accepted 9 January 2004

Communicated by A.P. Fordy

Abstract

We analyze the integrability of birational maps of the plane having rational invariants of various degrees. We show by
examples that the maps turn out to be additions on elliptic curves. We also examine the correspondences defined by t
curves.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A number of tools have been derived in the recent years to analyze the integrability of discrete system
of the effort has been put on characterization of integrability. We may quote the singularity confinement
Nevanlinna analysis [2], the complexity approach [3–6], and recently a new arithmetic test [7]. All thes
“measure” the integrability of maps. What we want to do here concerns maps of the 2-dimensional plan
are known to be integrable. Our aim is consequently not to detect their integrability, but to further describ
of their properties, and propose new ways of constructing correspondences from their integral curves.

One of the very first results on integrable mappings (which was obtained before any integrability detec
been proposed and thus served as testing ground for these subsequent developments) was the one of
al. [8,9]. These authors introduced a five-parameter family of second order mappings of the form:

(1)xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
,
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where thefi are specific polynomials of order not higher than four. This, so-called symmetric, QRT ma
possesses an invariant of the form:

(α0 + Kα1)x
2
n+1x

2
n + (β0 + Kβ1)xn+1xn(xn+1 + xn) + (γ0 + Kγ1)

(
x2
n+1 + x2

n

)

(2)+ (ε0 + Kε1)xn+1xn + (ζ0 + Kζ1)(xn+1 + xn) + (µ0 + Kµ1) = 0,

whereK plays the role of the integration constant. Moreover, it was shown that the solution of the mapping
expressed in terms of elliptic functions, of which it is just a sampling over a discrete, equidistant set of poin

A generalisation of the mapping (1) to an 8-parameter one has been proposed by QRT under the
“asymmetric”. It is a system of two first-order mappings and possesses an invariant which is a ratio
biquadratic polynomials. Its integration was given recently [10–12] and again it turned out that the solut
be expressed in terms of elliptic functions. Further extensions of the QRT mapping were proposed by Rob
Iatrou in [10,11].

The use, a posteriori, of the integrability criteria on the QRT mapping has given the expected result
symmetric and asymmetric QRT mappings possess the singularity confinement property and have zero
the degree growth of the iterates is quadratic [13]. The arithmetic test of [7] also agrees.

It was shown that the symmetric QRT mapping is the only one that satisfies the singularity confinement c
under some assumptions concerning the structure of singularity patterns [14]. No analogous result exist
asymmetric case. Indeed there exist many more integrable equations written as systems of two first order m
than the ones captured by the asymmetric QRT parametrization. A recent paper on spin edge models offers
of such examples [15].

2. A possibly non-QRT integrable map of the plane

While investigating third-order mappings, Kimura et al. [16] obtained systems which could be integra
second-order mappings which possessed a biquartic invariant. Here is an example:

(3)(xnxn+1 − 1)(xnxn−1 − 1) = (xn − a)(xn − 1/a)(x2
n − 1)

p2x2
n − 1

with invariant

(4)K = ((xn − xn−1)
2 − p2(xnxn−1 − 1)2)((xn + xn−1 − a − 1/a)2 − p2(xnxn−1 − 1)2)

(xnxn−1 − 1)2 .

Relation (3) may be put in the form (1) but the polynomialsfi are not of the specific form required for QR
mapping.

Many more mappings with biquartic invariants were obtained in [14] through autonomisation of di
Painlevé equations. As explained above, the integration of the QRT mapping was given explicitly in terms of
functions. With the existence of mappings with biquartic invariants, it was natural to wonder as to the na
their solutions and to the precise method of their integration. First note that the mapping is an automorp
infinite order. We thus expect the invariant curve

(5)
(
(x − y)2 − p2(xy − 1)2)((x + y − b)2 − p2(xy − 1)2) − K(xy − 1)2 = 0,

whereb = a + 1/a, to be of genus 0 or 1. Computing the genus of this curve can be performed followin
algorithm proposed by van Hoeij [17]. It turns out that the genus of (5) is 1. This curve is birationally equiva
a curve of the formv2 − 4u3 + αu+ β = 0. The precise method for the construction of the canonical form foll
again the method proposed by van Hoeij. One chooses a pointx, y which in turns fixes the value ofK. Following
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the algorithm of [17] one constructsu(x, y) andv(x, y) which satisfy the canonical relation

(6)v2 − 4u3 + αu + β = 0.

