THE GEOMETRICAL INTERPRETATION OF THE FADDEEV–POPOV DETERMINANT

O. BABELON and C.-M. VIALLET
Laboratoire de Physique Théorique et Hautes Energies 1, Université Pierre et Marie Curie, 75230 Paris Cédex 05, France
Received 9 April 1979

We give a geometrical interpretation of the Faddeev–Popov determinant in Yang–Mills theories by comparing it to the natural metric on the orbit space.

Introduction

The fundamental objects in pure Yang–Mills theories are at first the gauge potentials. However, as a principle of gauge invariance, only the classes of gauge equivalent potentials are physically relevant. The space of these classes is called the orbit space.

The usual Feynman path integral, which one uses to “quantize” the theory is essentially an integral over the orbit space. The point is that this space is equipped with a natural riemannian structure (as we will see) and consequently we know how to define (formally) a volume element on this space.

The purpose of this letter is to show what the Faddeev–Popov determinant is, in terms of this metric. We show that in the non-covariant formalism, when the path integral is written in the true configuration space, the determinant is nothing but the natural metric on the configuration space. We also show that in the covariant formalism where paths are replaced by one point of the orbit space, the determinant contains an extra factor interpreted as a part of the volume of the group of gauge transformations.

1. The mathematical setting

We use the following appropriate objects [1]: $P(M, G)$ is a G-bundle over the compact euclidean space—time M (e.g., $M = S^4$), respectively over euclidean space (e.g., $M = S^3$). We shall use the associated bundle $E = P \times \text{Ad} \mathcal{A}(G)$ (the vector bundle with standard fibre $\mathcal{A}(G)$, the Lie algebra of G, with the adjoint action of G on $\mathcal{A}(G)$). $A^P = \Gamma(E \oplus N^p)$ is the space of p-forms on M with values in E. C is the set of irreducible connection forms on P (i.e., all connection forms on P if $M = S^4$ and $G = SU(2)$, and k = instanton number different from zero; in any case almost all connections). If \mathcal{G} is the group of gauge transformations (reduced by the center as in ref. [2], then \mathcal{G} acts on C and defines a fibration $C \rightarrow \eta$ with projection p. The quotient space $\eta = C/\mathcal{G}$ is a C^w riemannian manifold [2]. η is the orbit space. Notice that if $M = S^3$, η is the true configuration space.

The tangent space to C at ω is $T_\omega(C) = A^1$ and C is an affine space modelled on A^1. We have a notion of horizontality in $T_\omega(C)$ given by the connection form on C; $\chi_\omega = G_\omega \nabla^*_{\omega}$ (with the convention that ∇^*_{ω} is the adjoint of the covariant derivative ∇_{ω} associated to ω with respect to the natural scalar product $(\ , \)$ in A^1, and G_ω is the inverse of the laplacian $\Box_\omega = \nabla^*_\omega \nabla_\omega$). Notice that G_ω is well defined since ω is irreducible [3,2]. This horizontality gives a local gauge fixing condition (the covariant background gauge condition [4], the generalized Coulomb gauge [3]).

2. The riemannian structure on η [2]

2.1. Definition. A^1 is equipped with a natural scalar product denoted by $(\ , \)$, which provides a riemannian structure on C. This riemannian structure, which uses extensively both the riemannian structure on M and the inner product in $\mathcal{A}(G)$ is gauge invariant. There exists an induced metric g on η defined as follows: Suppose A and B are two vectors, tangent to η at the point $a \in \eta$. Let ω be some point in $p^{-1}(a)$ and τ_a
(respectively τ_B) the horizontal lifts of A (respectively B) at ω. Define $g(A, B) = (\tau_A, \tau_B)$. It is true that the right-hand side in this definition is independent of the choice of ω in $p^{-1}(a)$, as a consequence of the gauge invariance of $(\ , \)$ and the properties of horizontal lifts.

2.2. Expression of the metric in the covariant background gauge. The connection form χ, together with the riemannian structure on C defines a splitting of $T_{\omega}(C)$ into two orthogonal subspaces:

$$T_{\omega}(C) = H_{\omega} \oplus V_{\omega},$$

H_{ω} = horizontal subspace = kernel of χ, V_{ω} = vertical subspace = image of ∇_{ω} in A^1. There exists a projection operator $\Pi_{\omega} : T_{\omega}(C) = A^1 \to H_{\omega},$

$$\Pi_{\omega} = 1 - \nabla_{\omega} G_{\omega} \nabla_{\omega} \cdot$$

Π_{ω} satisfies $\Pi_{\omega}^2 = \Pi_{\omega} = \Pi_{\omega}^*$ (adjoint).

Let a_0 be a point of η and ω_0 be same point in $p^{-1}(a_0)$. Let δ_0 be the set of points ω in C which satisfy the background gauge condition, i.e. $\nabla_{\omega_0}(\omega - \omega_0) = 0$. δ_0 provides a local section of the fibration $C \to \eta$ over a neighbourhood U_0 of a_0 and yields coordinates for this neighbourhood.

Let a be a point in U_0 and $\omega = p^{-1}(a) \cap \delta_0$. If A and B are vectors in $T_a(C)$, then the components of A and B are two vectors u_A and u_B (in $T_a(C)$), which belong to δ_0 (i.e. $\nabla_{\omega} u_A = \nabla_{\omega_0} u_B = 0$) and such that $p_{\omega}(u_A) = A$ and $p_{\omega}(u_B) = B$. Clearly

$$p_{\omega}(\Pi_{\omega} u_A) = p_{\omega}(u_A), \quad p_{\omega}(\Pi_{\omega} u_B) = p_{\omega}(u_B).$$

Consequently, $\Pi_{\omega}(u_A)$ is a horizontal lift of A at ω (respectively $\Pi_{\omega}(u_B)$ is the lift of B). Hence

$$g(A, B) = (\Pi_{\omega} u_A, \Pi_{\omega} u_B),$$

or

$$g(A, B) = (u_A, \Pi_{\omega} u_B) = (u_A, \Pi_{\omega} \Pi_{\omega_0} u_B).$$

Notice that g vanishes when $\Pi_{\omega_0} \Pi_{\omega} = 0$, i.e. when the orbit through ω is tangent to δ_0. This is precisely the point where the Gribov ambiguity appears, and where the coordinate system becomes singular.

3. Computation of $\det g$

Let Δ_{FP} be the usual Faddeev–Popov determinant, i.e. $\Delta_{FP} = \det(\nabla_{\omega_0}^* \nabla_{\omega})$, where $\nabla_{\omega_0}^* \nabla_{\omega}$ acts on A^0.

Proposition. We have

$$(\det g)^{1/2} = \Delta_{FP}/(\det \square_{\omega_0})^{1/2}(\det \square_{\omega})^{1/2},$$

or equivalently

$$(\det \square_{\omega_0})^{1/2}(\det g)^{1/2} = \Delta_{FP}(\det \square_{\omega})^{-1/2}. \quad (1)$$

Remark. In computing $\det g$, g is considered as a mapping from δ_0 to δ_0 and this determinant will be denoted by $\det \delta_0 g$.

Proof. On δ_0, the operator g can be written $g = 1 - \Pi_{\omega_0} \nabla_{\omega} G_{\omega} \nabla_{\omega}^* \Pi_{\omega_0}$. Let us introduce the mapping $Q : A^1 \to A^1$, defined by

$$Q = \Pi_{\omega_0} \nabla_{\omega} G_{\omega} \nabla_{\omega}^* = \Pi_{\omega_0} (1 - \Pi_{\omega}).$$

We have

$$Q^* = \nabla_{\omega} G_{\omega} \nabla_{\omega}^* \Pi_{\omega_0} = (1 - \Pi_{\omega}) \Pi_{\omega_0}. $$

Then $g = 1 - QQ^*$. Define the operator $\gamma : A^0 \to A^0$ by $\gamma = G_{\omega} \nabla_{\omega}^* \nabla_{\omega} G_{\omega} \nabla_{\omega}^* \nabla_{\omega}$. From the definition:

$$\det(\nabla_{\omega}^* \nabla_{\omega}) \det \gamma = \frac{(\det \Delta_{FP})^2}{\det \square_{\omega_0} \det \square_{\omega}},$$

But also

$$\det \gamma = \frac{(\det \Delta_{FP})^2}{\det \square_{\omega_0} \det \square_{\omega}},$$

if we use the gauge condition on ω.

Since there exists an isomorphism between A^0 and V_{ω}:

$$\nabla_{\omega} : A^0 \to V_{\omega}, \quad (\nabla_{\omega})^{-1} = G_{\omega} \nabla_{\omega}^* = \chi_{\omega},$$

the operator γ can be written as an operator γ' on V_{ω} with values in V_{ω}:

$$\gamma' = \nabla_{\omega} \gamma \chi_{\omega}.$$

We have $\gamma' = 1 - Q^*Q$.

Claim. $\det \delta_0 g = \det V_{\omega} \gamma' (= \det A^0 \gamma)$.

Proof. Since Q^*Q is zero on H_{ω}, we have: $\det V_{\omega} \gamma' = \det A^1 \gamma'$. Since QQ^* is zero on V_{ω}, we have:

$$\det \delta_0 g = \det A^1 g.$$

It is sufficient to show that QQ^* and Q^*Q have a non-zero spectrum on A^1 to ensure that $\det A^1 g = \Delta_{FP}(\det \square_{\omega})^{-1/2}$. \(\square\)
det \mathcal{A}_1 \gamma'. Suppose then that \phi is an eigenvector of \(Q^*Q\) associated to the nonzero eigenvalue \(\lambda\). We have
\[QQ^*(\gamma) = \lambda Q \phi,\]
and \(Q\phi \neq 0\). Consequently, \(Q\phi\) is an eigenvector of \(QQ^*\) associated to the same eigenvalue \(\lambda\), and \(Q\) defines an isomorphism between the eigenspaces of \(Q^*Q\) and the eigenspaces of \(QQ^*\) (for nonzero eigenvalues). Q.E.D.

Remark. The above computation is valid whatever base space \(M\) we use for \(P\) (\(M\) compact without boundary).

4. **Path integral on the configuration space (\(M = S^3\))**

Our motivation in studying the metric on the space \(\eta\) is our aim to define, at least formally, a volume element which could be used in the Feynman path integral. What follows is purely formal, since we are dealing with infinite dimensional spaces but is a step towards a global definition of this integral.

The integral over the configuration space is contained in ref. [5, eq. (23)] when the gaussian integrations over \(E_k\) and \(A_0\) have been performed:

\[
\mathcal{I} = \int \prod_{\text{path in } C} \left[\frac{d\omega}{\text{time}} \det(\nabla^*_{\omega_0} \nabla\omega)(\det \square_{\omega_0})^{-1/2} \right] \delta(\nabla^*_{\omega_0} [\omega - \omega_0]) \exp \left\{ -\frac{1}{2} (\dot{\omega}, \Pi_{\omega} \omega) + \frac{1}{2} F^2 \right\}
\]

where \(\omega = d\omega/dt\) is a tangent vector to \(C\) at \(\omega\) and \(F^2 = Tr(F^2)\).

Notice that \((\dot{\omega}, \Pi_{\omega} \omega)\) can be considered as the square of a vector tangent to the orbit space, with respect to the riemannian structure \(g\). It is the kinetic energy term, and \(\frac{1}{2} (\dot{\omega}, \Pi_{\omega} \omega) + \frac{1}{2} F^2\) is the effective action \(\Sigma\) on \(\eta\). We see here that \(g\) is the physically relevant metric on \(\eta\).

Let \(\mathcal{I}'\) be the path integral over \(\eta\), defined with the volume element which \(g\) provides on \(\eta\):

\[
\mathcal{I}' = \int \prod_{\text{path on } \eta} \left[d\sigma (\det g(\sigma))^{1/2} e^{-\Sigma(\sigma)} \right]
\]

where \(\sigma\) denotes the coordinates on \(\eta\). We will show that \(\mathcal{I} = \mathcal{I}'\).

In order to compare \(\mathcal{I}\) and \(\mathcal{I}'\), let us rewrite \(\mathcal{I}'\) as an integral over \(C\), using as usual a gauge fixing term

\[\Pi_{\text{time}} \delta(\nabla^*_{\omega_0} [\omega - \omega_0])\]

and the appropriate Jacobian \(\Pi_{\text{time}}(\det \square_{\omega_0})^{1/2}\):

\[\mathcal{I}' = \int \prod_{\text{path in } C} \left[d\omega (\det g)^{1/2} (\det \square_{\omega_0})^{1/2} \right] \delta(\nabla^*_{\omega_0} [\omega - \omega_0]) e^{-\Sigma(\omega)} \]

We see directly from eq. (1) that \(\mathcal{I} = \mathcal{I}'\).

5. **Functional integral in the covariant case (\(M = S^4\))**

(see ref. [6])

The usual functional integral one uses is

\[
\mathcal{I} = \int d\omega e^{-S(\omega)} = N \int d\omega \delta(\nabla^*_{\omega_0} [\omega - \omega_0]) \Delta_{FP} e^{-S(\omega)}
\]

where \(S = \frac{1}{2} Tr F\mu\nu F^\mu\nu\) and \(N\) is an infinite factor standing for the volume of the group of gauge transformations.

We have seen that \(\Delta_{FP} = (\det g)^{1/2}(\det \square_{\omega_0})^{1/2}\). \(I\) can be written on \(\eta\) as:

\[
\mathcal{I} = N \int d\sigma (\det g)^{1/2}(\det \square_{\sigma})^{1/2} e^{-S(\sigma)}
\]

The volume element is then given by the natural volume element on \(\eta\) multiplied by a factor \(N(\det \square_{\sigma})^{1/2}\) which is nothing but the volume of the orbit over \(\sigma\), measured in \(C\) (see the appendix of ref. [7]). The presence of this factor comes from the integration over the group of gauge transformations. This integration over unphysical degrees of freedom is actually necessary to compensate the presence of the longitudinal part of the gauge potentials [8,9].

We thank P.K. Mitter for fruitful discussions.