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Abstract

We analyze the integrability of birational maps of the plane having rational invariants of various degrees. We show by explicit
examples that the maps turn out to be additions on elliptic curves. We also examine the correspondences defined by the integral
curves.
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1. Introduction

A number of tools have been derived in the recent years to analyze the integrability of discrete systems. Most
of the effort has been put on characterization of integrability. We may quote the singularity confinement [1], the
Nevanlinna analysis [2], the complexity approach [3—6], and recently a new arithmetic test [7]. All these tests
“measure” the integrability of maps. What we want to do here concerns maps of the 2-dimensional plane which
are known to be integrable. Our aim is consequently not to detect their integrability, but to further describe some
of their properties, and propose new ways of constructing correspondences from their integral curves.

One of the very first results on integrable mappings (which was obtained before any integrability detector had
been proposed and thus served as testing ground for these subsequent developments) was the one of Quispel ¢
al. [8,9]. These authors introduced a five-parameter family of second order mappings of the form:

_ S1(xn) — xp—1f2(xn)
J2(xn) — xp—1f3(xn) '

1)

Xn+1
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where thef; are specific polynomials of order not higher than four. This, so-called symmetric, QRT mapping
possesses an invariant of the form:

(o + Kal)X,fHX,f + (Bo + KB1)xn+1%n (xn+1 + xn) + (Yo + Ky1) (X,f+1 +x7)
+ (€0 + Ker)xn1xn + (S0 + K1) (xpt1 + Xn) + (o + K1) =0, (2

whereK plays the role of the integration constant. Moreover, it was shown that the solution of the mapping can be
expressed in terms of elliptic functions, of which it is just a sampling over a discrete, equidistant set of points.

A generalisation of the mapping (1) to an 8-parameter one has been proposed by QRT under the name of
“asymmetric”. It is a system of two first-order mappings and possesses an invariant which is a ratio of two
biguadratic polynomials. Its integration was given recently [10-12] and again it turned out that the solution can
be expressed in terms of elliptic functions. Further extensions of the QRT mapping were proposed by Roberts and
latrou in [10,11].

The use, a posteriori, of the integrability criteria on the QRT mapping has given the expected results. Both
symmetric and asymmetric QRT mappings possess the singularity confinement property and have zero entropy:
the degree growth of the iterates is quadratic [13]. The arithmetic test of [7] also agrees.

It was shown that the symmetric QRT mapping is the only one that satisfies the singularity confinement criterion
under some assumptions concerning the structure of singularity patterns [14]. No analogous result exists for the
asymmetric case. Indeed there exist many more integrable equations written as systems of two first order mappings
than the ones captured by the asymmetric QRT parametrization. A recent paper on spin edge models offers a wealth
of such examples [15].

2. A possibly non-QRT integrable map of the plane

While investigating third-order mappings, Kimura et al. [16] obtained systems which could be integrated to
second-order mappings which possessed a biquartic invariant. Here is an example:

(xn — a)(x, — 1/a)(x2 — 1)

(nxn+1 — D(xpxp—1— 1) = p2x2—1 ©
with invariant
i (G =200 = Pt = DA((6n + 201 = a = 1a)? = p(ruxn-1 = 1)?) (@)

(Xpxp—1— 1)2

Relation (3) may be put in the form (1) but the polynomigisare not of the specific form required for QRT
mapping.

Many more mappings with biquartic invariants were obtained in [14] through autonomisation of discrete
Painlevé equations. As explained above, the integration of the QRT mapping was given explicitly in terms of elliptic
functions. With the existence of mappings with biquartic invariants, it was natural to wonder as to the nature of
their solutions and to the precise method of their integration. First note that the mapping is an automorphism of
infinite order. We thus expect the invariant curve