This last relation is parametrized in terms of the Weierstraß elliptic functionu = ℘ and its derivativev = ℘ ′. The
action of the initial mapping interpreted at the level of the canonical form (6) is just a shift from℘(z) to ℘(z + δ)

(where the stepδ is not curve-independent). One can also give a nice geometrical construction of the p
coordinates (℘(z + δ),℘ ′(z + δ)) once the points (℘(z),℘ ′(z)) and (℘(δ),℘ ′(δ)) are known. This construction i
just the geometrical interpretation of the well-known identity for Weierstraß functions

(7)

∣
∣
∣
∣
∣

℘(a) ℘ ′(a) 1
℘(b) ℘ ′(b) 1
℘(c) ℘ ′(c) 1

∣
∣
∣
∣
∣
= 0

for a + b + c = 0.
Once the solution of (6) in terms of elliptic functions is given, one can construct the parametrization of the

curve (5) using the inverse transformationx = x(u, v), y = y(u, v). This construction is also obtained through t
van Hoeij algorithm. We have performed the derivation of these transformations for various choices of curv
for various values of the invariantK. None will be exhibited here: they fill a number of pages and can be perfo
only with the help of efficient symbolic computation programs. Still, the important result is that they do exis
show that the solutions of the mapping (3) can be given in terms of elliptic functions.

As a matter of fact all algebraically integrable mappings can be treated this way (see [15] for another ex

3. An example amenable to QRT form

We start from a map having an invariant of degree1 higher than that of QRT, taken from [5,18]. Consider
birational transformations onCP2, written in homogeneous coordinates[x, y, z]:

x → 2yz + (
q2 − 1

)
xz + (

q2 − 1
)
xy,

y → 2yz + (q − 1)xz − (q + 1)xy,

(8)z → 2yz − (q + 1)xz + (q − 1)xy.

The invariant can in this case be written

(9)K = (y + z)(x(y + z) − 2yz)(2x − y − z)

(y − z)2(x(y + z)(q2 − 2) + 2x2 + 2yz)
.

A first change of coordinates

[x, y, z] → [X,Y,Z] = [
y(x − y), (x − y)(y − z), y(y − z)

]

brings the invariant to the form

(10)K = (2X − Y )(−2X + Y − Z)(2X + Z)

−2XYq2Z + q2Y 2Z − 2Y 2Z − 2Z2Xq2 + q2YZ2 − 2XY 2 .

We introduce inhomogeneous variables through[X,Y,Z] → [ξ + 1/2,1, η] and write the integral curve:

(11)
(−2ξq2η − 2η − 2q2ξη2 − 2ξ − 1

)
K + 2ξ(2ξ + η)(2ξ + 1+ η) = 0.

1 Of course, the degree of an invariant is not a canonical notion and may be affected by changes of coordinates.
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It is now easy to transform (11) to the Weierstraß canonical formv2 − 4u3 + αu + β = 0, via the transformation

(12a)u = − (4K2q2 − 20K − 1+ 2Kq2 − K2q4)ξ + 6K(−1+ Kq2)(1+ 2η)

3ξ
,

(12b)v = 4K(−1+ Kq2)(Kq2 − 8K − 1)ξ − 4K2(−1+ Kq2)(1+ 2η)

ξ2 .

The inverse transform can also be easily computed. The action of the mapping, seen on the Weierstraß
form, is just the addition of the point:

(13a)u = 1/3+ q2(q + 10)(q + 2)K2/3− 2
(
q2 + 6q + 2

)
K/3,

(13b)v = 8(q + 2)2q3K3 − 16
(
q2 + 2q + 2

)
qK2 + 8Kq.

As a matter of fact, the transformation of the cubic integral curve to a canonical Weierstraß form can be pe
in a way simpler in principle, albeit more complicated in practice, involving just homographic transformatio

The remarkable result is that it is possible to express the solutions of the mapping (8) rationally in te
elliptic functions. This suggests that the mapping is just a QRT in disguise.

