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We show that any hamiltonian system, which is integrable in the sense of Liouville, admits a Lax representation, at least locally 
at generic points in phase space. We introduce the most general Poisson bracket ensuring the involution property of the integrals 
of motion and existence of a Lax pair. We give examples of the structure we describe. 

1. Introduction 

Lax pairs are the main tool available in the present 
to produce equations o f  evolution possessing con- 
served quantities [ 1 ]. Their existence does not refer 
a priori to any symplectic structure or Poisson 
bracket. However, the use of  Lax pairs in the realm 
ofhami l tonian  systems [2],  proves extremely useful 
to produce systems which are integrable in the sense 
o f  Liouville [ 3,4 ]. We will place ourselves in this set- 
ting, and consider hamiltonian systems. A Lax pair 
L, M then consists o f  two functions on the phase space 
of  the system, with values in some Lie algebra .% such 
that the (hamiltonian) evolution equations may be 
written 

dL 
dt - [L, M]  ( 1 ) 

( [ ,  ] denotes the bracket in the Lic algebra .if). We 
will denote by G the connected Lie group having f¢ 
as a Lie algebra. 

The interest in the existence of  such a pair origi- 
nates in the fact that it allows for an easy construc- 
tion o f  conserved quantities. Indeed, the solution o f  
eq. ( I ) is o f  the form 

L ( t )  = g - ~  ( t ) L ( O ) g ( t )  , 

~r Work supported by CNRS. 

where g ( t )~  G is determined by the equation 

dg 
M = g - ~ .  

It follows that if I is an Ad-invariant function on ~, 
then I ( L ( t )  ) is a constant of  the motion. Integrabil- 
ity o f  the system in the sense o f  Liouville demands 
that these conserved quantities be in involution, i.e. 
Poisson commute.  

It is an open question to know if all integrable sys- 
tems have an associated Lax pair, and what is the de- 
gree o f  generality of  the algebraic structures Com- 
monly used in the domain, as for example the r-matrix 
and the classical Yang-Baxter equation [2,5,6 ]. 

We first show that any hamiltonian system with a 
finite number  o f  degrees o f  freedom, which is inte- 
grable in the sense of  Liouville, admits a Lax pair, at 
least locally at generic points in phase space. Con- 
versely, we introduce the most general Poisson 
bracket ensuring the involution property and exis- 
tence o f  a Lax pair. We show that standard Poisson 
brackets like the Kiriliov and the r-matrix brackets, 
are special cases o f  the structure we describe. We also 
present two especially interesting examples, related 
to the theory of  multihamiltonian systems. 

We will not dwell here on the infinite dimensional 
case, although the generality and the algebraic nature 
o f  the structures we describe guarantee that they will 
bear on the case. These structures actually already 
appeared precisely in the same form in the work of  
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Maillet [7] on non-ultralocal two-dimensional field 
theories. More examples will appear shortly [ 8 ]. 

2. Existence of a Lax pair 

Consider a finite dimensional hamiltonian system, 
with n degrees of freedom, Poisson bracket {, } and 
hamiltonian h. Suppose it is integrable in the sense of 
Liouville, i.e. it possesses n integrals of  the motion b;-, 
i=  1, ..., n, which are in involution. The Liouville 
theorem states that there exists, at least locally and 
outside of critical points, a system of conjugate co- 
ordinates I,  Or, i= 1, ..., n, where the Ij are functions 
of the F ' s  only. In these coordinates, the equations of  
motion take the very simple form 

I j = 0 ,  (2) 

Oh 
Oj-  Olj" (3) 

To prove the existence of a Lax pair, it is sufficient to 
exhibit one such pair. This is straightforward in the 
action-angle coordinate system as we now show. In- 
troduce the Lie algebra ff generated by {t l ,  Ei, i= 1, 
..., n} with relations 

[H, ,HA=O,  

[H,, Ei] = 2goEj, 

[E,,Ej] = 0 .  (4) 

Set 

L= ~ lflj+26o~Ej, 
j = l  

M =  ~ Oh 
j=, o-ijj Ej " 

The equation 

L = [ L ,  MI 

is equivalent to eq. (2,3). 

Remarks. 
( 1 ) A Lax pair is by no means unique: even the Lie 

algebra ~ may be changed. 
(2) The Lie algebra ~ given by eq. (4) has a nat- 

ural representation by 2n X 2n matrices. 