((x =2 = PPy = D) ((x +y — b2 = pPxy = D?) — K(xy = 1D?=0, (5)

whereb = a + 1/a, to be of genus 0 or 1. Computing the genus of this curve can be performed following the
algorithm proposed by van Hoeij [17]. It turns out that the genus of (5) is 1. This curve is birationally equivalent to
a curve of the form? — 4u® + au + g = 0. The precise method for the construction of the canonical form follows
again the method proposed by van Hoeij. One chooses apoinvhich in turns fixes the value &€ . Following
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the algorithm of [17] one construcigx, y) andv(x, y) which satisfy the canonical relation
v2—4u3+au+ﬂ=0. (6)

This last relation is parametrized in terms of the WeierstraR elliptic funatieny and its derivatives = p’. The

action of the initial mapping interpreted at the level of the canonical form (6) is just a shiftgr@mto o (z + 8)

(where the step is not curve-independent). One can also give a nice geometrical construction of the point of
coordinatesg (z + 8), g’ (z + 8)) once the pointsg (z), '(z)) and  (8), g’ (8)) are known. This construction is

just the geometrical interpretation of the well-known identity for Weierstraf functions

P ' 1
pb) '(b) 1
p) ') 1

fora+b+c=0.

Once the solution of (6) in terms of elliptic functions is given, one can construct the parametrization of the initial
curve (5) using the inverse transformatioa- x (u, v), y = y(u, v). This construction is also obtained through the
van Hoeij algorithm. We have performed the derivation of these transformations for various choices of curves, i.e.,
for various values of the invariatt. None will be exhibited here: they fill a number of pages and can be performed
only with the help of efficient symbolic computation programs. Still, the important result is that they do exist: they
show that the solutions of the mapping (3) can be given in terms of elliptic functions.

As a matter of fact all algebraically integrable mappings can be treated this way (see [15] for another example).

-0 @)

3. An example amenableto QRT form

We start from a map having an invariant of dedraggher than that of QRT, taken from [5,18]. Consider the
birational transformations ofiP?, written in homogeneous coordinafes y, z]:
x — 2yz+ (q2 - 1)xz + (q2 - 1)xy,
y—=2yz+ (g —Dxz— (g + Dxy,
72— 2yz— (¢ +Dxz+ (g — Dxy. (8)
The invariant can in this case be written
G+ +2)—2y1)(2x—y —2)

= . 9
(= 22(x(y +2)(g% = 2) + 2x2 + 2y2) ®)
A first change of coordinates
[x,y. 2] > [X. Y. Z]=[y(x — y). 6 — )y —2). y(y — 2)]
brings the invariant to the form
X —Y)(=2X+Y - 2)2X + Z)
_ . (10)
—2XYq2Z +q2Y2Z —2Y2Z — 272X q?% + q2Y 72 — 2XY?
We introduce inhomogeneous variables throlghy, Z] — [£ + 1/2, 1, n] and write the integral curve:
(—2tq%n — 20— 2q%6n? — 26 — 1)K +26(2 +1)(26 + 1+ 1) =0. (11)

1 Of course, the degree of an invariant is not a canonical notion and may be affected by changes of coordinates.
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It is now easy to transform (11) to the Weierstra canonical fofm 4u® + au + g = 0, via the transformation
(4K?q? — 20K — 1+ 2K g% — K’q*E + 6K (=14 Kq2)(1+ 2n)
35 9
4K (—1+ Kq?)(K g% — 8K — 1)§ — 4K*(—1+ Kq?)(1+ 2n)
V= 52 .
The inverse transform can also be easily computed. The action of the mapping, seen on the Weierstral} canonical
form, is just the addition of the point:

(12a)

(12b)

u=1/3+q%q +10)(q +2K?/3 - 2(¢q? +6¢ + 2) K /3, (13a)
v=8(q +2%¢*Kk® — 16(¢> + 29 + 2)gK* + 8Kq. (13b)

As a matter of fact, the transformation of the cubic integral curve to a canonical Weierstral3 form can be performed
in a way simpler in principle, albeit more complicated in practice, involving just homographic transformations.

The remarkable result is that it is possible to express the solutions of the mapping (8) rationally in terms of
elliptic functions. This suggests that the mapping is just a QRT in disguise.

This turns out to be the case indeed. Taking 1 from the onset we obtain two first-order mappingsf@nd
z and eliminatinge we find the second-order recursion:

at12-1(2n (L= 9% = 1+ 9)?) = Gt + 2D (@ = V(1= ¢°) + 2+ 9)* —1—¢)*=0. (14
We can further simplify (14) by setting

_ 1-w./q
Tlrwsg
and finally find:

(Wn—1wp — D(wpwpy1 — 1) =1 — qu? (15)

a mapping which is QRT, in one of the canonical forms given in [9].
At this point one may wonder whether all integrable second order mappings with a rational invariant can be
brought to a QRT form by a birational change of coordinates of the 2-plane. The question is open at this moment.

4. From invariants curvesto correspondences

Up to this point we have considered a relation like (5) as an invariant curve associated to some mappings, like
Eq. (3). This means that the evolution, i.e., the computation of the iterates is given by the mapping itself. However,
there exists another interpretation of (5) and, as a matter of fact, of (2) as well. These relations can be considered
as defining correspondences. In this case one starts with axgiaed solves the invariant equation (here Eq. (5))
for y. Since the relation is not linear imone obtains more than one solution farNext, one injects these values
of y into the equation and solves far Again more than one solutions result (one of which is the value aff
the previous step) and so on. Geometrically, this construction means that one intersects the curve defined by the
invariant first with a vertical line then by horizontal ones at each intersection point, then vertical and so on. Clearly
this is a different kind of evolution than the one defined by the mapping, although the latter is one of the solutions
of the correspondence.

Correspondences appear naturally in various settings. For instance, while performing the duality transformations
proposed in [19] which converts constants of motions to coupling constants and vice versa, one may well end up
with the dual of some mapping being a correspondence. Correspondences may be obtained from the application
of Miura transformations to discrete Painlevé equations [20]. More naively, if one eliminates one variable in



190 C.M. Mallet et al. / Physics Letters A 322 (2004) 186-193

a two-component, asymmetric QRT mapping, one usually ends up with a correspondence. In what follows we
shall address the question of the integrability of such correspondences. To be more precise, is the correspondenc
obtained from the invariant curves of an integrable mapping (as we described above), integratite

The simplest example of a correspondence is provided by the invariant of the symmetric QRT mapping. Starting
with initial valuesx = x,, y = x,41, we compute the value of the invariakit(x, y). To iterate we look for the
w’'s such thatk (x, w) = K (x, y). SinceK is the ratio of quadratic polynomials i there exist two solutions.

One is clearlyw = y = x,,+1 and the other solution is,_1. (Invariance meank (x,, x,+1) = K (x,—1, x,,) and by
symmetry the latter i& (x,, x,—1).) The correspondence leads to the{sgt 1, x,, 1} at this stage. From = x,, 41

we start fromK (y, v) = K (x, y) and get two solutions, one beinyg= x,+2 and the othek,, by symmetry. From

xn—1 We find similarlyx,_> and once more,, leading to the settx,,—2, x5, x,+2}. Proceeding in the same way it is

clear that the number of images grows linearly with the number of iterations. Applying the criterion of slow (i.e.,
polynomial) growth of the number of images predicts the integrability of the correspondence. This is in agreement
with the results of Veselov who examined the integrability of the biquadratic 2—2 correspondence also from the
point of view of the growth of the number of images. The case of the correspondence associated to the asymmetric
QRT mapping was treated in [21]. It was again shown that, with the appropriate interpretation of the evolution, this
correspondence is integrable like its symmetric counterpart.

We examine now the biquartic case (5). Starting from a given goint) and iterating, following the procedure
described above we find that the successive number ofimagesis 4, 13, 40, 121, .384ese numbers, manifestly,
follow the recursion relatiowv, 1 = 3N,, + 1 which is the maximal growth one can obtain in the biquartic case.
This exponential growth of the number of images is an indication of the non-integrability of (5) considered as a
correspondence. The fact that there exists a parametrization of (5) through elliptic functions is not in contradiction
with the non-integrability: the elliptic function solution describes just one branch among the exponentially many
branches of the evolution (5).

