CHAPTER 8

Symmetry in music

S b,

First, let me explain that I'm cursed;
I'm a poet whose time gets reversed.
Reversed gets time
Whose poet a I'm;
Cursed I'm that explain me let, first.

8.1. Symmetries

Music contains many examples of symmetry. In this chapter, we inves-
tigate the symmetries that appear in music, and the mathematical language
of group theory for describing symmetry.

We begin with some examples. Translational symmetry looks like this:

In group theoretic language, which we explain in the next few sections,
the symmetries form an infinite cyclic group. In music, this would just be
represented by repetition of some rhythm, melody, or other pattern. Here is
beginning of the right hand of Beethoven’s Moonlight Sonata, Op. 27 No. 2.
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Of course, any actual piece of music only has finite length, so it cannot
really have true translational symmetry. Indeed, in music, approximate sym-
metry is much more common than perfect symmetry. The musical notion of
a sequence is a good example of this. A sequence consists of a pattern that
is repeated with a shift; but the shift is usually not exact. The intervals are
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Public Domain. Sequenced by Fred Nachbaur using NoteWorthy
Confused? Try playing this from opposite sides of a table.
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(Note: the attribution to Mozart is dubious)
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not the same, but rather they are modified to fit the harmony. For example,
the sequence

7 i 5
M EEEE L

(V.4
L

comes from J. S. Bach’s Toccata and Fugue in D, BWV 565, for organ. Al-
though the general motion is downwards, the numbers of semitones between
the notes in the triplets is constantly varying in order to give the appropri-
ate harmonic structure.

Reflectional symmetry appears in music in the form of inversion of a
figure or phrase. For example, the left hand of Chopin’s Waltz, Opus 34,
No. 2, begins as follows.

N - SN- N

Each bar of the upper line of the left hand is inverted to form the next bar.
Because of the displacement in time, this is really a glide reflection; namely
a translation followed by a reflection about a mirror parallel to the direction
of translation. In group theoretic terms, this is another manifestation of the
infinite cyclic group.

The reason for the importance of symmetry in music is that regular-
ity of pattern builds up expectations as to what is to come next. But it is
important to break the expectations from time to time, to prevent boredom.
Good music contains just the right balance of predictability and surprise.

In the above example, the mirror line for the reflectional symmetry was
horizontal. It is also possible to have temporal reflectional symmetry with a
vertical mirror line, so that the notes form a palindrome. For example, an as-
cending scale followed by a descending scale has this kind of reflectional sym-
metry, as in the following elementary vocal exercise. The symmetry group
here is cyclic of order two.
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DOPPELGANGER

Entering the lonely house with my wife
I saw him for the first time
Peering furtively from behind a bush—
Blackness that moved,
A shape amid the shadows,
A momentary glimpse of gleaming eyes
Revealed in the ragged moon.
A closer look (he seemed to turn) might have
Put him to flight forever—
I dared not
(For reasons that I failed to understand),
Though I knew I should act at once.

I puzzled over it, hiding alone,
Watching the woman as she neared the gate.
He came, and I saw him crouching
Night after night.
Night after night
He came, and I saw him crouching,
Watching the woman as she neared the gate.

I puzzled over it, hiding alone—
Though I knew I should act at once,
For reasons that I failed to understand
I dared not
Put him to flight forever.

A closer look (he seemed to turn) might have
Revealed in the ragged moon
A momentary glimpse of gleaming eyes,
A shape amid the shadows,
Blackness that moved.

Peering furtively from behind a bush,
I saw him, for the first time,
Entering the lonely house with my wife.

—by J. A. Lyndon,
from Palindromes and Anagrams,
H. W. Bergerson, Dover 1973.
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This is the musical equivalent of the palindrome. One example of a musical
form involving this kind of symmetry is the retrograde canon or crab canon
(Cancrizans). This term denotes a work in the form of a canon and exhibit-
ing temporal reflectional symmetry by means of playing the melody forwards
and backwards at the same time. For example, the first canon of J. S. Bach’s
Musical Offering (BWV 1079) is a retrograde canon formed by playing Fred-
erick the Great’s royal theme, consisting of the following 18 bars
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simultaneously forwards and backwards in this way. The first voice starts at
the beginning of the first bar and works forward to the end, while the sec-
ond voice starts at the end of the last bar and works backwards to the be-
ginning. Other examples can be found at the end of this section, under “fur-
ther listening.”