This turns out to be the case indeed. Takingy = 1 from the onset we obtain two first-order mappings forx and
z and eliminatingx we find the second-order recursion:

(14)zn+1zn−1
(
zn(1− q)2 − (1+ q)2) − (zn+1 + zn−1)(zn − 1)

(
1− q2) + zn(1+ q)2 − (1− q)2 = 0.

We can further simplify (14) by setting

z = 1− w
√

q

1+ w
√

q

and finally find:

(15)(wn−1wn − 1)(wnwn+1 − 1) = 1− qw2
n

a mapping which is QRT, in one of the canonical forms given in [9].
At this point one may wonder whether all integrable second order mappings with a rational invariant

brought to a QRT form by a birational change of coordinates of the 2-plane. The question is open at this m

4. From invariants curves to correspondences

Up to this point we have considered a relation like (5) as an invariant curve associated to some mappi
Eq. (3). This means that the evolution, i.e., the computation of the iterates is given by the mapping itself. H
there exists another interpretation of (5) and, as a matter of fact, of (2) as well. These relations can be co
as defining correspondences. In this case one starts with a givenx and solves the invariant equation (here Eq. (
for y. Since the relation is not linear iny one obtains more than one solution fory. Next, one injects these value
of y into the equation and solves forx. Again more than one solutions result (one of which is the value ofx at
the previous step) and so on. Geometrically, this construction means that one intersects the curve defin
invariant first with a vertical line then by horizontal ones at each intersection point, then vertical and so on.
this is a different kind of evolution than the one defined by the mapping, although the latter is one of the so
of the correspondence.

Correspondences appear naturally in various settings. For instance, while performing the duality transfo
proposed in [19] which converts constants of motions to coupling constants and vice versa, one may wel
with the dual of some mapping being a correspondence. Correspondences may be obtained from the a
of Miura transformations to discrete Painlevé equations [20]. More naively, if one eliminates one varia
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a two-component, asymmetric QRT mapping, one usually ends up with a correspondence. In what foll
shall address the question of the integrability of such correspondences. To be more precise, is the corres
obtained from the invariant curves of an integrable mapping (as we described above), integrableper se?

The simplest example of a correspondence is provided by the invariant of the symmetric QRT mapping.
with initial valuesx = xn, y = xn+1, we compute the value of the invariantK(x,y). To iterate we look for the
w’s such thatK(x,w) = K(x,y). SinceK is the ratio of quadratic polynomials inw there exist two solutions
One is clearlyw = y = xn+1 and the other solution isxn−1. (Invariance meansK(xn, xn+1) = K(xn−1, xn) and by
symmetry the latter isK(xn, xn−1).) The correspondence leads to the set{xn−1, xn+1} at this stage. Fromy = xn+1
we start fromK(y, v) = K(x,y) and get two solutions, one beingy = xn+2 and the otherxn, by symmetry. From
xn−1 we find similarlyxn−2 and once morexn leading to the set{xn−2, xn, xn+2}. Proceeding in the same way it
clear that the number of images grows linearly with the number of iterations. Applying the criterion of slow
polynomial) growth of the number of images predicts the integrability of the correspondence. This is in agr
with the results of Veselov who examined the integrability of the biquadratic 2–2 correspondence also fr
point of view of the growth of the number of images. The case of the correspondence associated to the as
QRT mapping was treated in [21]. It was again shown that, with the appropriate interpretation of the evoluti
correspondence is integrable like its symmetric counterpart.

We examine now the biquartic case (5). Starting from a given point(x, y) and iterating, following the procedur
described above we find that the successive number of images is 4, 13, 40, 121, 364,. . . . These numbers, manifestl
follow the recursion relationNn+1 = 3Nn + 1 which is the maximal growth one can obtain in the biquartic c
This exponential growth of the number of images is an indication of the non-integrability of (5) considere
correspondence. The fact that there exists a parametrization of (5) through elliptic functions is not in contr
with the non-integrability: the elliptic function solution describes just one branch among the exponentially
branches of the evolution (5).