Next we turn to the case of the invariant (10) and try to introduce a correspondence in an appropriate way. We
start by remarking that the pencil of cubics (10) has eight base points (i.e., points which are common to all curves
of the pencil). To each of the base point we may associate a rational involution in the following way: choose a base
point B of the pencil of cubics. Consider a running poMt= [X, Y, Z]. ThroughM passes one curvE of the
pencil (10) and one straight lineM. Both intersect at a unique third point, given rationally in termgxafY, Z].

The map constructed in this way is a (bi)-rational involution on the plane.

The base points are

[1/2_1/24,_4,_14‘(]], [_1/2_1/2q’_q’1+Q]7 [_17_271],
[-1/2-1/2q,—q,1], [1/29q—-1/2,4,1], [-1,-1,1], [0,1,0], [O,O,1].

From these points, we get eight involutions (. ., ig), which are not independent, and can all be expressed in
terms ofiq, ip, i3.

i1(M) =[(2qX —qY+Y)V2X —qY —qZ—-Y 4+ 2Z),-22gX —qY +Y)q(Y + Z),
—4XY +49°XZ + 4Xq%Y —2¢°Y Z - 2Y%¢* + 2v* - 2y Z].
i is obtained froniy by the substitutioy < —¢, and
islM)=[X-Y,-Y, Y+ Z].
These involutions verify the following relations:
i1-i2=1I2-11, ig=1i3-i1-13, is=1i1-ip2 131113,

lg=1i1-i3-i2=12-13"11, i7=1i3-i2-i3-11-13, ig=1i1-12-13.



C.M. Viallet et al. / Physics Letters A 322 (2004) 186-193 191

The two infinite order maps one may construct formiteenamelyy = i1 -iz andy = i»-i3 are notindependent.
They verifyp? = 2. The group generated by, . . ., ig is made of the iterates gf and its inverse, dressed with a
finite group.

It is interesting to see what the straight lines we just used are in the original coordinate gysteni. Since
the coordinate transformation is quadratic, the lines become conics: to each of the eight pencils of kn&s i
is associated a pencil of conics|in, y, z]. These conics pass through some base points of the original pencil of
invariant curves (9). Through any generic point= [x, y, z] of the plane, passes one conic of each of the pencil of
conics and one of the invariant curves (9). They interseet,atome fixed base points and at a single other point,
which is given rationally in term of:. The latter my be taken as the imagemfand the correspondences reduce
to maps.

Another example can be provided by the integral curve obtained in [15] where various spin edge models were
analyzed:

b(x — y)%(x + )% — (x3 +ax —ax?y — y) (ax +xy?—y— ay3) =0. (16)
The growth of the number of images is identical to the one obtained in the case of (5). However there exists a
way to appropriately define a correspondence for this integral curve as well. Consider the linear pencil of invariant
curves (16), which has eight base points (Wftk=i—1):

[1,0,0], [0,0,1], [a,0,1], [0,1,01, [1,—i,-1], [4,i,-1], [1,-1,1], [1,1,1].

It is possible to construct two basic correspondences as follows.
Take the straight lin® passing through the base pojiat 0, 1] and a running poink = [x, y, z] of P>. Through
the pointm passes one curvE of the pencil (16). The liné cuts the curveX in the six following points.
[a,0,1], m, ii(m), i2(m), iz(m),
where the poinfa, 0, 1] counts twice since it is a double point &f, andi1(m), io(m), andiz(m) define a three-
valued rational correspondence.
i1(m) = [z(—az +x), —y(xa — 2), (—az + x)x],

i2(m) = [—yzazx — xy2 +x%z — 2z%xa + 2zy2a + 2342, (—zz

a — azzx +xz+ y2a2 - y2 + axz)y,
v2z + zy%a® — 2xay® — z2°xa® + 2x%az — x3],

i3(m) = [yzaz2 + y2a3z2 + x% = 3x%az + 3x%a%? + szay2 —xz%a% — xyzz - 3xzy2a2,

(x3 — x2az7 — xa3y2 — 22542 +xay2 g zy2a2 _ yzz)y,

—3xz%% + )c2y2a2 + %%+ ZZZyZa2 — xza3y2 + x2y2 + 3x%az® — 3xzy2a - zx?’].

The three maps, i, i3 are rational involutions. They commute since

i1-ip-iz=1=i2=i3=i2

Consider now the straight lines passing through the base [iht0]. A similar construction yields another
three valued rational correspondence, with imageés), k2(m), andkz(m):
kl(m) = [-x’ -y, Z]’
ka(m) = [y(xa — 2)x, z(—az + x)x, y(xa — 2)z],
ka(m) = [~y(xa — 2)x, z(~az +x)x, —y(xa — 2)z].
Again
ki-kp-kz=1=k?=k3=4k3.
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There are simple commutation relations between the two correspondéncesnmutes withko, k3, i1, iz, i3,
andi; commutes withip, i3, k1, k2, k3. The group generated by tlis and thek’s is the product of the iterates of
the infinite order birational mapping - k> and its inverse: - iz, with the finite (commuting) group generated by
i1 andky. From the invariant curves (16), we have defined a rational integrable correspondence which reproduces
the original map of Ref. [14].

5. Thecommutation criterion for correspondences

In [22], Veselov has proposed another criterion for the integrability of correspondences: if given a correspon-
denced® (x, y) = 0 one can find another correspondetdce, y) = 0 which commutes with it, then both are in-
tegrable. The example used in [22] in order to illustrate this approach is constructed from modular functions. Let
@, (x, y) = 0 be the modular equation satisfiedby= j(z), y = j (nz) wherej(z) is the modular function (see, for
example, the lecture notes of I. Dolgachev [23], with a misprinPincorrected below). The equations for= 2
andn = 3 are, respectively

Po(x, y) =234+ 33 —x%y? 4+ 2%. 3. 3Ley(x +y) — 2*- 34 53(x2 4 y2) + 3%.53. 4027y
+28.37.5%x +y)—212.3°.5° (17)
and
®3(x, y) = x4+ y4 —x3y8 4 23.32.31(x3y? 4 y5x?) — 22.3%.9907(x%y + y°x)
+2-3%.13.193.6367w%y% + 21°.3°. 5%. 17. 263(x?y + xy?)
+21°.32.83(x3 4+ )%) 4-2%0. 3% 5%(x% + %) — 231.5°. 22973y + 2% 3. B (x + ).
(18)
One can verify in a straightforward way thé commutes with@s: this is equivalent to checking that the
resultant of@a(x, t) and@3(y, t) with respect ta is symmetric in(x, y). In fact, any®, commutes with anyp,,
since they form a non-linear realization of the multiplication of integers. According to the commutation criterion of
Veselov these correspondences are thus integrable. This is in agreement with the fact that they can be parametrize
in terms of modular functions. On the other hand if we apply the criterion of the number of images say,
we find the sequencl¥ = 3,7, 15,31, 63,127, ... which clearly exhibits exponential growtvf = 2N,,_1 + 1).
Thus we are here in the presence of two different criteria which yield different answers. One would be tempted to
adopt the commutation criterion of Vleselov but we must remark that: (a) no constructive method for the derivation
of the commuting correspondence is proposed, and (b) the case at hand is very special in the sense that the curve

@, (x, y) have arational parametrization. The cases we examined above are not rational curves and thus, the parallel
to Veselov's case is questionable.

6. Perspectives

We have shown how to explicitly integrate a second order mapping with rational invariant in terms of elliptic
functions,whatever the degree of the invariant is. The question of whether all these mappings can be transformed
into QRT ones (with bi-quadratic invariants) remains open at this stage. We have also shown that, although the
curve is associated to the invariant of some (integrable) mapping, the natural correspondences are generally not
integrable. This result was obtained through the study of the growth of the number of images of a given point.
In the case of modular functions, we have analyzed the integrability of correspondences using also the criterion
proposed by Veselov. The result was that the two criteria give contradicting answers. This is an indication that they
may be related to different kinds of integrability, and such a possibility will be studied elsewhere.
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