(3) There is a natural gauge transformation group 
acting on the Lax pair: 

L--,g- ILg, 

M - - , g - ' M g + g -  1 dg 
dt ' 

where g is a G-valued function on phase space. 

3. Poisson structure 

A Lax pair provides us with conserved quantities 
without referring to a Poisson structure. The notion 
of Liouviile integrability requires the knowledge of a 
Poisson structure together with the involution prop- 
erty of  the conserved quantities. We shall now de- 
scribe the general form of Poisson structures which 
ensure the involution property for the conserved 
quantities furnished by the Lax pair. Suppose we are 
given a Lax pair L, M in some matrix representation 
of some Lie algebra .~. Assume that the matrix L may 
be brought to a diagonal form A by some gauge trans- 
formation. In other words we have the matrix relation 

L = S - ~ A S .  (5) 

The matrix elements 2k of the diagonal matrix A are 
the conservcd quantities. We will not care here about 
the independence of these quantities. 

Letus introduce some notations. Let X, be a basis 
of the Lie algebra ~. We can write 

L= E L.X.. 
P 

The L u are functions on phase space. We may evalu- 
ate the Poisson brackets {L u, L ~} and gather the re- 
sults as follows: set 

L, =L® 1 = E L~(x.® 1), 
/.t 

L2 = l ® L =  Z L . ( l ® X . ) ,  
/ t  

{L,, L2}= E {L~. L"}X.®X.. 
. u  

and i f a e  ,~® if, denote 

a=Otl2 = ~ oL~l'Xu®Xu, 
g v  

a2~ = Y~ a " " X , ® X , , .  
p g  
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Proposition. The involution property of  the eigen- 
values of  L is equivalent to the existence of  functions 
over phase space a and b with values in f¢® (9 such 
that: 

{Lt, L2}=  [a~2, Lt]  + [bt2, L2] . (6)  

Proof We use eq. ( 5 ) in a matrix representation of  
-~ (and G) .  Assume first that {;tj, ;t:} =0 .  Since S i s  a 
function on the phase space, we may compute  brack- 
ets like S~-tS~ ~ {S~, $2 } or Si -~ {S,, A2 }. We get 

{L,, S 'A2S2} 

= [al2, L I ] +  [bl2, L2] , 

with 

al2 = -q12 + ½ [k12, Lz] , 

b ,2=q2,  +½ [ kl2, L, ] , 

where we have defined 

q,2 =S F' S~ ' {SI, A2 }S2 , 

kl2 =S? l Sy t  {Si, S2 } . 

We have used the freedom to change a and b by 

a t2  ~a~2 + [ct2, L2] , (7)  

bl2--,b,2- [cl2, Lt ]  , (8)  

for any ce ¢#® ~#, t o  distribute evenly the term con- 
taining k~2 between a and b. 

Conversely, suppose we have 

{L,, L2} = [at2, L, ] + [bl2, L21 , 

then in any matrix representation 

{L~, L~ ' }=  [a~'~ m, L, ] + [ b~'~", L2] (9)  

with 

n - - I  m - - I  

ate"= E Z LT-P- 'L~  -q-I~ r p t a  ~ 12 a--, 1 -L '2  
p = O  q = O  

n - - I  m - - I  

bT~ '~= Z Y'. L':-P-'LT-q-tb,2L~(L~ • 
p=O q=O 

Taking the trace o feq .  (9) ,  we get the desired invo- 
lution property. 

Proposition. Suppose we have 

{L,, L2}= [a12, L, ] + [b,2, L21 . 

I f  we take as a hamil tonian t r (Ln) ,  then the equa- 
tions of  motion have a Lax representation. 

Proof Set m =  1 in eq. (9),  take the trace of  it over  
the first space, and get L =  [L, M]  with 

M = - n t r t ( L T - l  b,2) . 

4. Properties of the Poisson structure 

4.1. Action of the gauge group 

The form of  the bracket is preserved by gauge 
t ransformations,  i.e. if  

{L, ,L2}= [a,2, L , ] + [ b , 2 ,  L:]  , 

and 

L ' = g - ' L g  (10) 

then 

{Li,  L~}=  [a]2, L ] ] +  [ b ] z , L ~ ] .  

A direct calculation shows that 

a'~2 =g?~g~  (a,2 - { g , ,  L2}gi -~ +½ [u,2, L2] )g, g2, 

6'12 =gv tgY '  (bl2 - - { L , ,  g2 }gyL + ½ [U,2, L, ] )g, g2, 

where 

Ul2={g,,g2}gFl gy I . 

4.2. Antisymmetry 

The ant i symmetry  of  the Poisson bracket 

{L,, L2)= -(L2, L, } 

implies 

[al2 +b21, L~] + [a21 +bl2,  L2] = 0 .  

Consequently if we set 

d12 = ½ (al2 - b 2 t  ) 

then the bracket reads 

{L,, L2 } = [d,2, L,  ] - [d21, L2 ] . ( 1 1 ) 

In this form the ant isymmetry property of  the bracket 
is explicit, although d has no special symmetry  prop- 
erty. This form contains the same information as eq. 
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(6). It is the one we will use in the sequel. 
Notice that the ambiguity (7), (8) gives the pos- 

sibility of redefining d by 

d12~dt2 + [o'12 , L2] , (12) 

where a is symmetric, without changing the Poisson 
bracket. 

4. 3. Dualization 

Suppose f¢ is a Lie algebra equipped with a non 
degenerate invariant scalar product ( , ) .  We will use 
a basis {X~} of ~, and denote g ~ =  (X/,, X~) and g~" 
its inverse. L may be viewed as a linear form on f¢. 

X~ %--,L(X) = (L, X ) .  

We may as well view d as a linear map D : ~--. f#. If  

d12 = ~ d~X/ ,®Xv,  
l zv  

then 

D(X) = ~ du~Xu(X~, X ) ,  (13) 
t zv  

and eq. ( 11 ) also reads 

{L(X), L( Y)} = L (  [X, YID) (14) 

with 

[X, Y]D=[D(X),  Y]+ [X,D( Y) ] . 

Notice that no particular symmetry of d is assumed 
here. 

4.4. Jacobi identity 

It is straightforward to write the Jacobi identity on 
the Poisson bracket. One gets the following con- 
straint on d (see ref. [ 7 ] ): 

[LI, [dl2, d13] + [dlz, d23] + [d32, d13] ] 

+ iLl,  {L2, d,3}-{L3,  d12}1 

+cyclic permuta t ions=0.  ( 15 ) 

Using the previous dualizati0n, we may write an 
equivalent equation on D: 

L([X,  [ D ( Y ) , D ( Z ) ] - D ( [ Y , Z ] D ) ] )  

+ L ( [ X ,  {L(Y), D ( Z ) } - { L ( Z ) , D ( Y ) } ] )  

+ cyclic permutations = 0.  (16) 

Solving this equation amounts to classifying integra- 
ble hamiltonian systems. We will comment on this 
equation in specific examples. 

Remark. Eq. ( 15 ) was already obtained in ref. [7]. 
Notice that the first terms in eq. (15), which are the 
only remaining ones if d happens to be constant are 
very similar, but not quite identical to the usual clas- 
sical Yang-Baxter cquation. They are i fd  is not only 
constant, but also antisymmetric. 

5. Examples 

We give here a few examples of  Poisson brackets 
taking the form we have described. 

5.1. Classical r-matrix 

In the approach of classical hamiltonian integrable 
systems developed by the Leningrad School, the key 
equation is [2,5 ] 

{LI, L2},= [r12, LI + L 2 ] .  (17) 

We may assume r antisymmetric i.e. rl 2 = - r21, since 
the symmetric part of r does not contribute to the 
Poisson bracket. Eq. (17) is a particular case of eq. 
( 1 1 ), for a constant antisymmetric d. 

An example of this situation is provided by our ex- 
istence theorem of section 2. Recall that for each de- 
gree of freedom 

L = III + 210E, 

where [H, E] = 2E. It is straightforward to check that 
d = H ® E - E ® H .  Notice that d is constant and is an 
antisymmetric solution of the classical Yang-Baxter 
equation. 

This shows that all integrable systems have an r- 
matrix. However the statement is not globally true 
over phase space unless there is a global action-angle 
coordinate system. 

5.2. Kirillov bracket 

Suppose ff is a Lie algebra equipped with a non 
degenerate invariant scalar product as in paragraph 
(4.3). 
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Proposition. 

dK=½ ~gu~Xu®X~ 

corresponds to the Kirillov bracket. 

Proof By dualization, we get D =  ½, and eq. (14) 
yields the result 

{L(X),  L ( Y ) } K = L ( [ X ,  Y ] ) .  