Examples of rotational symmetry can also be found. This really means
that we have translations and rotations, as in the following diagram. In group
theoretic language, the symmetries form an infinite dihedral group.

In the following example, from the middle of Mozart’s Capriccio, KV 395 for
piano, the symmetry is approximate. It is easy to observe that each beamed
set of notes for the right hand has a gradual rise followed by a steeper de-
scent, while those for the left hand have a steep descent followed by a more
gradual rise. Each pair of beams is slightly different from the previous, so
we do not get bored. Our expectations are finally thwarted in the last beam,
where the descent continues all the way down to a low Ef.
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Further listening: (see Appendix R)

William Byrd, Diliges Dominum exhibits temporal reflectional symmetry, making it
a perfect palindrome.

In Joseph Haydn’s Sonata 41 in A, the movement Menuetto al rovescio is also a per-
fect palindrome.

Guillaume de Machaut, Messe de Notre Dame, Ma fin est mon commencement (My
end is my beginning), a retrograde canon in three voices, with a palindromic tenor
line.

8.2. Sets and groups

The mathematical structure which captures the notion of symmetry is
the notion of a group. In this section, we give the basic axioms of group the-
ory, and we describe how these axioms capture the notion of symmetry.

A set is just a collection of objects. The objects in the set are called
the elements of the set. We write z € X to mean that an object z is an ele-
ment of a set X.

Strictly speaking, a set shouldn’t be too big. For example, the collec-
tion of all sets is too big to be a set, and if we allow it to be a set then we
run into Russel’s paradox, which goes as follows. If the collection of all sets
is regarded as a set, then it is possible for a set to be an element of itself:
X € X. Now form the set S consisting of all sets X such that X &€ X. If
S¢S then Se S, and if S € S then S ¢ S. This contradictary conclusion
is Russel’s paradox. Fortunately, finite and countably infinite collections are
small enough to be sets, and we are mostly interested in such sets.! If a set
X is finite, we write | X | for the number of elements in X.

IFor a reasonably modern and sophisticated introduction to set theory, I recommend
W. Just and M. Weese, Discovering modern set theory, two volumes, published by the
American Mathematical Society, 1995. None of the sophistication of modern set theory is
necessary for music theory.
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A group is a set G together with an operation which takes any two ele-
ments g and h of G and multiplies them to give again an element of G, writ-
ten gh. For G to be a group, this multiplication must be defined for all pairs
of elements g and h in GG, and it must satisfy three axioms:

(i) (Associative law) Given any elements g, h and k in G (not neces-
sarily different from each other), if we multiply gh by k£ we get the same an-
swer as if we multiply g by hk:

(gh)k = g(hk).
(ii) (Identity) There is an element e € G called the identity element,

which has the following property. For every element ¢ in G, we have eg = g
and ge = g.

(iii) (Inverses) For each element g € G, there is an inverse element
written ¢!, with the property that gg=' = e and g 'g = e.

It is worth noticing that a group does not necessarily satisfy the com-
mutative law. An abelian group is a group satisfying the following axiom in
addition to axioms (i)—(iii):

(iv) (Commutative law)? Given any elements g and h in G, we have
gh = hg.

We can give a group by writing down a multiplication table. For exam-
ple, here is the multiplication table for a group with three elements.

To multiply elements g and h of a group using a multiplication table, we look
in row ¢ and column h, and the entry is gh. So for example, looking in the
above table, we see that ab = e. The above example is an abelian group, be-
cause the table is symmetric about its diagonal. The following multiplica-
tion table describes a nonabelian group G with six elements.

e v w T y =2
ele v w xz Yy =z
viv o w e Yy 2z T
wlw e v z T Yy
x|z y z e v w
yly z = w e v
zZ|lz x y v w e

In this group, we have xy = v but yx = w, which shows that the group is
not abelian. We write |G| = 6 to indicate that the group G has six elements.

In real life, as in group theory, operations seldom satisfy the commutative law. For
example, if we put on our socks and then put on our shoes, we get a very different effect
from doing it the other way round. The associative law is much more commonly satisfied.
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Groups don’t have to be finite of course. For example, the set Z with
operation of addition forms a abelian group. Usually, a group operation is
only written additively if the group is abelian. The identity element for the
operation of addition is 0, and the inverse of an integer n is —n.

It should by now be apparent that multiplication tables aren’t a very
good way of describing a group. Suppose we want to check that the above
multiplication table satisfies the axioms (i)—(iii). We would have to make
6 x 6 x 6 = 216 checks just for the associative law. Now try to imagine mak-
ing the checks for a group with thousands of elements, or even millions.

Fortunately, there is a better way, based on permutation groups. A per-
mutation of a set X is a function f from X to X such that each element x of X
can be written as f(y) for a unique y € X. See page 248 for more discussion of
this definition. This ensures that f has an inverse function, f~! which takes
=z back to y. So we have f~1(f(y)) = f~1(z) = y, and f(f~1(z)) = f(y) = =.

For example, if X = {1,2,3,4,5}, the function f defined by

f) =3, f@2)=5 [fB)=4 f4=1 [f0()=2
is a permutation of X. There are two common notations for writing permu-
tations on finite sets, both of which are useful. The first notation lists the el-
ements of X and where they go. In this notation, the above permutation f
would be written as follows.

1 2 3 45
35 41 2
The other notation is called cycle notation. For the above example, we no-

tice that 1 goes to 3 goes to 4 goes back to 1 again, and 2 goes to 5 goes back
to 2. So we write the permutation as

f=(1,3,4)(2,5).

This notation is based on the fact that if we apply a permutation repeatedly
to an element of a finite set, it will eventually cycle back round to where it
started. The entire set can be split up into disjoint cycles in this way, so that
each element appears in one and only one cycle. If a permutation is writ-
ten in cycle notation, to see its effect on an element, we locate the cycle con-
taining the element. If the element is not at the end of the cycle, the per-
mutation takes it to the next one in the cycle. If it is at the end, it takes it
back to the beginning. The length of a cycle is the number of elements ap-
pearing in it. If a cycle has length one, then the element appearing in it is a
fized point of the permutation. Fixed points are often omitted when writing
a permutation in cycle notation.

To multiply permutations, we compose functions. In the above exam-
ple, suppose we have another permutation g of the same set X, given by

(12345
9=\ 2 5 1 4 3
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or in cycle notation,

g = (1’ 2’ 5’ 3)(4)'
If we omit the fixed point 4 from the notation, this element is written
g=1(1,2,5,3). Then f(g(1)) = f(2) = 5. Continuing this way, fg is the fol-

lowing permutation,

1 2 3 4 5

whereas gf is given by

1 23 45
gfz(1 3 4 9 5>:(2,3,4).

The identity permutation takes each element of X to itself. In the above ex-
ample, the identity permutation is

12 3 45
(135 10)-0eewe.

Omitting fixed points from the identity permutation leaves us with a rather
embarrassing empty space, which we fill with the sign e denoting the identity
element. The order of a permutation is the number of times it has to be ap-
plied, to get back to the identity permutation. In the above example, f has
order six, g has order four, and both fg and gf have order three. The order
of an element g of any group is defined in the same way, as the least positive
value of n such that ¢ = 1. If there is no such n, then g is said to have infinite
order. For example, the translation which began the chapter is a transforma-
tion of infinite order, whereas a reflection is a transformation of order two.

Notice how the commutative law is not at all built into the world of
permutations, but the associative law certainly is. The inverse of a permuta-
tion is a permutation, and the composite of two permutations is also a per-
mutation. So it is easy to check whether a collection of permutations forms a
group. We just have to check that the identity is in the collection, and that
the inverses and composites of permutations in the collection are still in the
collection.

The set of all permutations of a set X forms a group which is called the
symmetric group on the set X, with the multiplication given by composing
permutations as above. We write the symmetric group on X as Symm(X).
If X ={1,2,...,n} is the set of integers from 1 to n, then we write S,, for
Symm(X). Notice that the sets X and Symm(X) are quite different in size.
If X ={1,2,...,n} then X has n elements, but Symm(X) has n! elements.
To see this, if f € Symm(X) then there are n possibilities for f(1). Having
chosen the value of f(1), there are n— 1 possibilities left for f(2). Continuing
this way, the total number of possibilities for f is n(n —1)(n —2)...1 =nl.

The definition of a permutation group is that it is a subgroup of
Symm(X) for some set X. In general, a subgroup H of a group G is a subset
of G which is a group in its own right, with multiplication inherited from G.
This is the same as saying that the identity element belongs to H, inverses
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of elements of H are also in H, and products of elements of H are in H. So
to check that a set H of permutations of X is a group, we check these three
properties so that H is a subgroup of Symm(X). Notice that the associative
law is automatic for permutations, and does not need to be checked.

Exercises

1. If g and h are elements of a group, explain why gh and hg always have
the same order.

8.3. Change ringing

The art of change ringing is peculiar to the English, and, like most English pe-
culiarities, unintelligible to the rest of the world. To the musical Belgian, for
example, it appears that the proper thing to do with a carefully tuned ring of
bells is to play a tune upon it. By the English campanologist, the playing of
tunes is considered to be a childish game, only fit for foreigners; the proper use
of the bells is to work out mathematical permutations and combinations. When
he speaks of the music of his bells, he does not mean musicians’ music—still less
what the ordinary man calls music. To the ordinary man, in fact, the pealing
of bells is a monotonous jangle and a nuisance, tolerable only when mitigated
by remote distance and sentimental association. The change-ringer does, indeed,
distinguish musical differences between one method of producing his permuta-
tions and another; he avers, for instance, that where the hinder bells run 7, 5, 6,
or 5,6, 7, or 5, 7, 6, the music is always prettier, and can detect and approve,
where they occur, the consecutive fifths of Tittums and the cascading thirds of
the Queen’s change. But what he really means is, that by the English method
of ringing with rope and wheel, each several bell gives forth her fullest and her
noblest note. His passion—and it is a passion—finds its satisfaction in mathe-
matical completeness and mechanical perfection, and as his bell weaves her way
rhythmically up from lead to hinder place and down again, he is filled with the
solomn intoxication that comes of intricate ritual faultlessly performed.

Dorothy L. Sayers, The Nine Tailors, 1934

The symmetric group, described at the end of the last section, is es-
sential to the understanding of change ringing, or campanology. This art be-
gan in England in the tenth century, and continues in thousands of English
churches to this day. A set of swinging bells in the church tower is oper-
ated by pulling ropes. There are generally somewhere between six and twelve
bells. The problem is that the bells are heavy, and so the timing of the peals
of the bells is not easy to change. So for example, if there were eight bells,
played in sequence as

1,2,3,4,5,6,7,8,
then in the next round we might be able to change the positions of some ad-
jacent bells in the sequence to produce

1,3,2,4,5,7,6,8,

but we would not be able to move a bell more than one position in the se-
quence. So the general rules for change ringing state that a change ringing
composition consists of a sequence of rows. Each row is a permutation of the
set of bells, and the position of a bell in the row can differ by at most one
from its previous position. It is also stipulated that a row is not repeated in
a composition, except that the last row returns to the beginning. So for ex-
ample Plain Bob on four bells goes as follows.
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Plain Bob

NN W W R R NN W W W NN
NN WO W AR R W WW R WS R
WO W AN N W W N RN A RN WS W
O N L CRCl VR N N CR Ul IS U IS

This sequence of rows is really a walk around the symmetric group Sjy.
So the image of the first row under each of the 4! = 24 elements of Sy ap-
pears exactly once in the list, except that the first is repeated as the last.

In order to fix the notation, we think of a row as a function from the
bells to the time slots. To go from one row to the next, we compose with
a permutation of the set of time slots. The permutation is only allowed to
fix a time slot, or to swap it with an adjacent time slot. So in the above
example, the first few steps involve alternately applying the permutations
(1,2)(3,4) and (1)(2,3)(4). Then when we reach the row 1 3 2 4, this pre-
scription would take us back to the beginning. In order to avoid this, the
permutation (1)(2)(3,4) is applied, and then we may continue as before. At
the line 1 4 3 2 we again have the problem that we would be taken to a pre-
viously used row, and we avert this by the same method. When we have ex-
hausted all the permutations in Sy, we return to the beginning.

Exercises
1. The Plain Hunt consists of alternately applying the permutations
a=(1,2)(3,4)(5,6) ...
b=1(1)(2,3)(4,5)...
If the number of bells is n, how many rows are there before the return to the
initial order?
[Hint: treat separately the cases n even and n odd.]

Further reading:
Wilfred G. Wilson, Change Ringing, October House Inc., New York, 1965.
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8.4. Cayley’s theorem

Cayley’s theorem explains why the axioms of group theory exactly cap-
ture the physical notion of symmetry. It says that any abstract group, in
other words, any set with a multiplication satisfying the axioms described in
Section 8.2, can be realised as a group of permutations of some set.

There is something mildly puzzling about this theorem. Where are we
going to produce a set from? We're just given a group, and nothing else. So
we do the obvious thing, and use the set of elements of the group itself as
the set on which it will act as permutations. So before reading this, make
very sure you have separated in your mind the set of elements of a permuta-
tion group and the set on which it acts by permutations. Because otherwise
what follows will be very confusing.

Let G be a group. Then to each element g € GG, we assign the permu-
tation in Symm(G) which sends an element h € G to gh € G. We want to
say that this displays a copy of the group G as a permutation group inside
Symm(G). The best way to say this is to introduce the notion of a homo-
morphism of groups.

Recall that a function f from one set X to another set Y, written
f:+ X =Y, simply assigns an element f(x) of Y to each element = of X in
a well defined manner. Many elements of X are allowed to go to the same
place in Y, and not every element of ¥ needs to be assigned. The image of f
is the subset of Y consisting of the elements of the form f(z). The function
f is injective if no two elements of X go to the same place in Y. The func-
tion f is surjective if every element of Y is in the image of f. A function f
which is both injective and surjective is said to be bijective. A bijective func-
tion is also called a one-one correspondence. A bijective function is the same
thing as a function which has an inverse, namely a function f': Y — X with
the property that f'(f(y)) =y forally € Y, and f(f'(z)) =z for all z € X.
Namely, f' takes y to the unique z such that y = f(z). In this language, a
permutation of a set X is just a bijective function from X to itself.

If G and H are groups, then a homomorphism f: G — H is a func-
tion from the set G to the set H which “preserves the multiplication” in the
sense that it sends the identity element of G to the identity element of H,
and for elements g; and g3 in G we have

fg192) = f(g91)f(g2)-

The image of a homomorphism f has the property that it is a subgroup of
H. An injective homomorphism is called a monomorphism. A surjective ho-
momorphism is called an epimorphism. A bijective homomorphism is called
an isomorphism. If there is an isomorphism from G to H, we say that G and
H are isomorphic. This means that they are “really” the same group, except
that the elements happen to have different names. If f is a monomorphism,
it can be regarded as identifying G with a subgroup of H. In other words, it
induces an isomorphism between G and its image, which is a subgroup of H.
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ExampPLE 8.4.1. Consider the group G of rotational symmetries of a
cube. In other words, an element of G consists of a way of rotating a cube so
that the faces are aligned in the same direction as they started. There are 24
elements of G, because we can put any one of six faces downwards, and four
different ways round. Once we have decided which face to put downwards,
and which way round to put it, the rotational symmetry is completely de-
scribed. To multiply elements g and h of G to get gh is to do the rotational
symmetry h followed by the rotational symmetry g, so that

gh (z) = g(h(z)).
The confusing order in which things happen is because we write our functions
on the left of their arguments, so that g(h(x)) means first do h, then do g.
There is an isomorphism between this group G of symmetries of the
cube and the group Symm{a, b, ¢, d} of permutations on a set of four objects.
This may be visualized by labeling the four main diagonals of the cube with
the symbols a, b, ¢, d and seeing the effect of a rotation on this labeling.

In the language of homomorphisms, we can describe Cayley’s theorem
as follows.

THEOREM 8.4.2 (Cayley). If G is a group, let f be the function from
G to Symm(G) which is defined by f(g)(h) = gh. Then f is a monomor-
phism, and so G is isomorphic with a subgroup of Symm(G).

PRrOOF. First, we check that f does indeed take an element g € G to a
permutation. In other words, we must check that f(g) is a bijection. This is
easy to check, because f(g~!) is its inverse. Namely, for h € G we have

FlaH(f(9)h) = flg " )(gh) =g (gh) = (g 'g)h=h

and similarly f(g)(f(g~')(h)) = h.

Clearly f takes the identity element of G to the identity permutation.
The fact that f is a homomorphism is really a statement of the associative
law in G. Namely,

f(g9192)(h) = (9192)h = g1(92h) = f(g1)(g2h)
= f(g1)(f(g2)(h)) = (f(g1)f(g2))(h).

Finally, to prove that f is injective, if f(g1) = f(g2) then for all h € G,
f(g1)(h) = f(g2)(h). Taking for h the identity element of G, we see that
g1 = g2- O

8.5. Clock arithmetic and octave equivalence

Clock arithmetic is where we count up to twelve, and then start back
again at one. So for example, to add 6 + 8 in clock arithmetic, we count six
up from 8 to get 9, 10, 11, 12, 1, 2, and so in this system we have 6 + 8 = 2.
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It’s probably better to write 0 instead of 12, so that we go from 11 back to
0 instead of 12 to 1. So here is the addition table for this clock arithmetic.

+/ 0 1 2 3 4 5 6 7 8 9 10 11
oo 1 2 3 4 5 6 7 8 9 10 11
1471 2 3 4 5 6 7 8 9 10 11 O
2,2 3 4 5 6 7 8 91011 0 1
313 4 5 6 7 & 9 10 11 0 1 2
414 5 6 7 8 910 11 0 1 2 3
5|5 6 7 8 9 10 11 0 1 2 3 4
6| 6 7 8 9 10 11 0 1 2 3 4 5
77 8 9101 0 1 2 3 4 5 6
88 910 11 0 1 2 3 4 5 6 7
9 9 10 11 0 1 2 3 4 5 6 T 8
0(10 11 0 1 2 3 4 5 6 7 8 9
11711 0 1 2 3 4 5 6 7 8 9 10

In terms of group theory, the above addition table makes the set
{0,1,2,3,4,5,6,7,8,9,10,11} into a group. The operation is written as ad-
dition; of course, clock arithmetic is abelian. The identity element is 0, and
the inverse of ¢ is either —¢ or 12 — 4, depending which is in the range from
0 to 11. This group is written as Z/12.

There is an obvious homomorphism from the group Z to Z/12. It takes
an integer to the unique integer in the range from 0 to 11 which differs from
it by a multiple of 12.

In musical terms, we could think of the numbers from 0 to 11 as repre-
senting musical intervals in multiples of semitones, in the twelve tone equal
tempered octave. So for example 1 is represented by the permutation which
increases each note by one semitone, namely the permutation

C C4f D EABETFTFt G Gf A B B
Ct D Eh E F Ff G Gf A Bb B C

The circulating nature of clock arithmetic then becomes octave equivalence
in the musical scale, where two notes belong to the same pitch class if they
differ by a whole number of octaves. Each element of Z/12 is then repre-
sented by a different permutation of the twelve pitch classes, with the num-
ber 7 representing an increase of ¢ semitones. So for example the number 7
represents the permuation which makes each note higher by a fifth. Then
addition has an obvious interpretation as addition of musical intervals.

This permutation representation looks like Cayley’s theorem. But mak-
ing this precise involves choosing a starting point somewhere in the octave.
We choose to start by representing C as 0, so that the correspondence be-
comes

CCiDE EFTFf GG A B B
0 L 2 3 45 6 7 8 9 10 11
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Under this correspondence, each element of Z /12 is being represented by the
permutation of the twelve notes of the octave given by Cayley’s theorem.

Of course, there is nothing special about the number 12 in clock arith-
metic. If n is any positive integer, we may form the group Z/n whose ele-
ments are the integers in the range from 0 to n — 1. Addition is described by
adding as integers, and then subtracting n if necessary to put the answer back
in the right range. So for example, if we are interested in 31 tone equal tem-
perament, which gives such a good approximation to quarter comma mean-
tone (see Section 6.5), then we would use the group 7Z/31.

8.6. Generators

If G is a group, a subset S of the set of elements of G is said to gen-
erate G if every element of G can be written as a product of elements of S
and their inverses.> We say that G is cyclic if it can be generated by a sin-
gle element g. In this case, the elements of the group can all be written in
the form ¢" with n € Z. The case n = 0 corresponds to the identity element,
while negative values of n are interpreted to give powers of the inverse of g.

There are two kinds of cyclic groups. If there is no nonzero value of n
for which g™ is the identity element, then the elements g"” multiply the same
way that the integers n add. In this case, the group is isomorphic to the ad-
ditive group Z of integers. If there is a nonzero value of n for which ¢g" is the
identity element, then by inverting if necessary, we can assume that n is pos-
itive. Then letting n be the smallest positive number with this property, it is
easy to see that G is isomorphic to the group Z/n described in the last section.

How many generators does Z/n have? We can find out whether an in-
teger i generates Z/n with the help of some elementary number theory.

LEMMA 8.6.1. Let d be the greatest common divisor of n and i. Then
there are integers r and s such that d = nr + is.

ProoOF. This follows from Euclid’s algorithm for finding the greatest
common divisor of two integers. (|

If 4 has no common factor with n, then d = 1, and the above equation
says that ