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Abstract. In an appropriate mathematical framework we supply a simple proof 
that the quotienting of the space of connections by the group of gauge 
transformations (in Yang-Mills theory) is a Coo principal fibration. The 
underlying quotient space, the gauge orbit space, is seen explicitly to be a Coo 
manifold modelled on a Hilbert space. 

O. Introduction 

In [1], Singer announced interesting results on the quotienting of the space of Coo 
connections of a principal G-bundle [on compact orientable Riemannian space 
without boundary by the group of gauge transformations under appropriate 
restrictions (essentially free group action)]. In particular [1], the quotienting is a 
principal fibration, and the underlying quotient space (gauge orbit space) is Coo 
manifold. In [2] Narasimhan and Ramadas prove independently that the 
quotienting in question is a principal fibration (for Sobolev spaces of connections). 
In [1, 2] it is proved that when G=SU(N), and the initial base space S ~ (d= 3, 4), 
the corresponding fibration is nontrivial. The gauge orbit space is not contractible. 
Thus continuous global gauge fixing (section) is not possible. 

These global results are of relevance to quantum gauge field theory where the 
dynamical variables are supplied by the gauge orbit space. 

The present paper is motivated by the need, on the part of gauge fieId theorists, 
to understand better the geometry of the gauge orbit space, for reasons adduced 
below. We return to the quotienting of the space of irreducible connections by the 
group of gauge transformations (restricted to free group action) within the 
mathematical framework of [2], i.e. we work with Sobolev spaces of sections of 
various bundles. We prove that the gauge orbit space is a C °o manifold modelled 
on a Hilbert space. In order to prove this directly, and to exhibit the Coo structure, 
we give an alternative proof (to that of [2]), that we have a principal fibration, in 
fact a Coo fibration. Our strategy is to use the existence of local sections to give 
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man i fo ld  s t ructure  to the orb i t  space and  exploi t  the inverse function theorem to 
prove  C ° local triviali ty.  The  p r o o f  au tomat i ca l ly  supplies  C ° mani fo ld  s t ructure  
to the gauge orb i t  space. 

I t  is well k n o w n  that  the physical  degrees of  f reedom in Yang-Mil l s  t heo ry  are  
the space of  connec t ions  m o d u l o  the g roup  of  gauge  t ransformat ions ,  i.e. by  the 
gauge orb i t  manifold.  This is t rue in Eucl idean  field theory  and  par t i cu la r ly  
t r anspa ren t  in the canonica l  fo rmal i sm where the gauge orb i t  mani fo ld  appea r s  as 
the t rue  conf igura t ion  space for a non-s ingula r  dynamica l  system [1 t1. The  gauge 
orb i t  man i fo ld  has  a na tu ra l  (weak) R iemann ian  s t ructure  [1, 3]. I t  has recent ly 
been shown [3] tha t  the assoc ia ted  (formal) vo lume element  eva lua ted  in local  
coord ina tes  gives rise to the F a d d e e v - P o p o v  de te rminan t  (associated with 
F e y m n a n - D e W i t t - F a d d e e v - P o p o v  quant izat ion) .  An i m p o r t a n t  s tep in g lobal  
quan t i za t ion  would  be to give a mean ing  to this volume element.  F o r  these and  
re la ted quest ions  a deeper  unde r s t and ing  of the gauge orb i t  mani fo ld  appea r s  
indispensable .  
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Remark. For Sobolev spaces of sections of fibre bundles, see Palais [4], For manifolds of maps, see 
Palais [4] and Eells [5]. Section II is expository. In Sect. II-IV we set up the background for the main 
theorem of Sect. V. 
See [10] for an introduction to geometry of gauge fields. 

Note added. Since this article was submitted for publication, a Feynman-Kac integral with re- 
gularisation for continuum Yang-Mills theory has been rigorously constructed in [12] working directly 
in the gauge orbit space of this paper. 

I. Preliminaries 

A. Yang-Mil l s  potent ia l s  will be identif ied with connect ions  in a pr inc ipa l  C ~ 
G-bundle  P(M,  G). The s t ructure  g roup  G is t aken  to be a compac t ,  connected  
semi-s imple  ma t r ix  Lie group.  The  base  space M is t aken  to be a compac t  finite- 
d imens iona l  or ien ted  C a R iemann ian  man i fo ld  wi thout  boundary .  

W e  have two s i tuat ions  in m i n d :  
(i) M is mode l  of  4-d imens iona l  Eucl idean  s p a c e - t i m e  

(ii) M is mode l  of  3-d imens iona l  Eucl idean  s p a c e .  

The la t ter  case cor responds  to gauge field theory  viewed as a (canonical)  
dynamica l  system [111. Compac tness  is t a n t a m o u n t  to a s t rong form of  b o u n d a r y  
condi t ions  on fields, necessary for topo log ica l  field conf igura t ions  and  b o u n d e d -  
ness of  the ac t ion  integral.  I t  is a "volume cutoff ' .  
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B. Gauge Transformations. A C ~° gauge transformation is a C a equivariant 
automorphism of P(M, G) which induces an identity transformation on M. It is 
necessarily fibre preserving. 

Let f : P ~ P ,  u ~  f(u) 

f(ua) = f(u)a, as G (1.1) 

be a gauge transformation. 
Since each gauge transformation f is a fibre preserving automorphism, it may 

be realised as: 

u ~  f(u)=ug(u), (1.2) 

where g : P ~ G  

g(ua) = a-  lg(u)a, a s  G. (1.3) 

If A is C °° connection 1-form in P, then f * A  is the C °~ gauge transformed 
connection. 

C a gauge transformations form a group, also a transformation group on the 
space of connections of P. 

We make contact with the usual definition of gauge transformations. Let 
{%, (0~} : C °° bundle atlas. {a#=} system of neighbourhoods covering M, and 

q~ :~-  l(o/g~)__+q/~ x G (1.4) 

diffeomorphisms (r~ :P-+P/G = M;  canonical projection). Let 

%:°Ill--P, it.a= =id]~= (1.5) 

be a system of local sections. 

If xe°//,c~°g~, we have: 

cr~(x) = ~=(x).v2~(x),  (1.6) 
VJ~e :%c~%-~6 

smooth transition functions satisfying the co-cycle condition. 

From (1.2), 

f(%(x)) = %(x). g~(x), (1.7) 

where g~(x)-= g(%(x)). 

Thus under a gauge transformation: 

o-&)-,o-&)- ~(x). (1.8) 

Let A <=) = ~r*A, connection form on ~//~. Then we have gauge transformation: 

A{~)~A{~).g~ = Ad0; ~. A (~) + g~- *dg~ (1.9) 

(1.6, 1.7)~g e = adw~ .g= (1.10) 

pointwise for xc  q~mqZ~. 
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Thus the gauge transformation group f# may be identified with the set of 
families {g~}, g ~ : q l ~ G  satisfying (1.9), with pointwise group operations, or 
equivalent with C ~° sections of some bundle (see later). (1.9) may also be written: 

A(~)_.) A(~) .g~ = A(~) + g~ i da(~)g~. (1.11 ) 

dA(~) = a + [A (~), ] .  (1.12) 

where da(a ) is exterior covariant derivative in some bundle (see (1.23)). 

C. Global Transcription. Following [6], we introduce the associated gauge bundle 
(bundle of groups) 

E G = P x  ~G (1.13) 

with G having adjoint action on G (second factor). 
We shall identify the group of gauge transformations f# with the space of all C ° 

sections (with pointwise group operation) 

f# =F(EG). (1.14) 

We define the normal subgroup f#o: 

fyo = {g e f~, g(xo) = e}, (1.15) 

where x o is some definite point of M, chosen once for all. Note that 

f#/ffo = G. (1.16) 

We also define the subgroup: 

where ~e is the center of f¢. 

f~ = f# /~ ,  (1.17) 

We introduce the adjoint bundle (as in [6]) 

Eaa = P x GL(G), 

where G has adjoint action on its Lie algebra L(G). 
We define 

=r(Eaa). 
and 

(1.18) 

(1.19) 

c~a o = {{e ~l{(Xo)=0}.  (1.20) 

Later on, once Lie group structure has been introduced in f4 (respectively f¢0), 5ie 
(respectively 2%) will be identified with its Lie algebra. 

Let 

d =  space of all C ~ connections on P(M, G) (1.21) 

s~TC d = subspace of irreducible connections. (1.22) 

and 

For  A s d ,  

d A :T(Ead)--+F(Eaa@A 1) (1.23) 
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is exterior covariant derivative (local expression is (1.12)). We have a right 
N-action on d :  

ag x N--+d,  

(A, g)~A .g = A + g- l dag. (1.24) 

It is useful to introduce one more structure. 
Recall that the structure group G is a matrix Lie group, hence a subset of 

M(n, C) (algebra of n x n complex matrices). 
We introduce the associated bundle of matrices : 

E~t(, ' ¢) = PxGM(n, C), (1.25) 

where G has adjoint action on M(n, 112). We also introduce the space of C ~ sections 

= F(EM(n, ¢)), (1.26) 

where ~ has the structure of an infinite dimensional algebra (pointwise the 
structure of a matrix algebra). We have both: 

N C ~ ,  £°C~ (1.27) 

II. The Group of Gauge Transformations 
as an Infinite Dimensional Lie Group 

A. Topological Group 

We obtain from N a group with the structure of a Hausdorf  topological space, in 
fact a complete metric space, and verify it is a topological group. 

Since [see Eq. (1.27)] 

NCN 

we shall give a topology on N and to N the induced topology. To give the topology 
on ~ we exploit the fact that N has pointwise the structure of a matrix algebra. 

Let {~/~, q~} : C ~ bundle atlas for P(M, G) as in (1.4), and { ~ ,  £}  : C ~° atlas for 
M. Then for gl,gzE~, we introduce the norms: 

where 

IIgl - -  g l  Ilk = ( ~  H q~e(gl --  g 2 ) ~  1 112) 1/2 ' (2.1) 

k 
2 t" 2 ]tq~(g~-g2)£-~lI~=Ilg~,~-g2 ~]k = ~ dvol  ~ D (g~ ~-g2,~)] - 

f~(o/~) d = 0 

Here g~,~ is the fibre coordinate of the section g~ over q/~, and 

i f  j2 =(f,f)=trf*f.  

d(vol) is the volume element with respect to Riemannian metric on M. This gives 
an admissible norm on ~.  (See Palais [4], Sect. 4.) 
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Nk is the completion of ~ using (2.t). fak is the completion of fa in the induced 
metric (Sobolev space of sections), fag is closed in ~k for k > dim M/2 (Eells [5], 
Sect. 6), using the Sobolev embedding theorem and the fact that the structure 
group G is closed in M(n,(E). See also [2]. Using the Sobolev inequality: 

IIf'gltk <const  tt ftlk' llgtlk, (2.2) 

valid for k > (dim M)/2, it follows that the group operations in fag are continuous in 
the above topology (exactly as for finite dimensional matrix groups). Thus fak (and 
also fao, (~k) are topological groups. 

B. Lie Group Structure 

We have ~¢=F(E~d)C~. Let ~1,¢2~5¢, 4i,~ (i=1,2) the fibre coordinates of the 
sections of Ead, over d//~CM. Then [similar notation as before, (2.1)] we can 
introduce the distance f[ flk in Y :  

k 

II~l-~zll~=2 S d(vol) ~1Dt(~1,~-42,~)1~(~), (2.3) 
f~,(ez~) C = 0 

where ~gtLZ(G)= (X,X)L(a), the bi-invariant metric on the Lie algebra L(G) of the 
structure group G. We have the completed Sobolev space of sections of the adjoint 
bundle : 

~k= Fk(Ead) C ~k . (2.4) 

tt is a Hilbert space. 
Let Vk(0 ) C ~k be a sufficiently small neighbourhood of the origin. Since L(G) is 

the Lie algebra of the (compact) Lie group G we can introduce, pointwise, the 
exponential map: 

exp" Vk(0 ) ~ fag C ~k (2.5) 

U., 

Using the CampbeU-Haussdorf formula and the inequality (2.2), we have: 

exp (4 + h)- exp ( -  ~) = exp (#(4)" h + r(h, 4)), (2.6) 

where 

(i) #(~) :~e k ~ ~e k 

is linear and continuous. Explicitly: 

~o (_1)~ 
#(4)h = ~ ,--7 77, [... [[h, ~], ~],..., 4] 

= 0 I~g  "1- 1 ) : ~,~ f a c t o r s  

=h+(9(4) 

#(4),1¢=0 =id  

K e r # ( O = ~ ,  sufficiently small ¢ in II Ilk 

(ii) lit(h, ~)llk <const  lthIl~ "c(O. 
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Thus the exponential map is differentiable (easily generalised to C~). Moreover, 
using the inverse function theorem, the exponential map provides a local 
diffeomorphism. Thus we have: 

Proposition 2.7. There exists a sufficiently small neighbourhood of  the identity e, 
Nk(e)Cfqkfor which the exponential map (2.5) provides a chart in ~k" 

Let Mk(e ) C Nk(e) (neighbourhoods of identity) such that 

Mk(e)" Mk(e) C gk(e). 

Let gl = exp 41, g2 = exp 42 e Mk(e). By the Campbell-Haussdorfformula : 

g l "g2 = expf(41, 42), (2.8) 

where the CampbelI-Haussdorf power series : 

f(41, 42)= 42 + 42 +½[4~, 423 + . . .  (2.9) 

converges absolutely in 5~ k for sufficiently small 41, ~2 [use (2.2)]. Thus we have 
coordinates by the exponential map: 

gl" g2 ~ f(41, 42), (2.10) 

where f is C °°. Thus we have: 

Proposition 2.11. The topological group f#k is a local Lie group, moreover ~Lf k is its 
Lie algebra. 

We shall now transport the C ~ structure [provided by the exponential 
map in Nk(e ) C ~k] everywhere in f#k by right translation by the following standard 
method" consider a neighbourhood of identity M'k(e) such that 

M,k(e)- 1. M,k(e) C Mk(e). (2.11) 

Then 

M'k(e) C Mk(e) C Nk(e) . 

Let a~(~ k. Then M'k(e)a provides a neighbourhood of a. 
t We now define a chart on Mk(e ). a. 

g~M'k(e)'a. 

Then, 

Then 

(2.12) 

(2.13) 

gives a homeomorphism of M'k(a)=M'k(e).a~ neighbourhood of origin in 5f k 
[since M'k(e)~M'k(e ) • a is a homeomorphism]. Thus (2.15) gives a chart for M'k(e ) • a 
in ~fP k. Finally, if ge M'k(al)c~M'k(a2) 

g = g ~ '  a l =g¢2"a2 (2.16) 

g ~ 4  (2.15) 

g=gca, g¢=exp4eM'k(e). (2.14) 
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whence [using (2.t 1)], a t a 2 1  aza~-le M,k(e)" We have: 

g~ = g~za2al 1 , 

whence 

Similarly 

~ ~ = f(¢2, aza? 1). (2.17) 

~2 = f(~l ,  ala;  1). 

Hence, the charts are C ~ related, and f#k is a C ~ manifold modelled on the Hilbert 
space ~ k "  

Thus we have proved: 

Theorem 2.18. (¢k (and also (#o, a3k ) has the structure of  a Lie group. &'~k may be 
canonically identified as the Lie algebra of  fak" 

k dim M Remark 2.19. For > ~ - ,  by the Sobolev embedding theorem, (#k is contained 

in the space of continuous sections of the gauge bundle. Convergence in l[ Ilk 
implies uniform convergence, (Eells, [5], Sect. 6]. It follows that f#o is closed in (#k" 
f#O is a closed Lie subgroup of f#k- 

Remark 2.20. As a consequence of Remark 2.19, the exact sequence [1] 

0--,(9o--,~k--, G--,0 

is a principal fibration. 

Ill. The Action of the Lie Group f~k ÷ 1 
on the Space of Connections d k 

A. Preliminaries 

Let Fk+ 1 -p(Eaa®AP) : Sobolev space of sections of E,a®A; O.e. p-forms on M with 
values in Eaa ) in class (k + 1 -p ) .  First introduce a pointwise inner product using 
Riemannian metric on space of forms and invariant metric on Lie algebra L(G). 
Sobolev norms are then introduced as in Sect. II. These are Hilbert spaces. 

d k is the Sobolev space of connections of P(M, G) in class k. I.e., if A 1, A2 e dk, 
then A1-Az='reFk(E~,d®A 1) and d k is an affine space. ~TkCd k is the subspace of 
irreducible connections. For  A~s¢  k or ~k, we have the exterior covariant 
derivative: 

dA :Fk + l(Ead)--* Fk(Ead)@A1) , (3.1) 

a continuous linear operator. 

Hda~llk-- -<cOnst ]]~]tk+ l" (3.2) 

For  oi~Fk+ 1-p(Ead@AP), p=0 ,  1 we have Sobolev inequalities 

TI [01, 02] H k + 1 - p < const 1[ o 1 Ilk + 1 -- p t[ 0 2  Ilk + 1 - p (3.3) 
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valid for k > (dim M)/2. We shall hold k > dim M 2 + 1, hereafter held fixed. By the 

Sobotev embedding theorem, sJ k is embedded in the space of C 1 connections. 

B. Group Action on ~ k  

We have the gauge transformations 

~4 k x ~¢~+ 1--,dk 

(A', g)--* A' "9 =A' + g -  ldAo. 

The group action is differentiable (in fact C~). Let 

A ' = A + z ,  Z6Fk(Aaa®A 1) 

A'-+z coordinatizes sJ k. 
From Sect. II [(2.11) et seq.], geM'k+l(e).a for some a~fgk+ 1. 

g ~  coordinatizes M ~  l(e).a. 
Then the map: 

reads in coordinates 

(3.4) 

(3.5) 

Fk(E,d ® A 1) x Sk+ 1-~ Fk(E,d ® A1) (3.7) 

(z, 4)~ ~b(z, 4) = a- j dAa + a- 1 (exp( -- 4)" dA exp 4)a + a -  l(exp ( -- ~)z-exp ~)a 

Using (2.6), and the inequalities (3.2) and (3.3), we obtain: 

• (z + t/, ~ + h ) -  ~b(z, 4) 

= (@.)~(z, ~)h + (q~.)~(z, ~)~/+ r l(t/, h; 4, z) + r2(h; ~, z), (3.8) 

where: 
(i) (4~,)¢ :Leg+ 1 ~Ik(E~d®Ai), linear, continuous 

(4~.)¢h = a-  t(exp ( -  4)" dA, (#(~)h) exp (O)a 
(3.9) 

A ' = A + z  

(ii) (~.)~ :Fk(E~o®A')~Fk(Eaa®A1), linear, continuous 

(4~.),t/= a -  ~(exp (-- 4)- t/- exp (4))a (3.10) 

(iii) 

lim llr2(h;~'t/)llk =0  1 
Ilall~+ ~-~o llhllk+l [ 

¢ 

lim llrll]k =c(~,v), [ 
J 

where C is a constant (depending on 4, z). 

(3.11) 

(A' ,g)~A'-g 

g = g~a = (exp 4)a (3.6) 
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We have : 
Proposition 3.12. The group action ~¢k X Nk+ 1 ~SUCk given by (3.4) is C 1 (it is easy to 
generalize to CO°). 

C. Free Action 

We now take special cases of the above. 
(a) Take d k x f¢°+1 ~'2k- 
(b) Take ~k X ~k + 1 ~ Seek' 
In both cases the group action is free: 
If A' .g=A' .  Then da,g=O, i.e. g is covariant constant. For  case (a) g(xo)=e. 

Hence by parallel transport g = e  everywhere. For  case (b), g = e  follows by 
applying d A, again and using irreducibility and "absence" of centre. 
D. From now on we restrict ourselves to the two cases of C, where we have C ~ free 
action. We shall concentrate on ~'k (subspace of irreducible connections) and 

(~k+ l =f~k+ t /~ ,  k > d i m M  2 + 1. Let 

A a = d*d A = covariant laplacian 

AA :r~+ I(Gd)-G- l(Gd), 
a continuous, linear operator. 

m 

For A e d k ,  KerAA=0 , using positivity (in L 2 of the scalar product on f~k+ 1) 
and irreducibility. From Proposition 3.3 [2], A A is also surjective. Thus A A is an 
isomorphism. 

Let GA=A~ ~, the Green's operator. We have the fundamental inequality 
which will play an important role in the following: 

tl G Ad*Z [J k + 1 < const II ~ II 
(3.13) 

A e d  k , z~Fk(E~d®A1). 

We shall use another fact: for A t  ~k C d k 

Ta( S~k) = E (  Stk) O TJ( dk) (3.14) 

is a splitting. Here T~a(~/k) may be identified with dA~k+ 1 (tangent space to orbit 
through A) and TAn(d) with Ker d~ (see Proposition 3.3 [2]). 

Now d k C d k is open in ~¢k" Hence we also have: 

TA( ~ k) = W~( fJk)O T~( fik) (3.15) 
is also splitting. 

IV. Manifold Structure for the Gauge Orbit Space 

A. We consider the C ~ free action of (?k+ t on ~k and consider the quotient space 

f~k ~ ~k/CSk + t  = gJtk, (4.1)  

where n stands for the canonical projection. We give the quotient space the 
quotient topology; so 9X k is a topological space and n is a continuous map. 
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By the structure of a manifold on 9Jl k we mean a system of neighbourhoods 
covering 9Xk, homeomorphic to open sets in a Hilbert space (model space). In this 
section we show how a manifold structure is given. In Sect. V, we will see that the 
structure is C °°, i.e. coordinate changes on overlaps are C ~°. 

B. Local Gauge Sections. Let 

Nk(A)= {A' ~ ~k[[[A'-- AI[k= ]]Z[[k < C} 

be a neighbourhood in ~k, centred at A~ ~k- 
Let 

t * t * nk(A) = {A e d~/k]da(A -- A) = dAZ = 0}. 

We define: 

(4.2) 

5~k(A) = Hk(A)c~Ng(A ) . (4.3) 

Proposition 4.4. For sufficiently small c, the set 5¢k(A) is (i) locally complete and (ii) 
91obatly effective. 

O) means : given A' ~ Nk(A), 3 unique (small) gE fgk + 1 such that A' .9~ 5~k(A) 
(ii) means: given A', A"~5¢k(A), A'~-A", there does not exist any g~f~k+l s.t. 

A' =A" "9. 

Proposition 4.4 is proved along the lines in [Sect. 6, [6] and [9]). The proof 
goes through for Sobolev spaces connections because the inequality (3.13) is valid. 
5~k(A) will be called a local gauge section. 

C. Coordinate Neighbourhoods in Orbit Space 

+ 1  = ( 4 , S )  

and ~ is continuous in quotient topology. Then, by virtue of Proposition (4.4), 

gA = ~[~k(a) :  ~ ( A ) - - + t l k ( A )  Q ~[J~k (4.6) 

is a homeomorphism [tlk(A ) is the image of 5¢k(A) under ~A]' We define : 

(7 A : tlk(A)~ Sfk(A) C dk  

ZCA' ~A = idn~(a) • 

a A is a continuous local section of (4.5). {~/k(A)} provides a system of (coordinate) 
neighbourhoods covering 9J~ k. 

Claim. ~ k  has a manifold structure modelled on a Hilbert space Yfk(Ead®A1). 
In fact % gives a chart in ~lk(A) as follows. We define: 

z(m) = A - -  O'a(m), m~ qk(A) 

and ~k(Ead ®A 1) as the Kernel of d* in Fk(Eaa ®A 1) (it is independent of A up to an 
isomorphism). ~k(E,d®A ~) is a closed subspace of Fk(E~aQA~). It is a Hilbert 
space. Clearly 5Pk(A ) is isomorphic to an open set in Jgk(Eao®A i) and 
ZE~k(Ea~®A1). 



468 P.K.  Mitter and C. M. Viallet 

V. ~/k - -~  ~k/fCk +, =~l~k as a Coo Principal Fibre Bundle 

In Sects. II-IV, we have shown that the Lie group aJk+ ~ has C °o free action on ~'k 
and the topological space 9X k has been given manifold structure [system of 
neighbourhoods homeomorphic to open sets in ~%'~k(Ead ®A ~)]. We shall now prove 
Coo local triviality. 

Let r/k(A ) be a coordinate neighbourhood in 9X k, coordinates being supplied by 
SPk(A ) (Sect. IV, B, C). We consider the map 

#A :r/k(A) × c5k+i ~rc-  l(r&(A)) 

(rot, g)-* ~ a(m', g) = a A(m')og (5.1) 

{ a A(m')= A + ze  3~(A) 

7r( A + z) = rn . 

It is easy to check that ~ is an isomorphism. To this end, define first the map: 

OA :~-  ~(t/~(A))~ ~k + 
(5.2) 

A'~gA(A'  ) 

by : 

A ' - 0 A ( A ' ) -  1 = aA(~(A,)) = aA(m')  • (5.3) 

Such a gA exists because aA(m') is a point on the orbit through A'. gA is uniqueIy 
defined because ~a+ 1's action is free. We have: 

ga(A' .g)=gA(A')-g. (5.4) 

Next we define the map: 

ZA : X- i(r/k(A))t~r/k(A ) X ~k+ 

Then 

A' ~-,)~A(A') = (rcA', gA(A')) = (m', gA(A')). 

~A(;G(A' ) )  = 4) A(m', gA(A')) = a A(m' ). g A(A') 

# A(XA(At))= A ' . 

)~A( ~ A(m', g)) = ZA(a A(m')" g) = (m', gA(a A(m'). g)) 

ZA(ea(m', 0)) = (m', 0).  

Hence ~a is an isomorphism and ~A 1= Xa. 

We shall now prove: 

Proposition 5.6. The application ~)A of (5.1) 
triviality). 

(5.5) 

is a C °O diffeomorphism (local 

Proof. We have already checked that q~a is an isomorphism. Hence it is sufficient 
to check that q~A is a local diffeomorphism. 
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Let 

Then 

m t ( , g ) e t l k ( A )  x (~k+ 1 (5.7) 

aA :m A+zeSCk(A ) (5.8) 

provides coordinates for m'. 
Let g e M~,+ l(e)-a. (M~ + i (e). a is a neighbourhood of a in ~k + 1) [see Sect. II B, 

g = g¢a = exp (~). a 

especially (2.11) et seq.]. 
Then 

and (5.9) 

provides coordinates for g. Vk+ 1(0) is a neighbourhood of the origin in ~k+ 1, the 
Lie algebra of ~k+ 1" 

Let: 

05A(m', g)e og C ~-  i (t/k(A)). (5.10) 

Here ~l is isomorphic to an open set in Fk(E~a®A1), cS~(A) is isomorphic to an open 
set in ~fk(E~a®A1), and Vk+ t(0) to an open set in Fk+ l(E~a). ~(E~a@A 1) and 
Fk+ l(Eaa) are Hilbert spaces. 
Hence we have to show, for sufficiently small ~//, SPk(A ), Vk+ 1(0), 

~b A :Sfk(A ) x Vk+ 1 ( 0 ) - - - ) . ~ ( ( 5 . 1 1 )  

is C ° and also ~b~ 1 is C% 
That ~A is C a follows from Sect. IIIB leading to Proposition 3.t2. That ~ 1 is 

C ° will follow from the inverse function theorem if we can show that the 
differential (~A), is an isomorphism of tangent spaces on both sides of (5.11). 

This we now show: 

(5.12) 

(5.13) 

(q~A), "Ta'(Sfk(A) @ T~(Vk + 1(0)) ~ 7~,.g(°g), 

using (3.8)-(3.10) 

(4~A),(t/, h) = a -  1. exp(-- 4)" (dA,(P(~)h) + tl)" exp(~), a,  

where we also have: 

(5.14) 

See (2.6) for definition of #(~). 

Claim. Ker(~bA) , = 0. 

Proof. Suppose (~A),(q, h) = 0. 
Then from (5.13)we obtain: 

d ~ = O .  

d~,(~(~)h)+~ =0 (5.15) 
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and using (5.13) 

Thus 

o r  

d* d A,(]2( 4 ) . h) = 0 

A'=A+*EG(A). 

Aa(#(¢ ). h) + d,] [z, #(4)" h] = 0 

Here G a = A~ 1 
Then, using (3.13) 

#(4)" h + G Ad*[z , #(4)" h] = O. 
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(5.16) 

(~A)*(q, h) = da,. o. h o + ~/o 

shall show there exists (unique) q, h satisfying (5.22). 

(5.22) 

and suppose: 

II/~(4)" h Ilk + 1 ~ const II [z, #(4)" hi IIk 

~ const I[vllk" 11~(4)" hlbk 

11#(4)" hllk+ 1 N const Ilzllk" ll#(4)" hi]k+ 1- (5.17) 

(5.17) implies that (5.16) has the unique solution 

#(4)h =0  (5.18) 

for sufficiently small ~(A).  From (5.18) and (2.6)0) we have h = 0  for sufficiently 
small Vk+ 1(0) (exponential map is a local diffeomorphism). 

From (5.18) and (5.15) using (3.2) we have ~/=0. The claim has been proved. 

Claim. (~a), is surjective. 
Writing 9 = (exp 4)" a (5.9) we can express (5.13) as: 

(~a),(t/, h) = d A,.o(Adg_ 1(#(4)" h) + GA. 0 . d*,.o- Ado-l" t/) + HA, o(Adg_l, t/), (5.19) 

where 

n A, = 1 - G," G ,  G , .  (5.20) 

Then (~A). induces a surjective map: 

TA,(Sek(A))O T¢(Vk + 1(0))-* T~,. o(q/)~3 TJ,. o(q/), (5.21) 

where ~ ,  o(~k)is the tangent space to the orbit through A' "9 and TAh,.0(~k)is the 
orthogonal complement [in the natural Riemannian metric on G(E,a®A1)]. 

Let us prove surjectivity of (5.21). 
Let 

dA,.ohoe T~,.o(~II), floe ThA,.o(ql) 
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From (5.19) and (5.22), we have: 

(i) 17o = H A ' . o ( a d o - ,  "17)= Ado-l(HA'(17)) I (5.23) 

(ii) dA, oh o =dx,.o(Ad a_ l(#(~)h + GA,d~,rl)). J 
From (5.23)(i), (5.20) and using d]r/=0,  we have: 

F(z ,  17) =--- 17 + d A, G A, • [ z , ,  17] = Adgqo. (5.24) 

From (3.2), (3.3), and exploiting (3.13), we have F is continuous. Moreover 
F,,,[,= o = id. Hence by the implicit function theorem, for sufficiently small 5~k(A), 
(5.24) admits a unique continuous solution. 

17 = 17(~, 170, g ) .  (5 .25)  

Returning to (5.23)(ii) we have, using irreducibility, "absence" of centre in 
~k+ 1, and that exponential map is a local diffeomorphism (Proposition 2.7), the 
unique solution: 

h = - I~(~)- l(GA,d~,17(z, rl o, g) - Adoho). (5.26) 

Again using (3.13) and (Theorem 2.7) h is continuous. Thus surjectivity of (5.21) 
has been proved (in the process we have constructed a continuous inverse). 

On the other hand, by virtue of (3.15) 

TA,. o(a~)-+ T~',. o(q/) • TAb,. O(q/) (5.27) 

is an isomorphism. Combining (5.21) and (5.27) our claim is proved. Hence we 
have proved that (#A), is an isomorphism. Thus by inverse function theorem ~b A 1 
is Coo. The proof of Proposition 5.6 is complete. 

By virtue of opening remarks of Sect. V and Proposition (5.6), we have proved 
the main theorem: 

Theorem 5.28. ~k---~ ~k /~k  + 1 = ~[J~k is a Coo principal f ibre bundle with the Lie group 
~k+ 1 as structure group. 

Theorem 5.29. ~J~k is a C °o Hitbert manifold. 

Proof. Let ra' E17k(A1)n17k(A2). 
We have: 

~ r & ( m ' ) = A ' i = A i + v i ~ ( A i )  , i = 1 , 2 .  

Then we have coordinates: 

m'-~, i , i = 1, 2 

in local charts. From (5.3) we have the coordinates change formula: 

(T Ai(m,) = ~ A~(m,).gAl(ff  A2(m,))- i 

o r  

Z 1 = (A 2 - A 1) + gA1 (~2)' d & ( g a , ( z 2 ) -  1) + Ada~(~z). v2 

"C 1 = F aia2('C2). 
(5.30) 
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W e  have  p roved  ~ 1  = L 4  (5.5) is C ~ a n d  hence  the  m a p  9A of  (5.2) is C ~°. The  
m a p  F [-between o p e n  sets of  ~Fk(Eao®A1)] of  (5.30) is the c o m p o s i t i o n  of  the C ~ 
m a p  9A wi th  a gauge  t r a n s f o r m a t i o n  which  is also C ~ by  v i r tue  of  T h e o r e m  3.12. 
H e n c e  the  c o o r d i n a t e  change  m a p  F is C ~. 

Remark 5.31. gJl k is separab le  since ~ k  is seperable,  I t  can  be s h o w n  tha t  9J~ k is 
met r izab le .  Hence  it  is H a u s s d o r f  a n d  p a r a  c o m p a c t  a n d  has  a c o u n t a b l e  
topo log ica l  base. 

Acknowledgement. We thank M. S. Narasimhan for helpful discussions. 
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