5.3. Two quadratic Poisson brackets 

In the mult ihamil tonian approach to integrable 
systems, one uses the notion of  compatible  Poisson 
brackets, i.e. pairs o f  brackets such that any linear 
combinat ion of  them still verifies the Jacobi identity. 
We will use an ant isymmetr ic  solution of  the modi-  
fied Yang-Baxter  equation to produce such pairs of  
brackets. Recall that  re f#® ~ is an ant isymmetr ic  so- 
lution of  the modif ied Yang-Baxter  equation if 

r=rU~Xu®X~, rU~=-r~ , ,  

and 

[ R ( X ) , R ( Y ) ] - R ( [ R ( X ) ,  Y I + [ X , R ( Y ) ] )  

= -  [X, YI vX, Y¢ ~ ,  

where R : f f ~  ff is defined by 

R(X)  = ~, ru~Xu(X~, X ) ,  
lay 

as in eq (13) .  We will denote R+ = ½ ( R +  1 ) and R_ 
= ½ ( R - l ) .  

We will assume that  f# is the Lie algebra of  some 
associative algebra d ,  i.e. 

[X, Y] = X Y -  YX , 

and thc existence of  a trace tr on .z¢ such that 

t r (XY)  = t r (  Y X ) .  

In what follows we understand Ls .~ '  and d~¢®,~¢.  
- The first quadratic bracket  is the one appearing in 
the r-matrix formalism [2]: 

(L, ,  L2} + = [r,2, L, L2] . 

To write it in the form ofeq.  ( 11 ), it suffices to define 

d12 = ½ ( -Lzr2t +rl2L2)  • 

I f  r is ant isymmetric ,  this reduces to 

dl2 = ~ (Lzrl2 +rlaL2) • 

In the dual form 

D + (X)=  ½R (LX+ XL) 

or 

D + (X) = R +  (LX) +R_ ( X L ) ,  (18) 

if  we use the f reedom (12) with a=dK.  
- The second bracket has been introduced in ref. [ 9 ]. 
It reads 

{L(X) ,  L (  Y)}_ =t r l2(  [Xt,  L, ]rt2[ Y2, L21 ) 

+ t r ( L 2 [ X ,  Y] ) • 

In the standard matrix basis {Eo} we have 

d,2 =½ [r,2, L2] + ~~ LijEiv@Epj. 
ijp 

It may be written in the form (14) with 

D -  (X) = ½R( [L, X] ) + L X ,  

or 

D -  (X)  = R +  (LX) - R _  (XL ) . (19) 

We know that  the brackets defined by eq. ( 18 ), and 
eq. (19) verify the Jacobi identity. Consequently D + 
and D -  verify eq. (16) ,  as can be checked directly. 

Proposition. (Refs. [6,9] .)  The bracket {, }+ is 
compatible  with {, },, and the bracket {, }_ is com- 
patible with {, }K 

Proof Let f x (L  ) = t r ( L X ) .  Then 

( {fx, fr}+ +).OCx, fr}r) (L) = OCx,fr} + ( L + ) . I ) ,  

and similarly for the brackets {, } _ and {, }K. 

R e f e r e n c e s  

[ I ] P.D. Lax, Comm. Pure Appl. Math. 21 (1968) 467. 
[2 ] L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in 

the theory ofsolitons (Springer, Berlin, 1986). 
[ 3 ] J. Liouville, J. Math. (J. de Liouville) XX ( 1855) 137. 
[4]V. Arnold, Mrthodes mathrmatiques de la mrcanique 

classique (MIR, Moscow, 1976), 
[5] L.D. Faddeev, lntegrable models in 1+1 dimensional 

quantum field theory, Les Houches lectures (1982) (Elsevier, 
Amsterdam, 1984), 

415 



Volume 237, number 3,4 PHYSICS LETTERS B 22 March 1990 

[ 6 ] M. Semenov Tian-Shansky, Funct. Anal. Appl. 17, 4 (1983) 
17. 

[7] J.M. Maillet, Phys. Lett. B 162 (1985) 137; B 167 (1986) 
401; Nuel. Phys. B 269 (1986) 54. 

[ 8 ] J. Avan and M. Talon, Integrability, Poisson bracket structure 
and quantization of the Moser-I~lhlenbeck model, in 
preparation. 

[9] F. Magri, Geometry and solitons equations, Colloque La 
M6canique Analytique de Lagrange et son H6ritage (Coll6ge 
de France, 1988); 
Y. Kosmann-Sehwarzbach, The modified Yang-Baxter 
equation and bihamiltonian structures, Lecture XVII Intern. 
Conf. on Differential geometric methods in theoretical physics 
(Chester, 1988). 

416  