Next we turn to the case of the invariant (10) and try to introduce a correspondence in an appropriate
start by remarking that the pencil of cubics (10) has eight base points (i.e., points which are common to a
of the pencil). To each of the base point we may associate a rational involution in the following way: choose
pointB of the pencil of cubics. Consider a running pointM = [X,Y,Z]. ThroughM passes one curveΣ of the
pencil (10) and one straight lineBM. Both intersect at a unique third point, given rationally in terms of[X,Y,Z].
The map constructed in this way is a (bi)-rational involution on the plane.

The base points are

[1/2− 1/2q,−q,−1+ q], [−1/2− 1/2q,−q,1+ q], [−1,−2,1],
[−1/2− 1/2q,−q,1], [1/2q − 1/2, q,1], [−1,−1,1], [0,1,0], [0,0,1].

From these points, we get eight involutions (i1, . . . , i8), which are not independent, and can all be expresse
terms ofi1, i2, i3.

i1(M) =[
(2qX − qY + Y )(2X − qY − qZ − Y +Z),−2(2qX − qY + Y )q(Y + Z),

− 4XY + 4q2XZ + 4Xq2Y − 2q2YZ − 2Y 2q2 + 2Y 2 − 2YZ
]
.

i2 is obtained fromi1 by the substitutionq ↔ −q , and

i3(M) = [X − Y,−Y,Y +Z].
These involutions verify the following relations:

i1 · i2 = i2 · i1, i4 = i3 · i1 · i3, i5 = i1 · i2 · i3 · i1 · i3,
i6 = i1 · i3 · i2 = i2 · i3 · i1, i7 = i3 · i2 · i3 · i1 · i3, i8 = i1 · i2 · i3.
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The two infinite order maps one may construct form thei ’s, namelyϕ = i1 ·i3 andψ = i2 ·i3 are not independen
They verifyϕ2 = ψ2. The group generated byi1, . . . , i8 is made of the iterates ofϕ and its inverse, dressed with
finite group.

It is interesting to see what the straight lines we just used are in the original coordinate system[x, y, z]. Since
the coordinate transformation is quadratic, the lines become conics: to each of the eight pencils of lines in[X,Y,Z]
is associated a pencil of conics in[x, y, z]. These conics pass through some base points of the original pen
invariant curves (9). Through any generic pointm = [x, y, z] of the plane, passes one conic of each of the penc
conics and one of the invariant curves (9). They intersect atm, some fixed base points and at a single other po
which is given rationally in term ofm. The latter my be taken as the image ofm, and the correspondences redu
to maps.

Another example can be provided by the integral curve obtained in [15] where various spin edge mode
analyzed:

(16)b(x − y)2(x + y)2 − (
x3 + ax − ax2y − y

)(
ax + xy2 − y − ay3) = 0.

The growth of the number of images is identical to the one obtained in the case of (5). However there
way to appropriately define a correspondence for this integral curve as well. Consider the linear pencil of i
curves (16), which has eight base points (with i2 = −1):

[1,0,0], [0,0,1], [a,0,1], [0,1,0], [1,−i,−1], [1, i,−1], [1,−1,1], [1,1,1].
It is possible to construct two basic correspondences as follows.

Take the straight lineD passing through the base point[a,0,1] and a running pointm = [x, y, z] of P2. Through
the pointm passes one curveΣ of the pencil (16). The lineD cuts the curveΣ in the six following points.

[a,0,1], m, i1(m), i2(m), i3(m),

where the point[a,0,1] counts twice since it is a double point ofΣ , andi1(m), i2(m), andi3(m) define a three
valued rational correspondence.

i1(m) = [
z(−az+ x),−y(xa − z), (−az+ x)x

]
,

i2(m) = [−y2a2x − xy2 + x2z − 2z2xa + 2zy2a + z3a2,
(−z2a − a2zx + xz + y2a2 − y2 + ax2)y,

y2z + zy2a2 − 2xay2 − z2xa2 + 2x2az − x3],

i3(m) = [
y2az2 + y2a3z2 + x4 − 3x3az + 3x2a2z2 + 2x2ay2 − xz3a3 − xy2z − 3xzy2a2,
(
x3 − x2az − xa3y2 − z2xa2 + xay2 + z3a3 + zy2a2 − y2z

)
y,

− 3xz3a2 + x2y2a2 + z4a3 + 2z2y2a2 − xza3y2 + x2y2 + 3x2az2 − 3xzy2a − zx3].

The three mapsi1, i2, i3 are rational involutions. They commute since

i1 · i2 · i3 = 1= i2
1 = i2

2 = i2
3.

Consider now the straight lines passing through the base point[0,1,0]. A similar construction yields anothe
three valued rational correspondence, with imagesk1(m), k2(m), andk3(m):

k1(m) = [x,−y, z],
k2(m) = [

y(xa − z)x, z(−az+ x)x, y(xa − z)z
]
,

k3(m) = [−y(xa − z)x, z(−az+ x)x,−y(xa − z)z
]
.

Again

k1 · k2 · k3 = 1 = k2
1 = k2

2 = k2
3.
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There are simple commutation relations between the two correspondences:k1 commutes withk2, k3, i1, i2, i3,
andi1 commutes withi2, i3, k1, k2, k3. The group generated by thei ’s and thek’s is the product of the iterates o
the infinite order birational mappingi2 · k2 and its inversek2 · i2, with the finite (commuting) group generated
i1 andk1. From the invariant curves (16), we have defined a rational integrable correspondence which rep
the original map of Ref. [14].

5. The commutation criterion for correspondences

In [22], Veselov has proposed another criterion for the integrability of correspondences: if given a corr
denceΦ(x,y) = 0 one can find another correspondenceΨ (x, y) = 0 which commutes with it, then both are i
tegrable. The example used in [22] in order to illustrate this approach is constructed from modular functio
Φn(x, y) = 0 be the modular equation satisfied byx = j (z), y = j (nz) wherej (z) is the modular function (see, fo
example, the lecture notes of I. Dolgachev [23], with a misprint inΦ3 corrected below). The equations forn = 2
andn = 3 are, respectively

Φ2(x, y) = x3 + y3 − x2y2 + 24 · 3 · 31xy(x + y)− 24 · 34 · 53(x2 + y2) + 34 · 53 · 4027xy

(17)+ 28 · 37 · 56(x + y) − 212 · 39 · 59

and

Φ3(x, y) = x4 + y4 − x3y3 + 23 · 32 · 31
(
x3y2 + y3x2) − 22 · 33 · 9907

(
x3y + y3x

)

+ 2 · 34 · 13· 193· 6367x2y2 + 216 · 35 · 53 · 17· 263
(
x2y + xy2)

(18)

+ 215 · 32 · 53(x3 + y3) + 230 · 33 · 56(x2 + y2) − 231 · 56 · 22973xy + 245 · 33 · 59(x + y).

One can verify in a straightforward way thatΦ2 commutes withΦ3: this is equivalent to checking that th
resultant ofΦ2(x, t) andΦ3(y, t) with respect tot is symmetric in(x, y). In fact, anyΦn commutes with anyΦm

since they form a non-linear realization of the multiplication of integers. According to the commutation crite
Veselov these correspondences are thus integrable. This is in agreement with the fact that they can be par
in terms of modular functions. On the other hand if we apply the criterion of the number of images toΦ2, say,
we find the sequenceN = 3,7,15,31,63,127, . . . which clearly exhibits exponential growth (Nn = 2Nn−1 + 1).
Thus we are here in the presence of two different criteria which yield different answers. One would be tem
adopt the commutation criterion of Veselov but we must remark that: (a) no constructive method for the de
of the commuting correspondence is proposed, and (b) the case at hand is very special in the sense that
Φn(x, y) have a rational parametrization. The cases we examined above are not rational curves and thus, th
to Veselov’s case is questionable.

6. Perspectives

We have shown how to explicitly integrate a second order mapping with rational invariant in terms of e
functions,whatever the degree of the invariant is. The question of whether all these mappings can be transfo
into QRT ones (with bi-quadratic invariants) remains open at this stage. We have also shown that, altho
curve is associated to the invariant of some (integrable) mapping, the natural correspondences are gen
integrable. This result was obtained through the study of the growth of the number of images of a give
In the case of modular functions, we have analyzed the integrability of correspondences using also the
proposed by Veselov. The result was that the two criteria give contradicting answers. This is an indication t
may be related to different kinds of integrability, and such a possibility will be studied elsewhere.
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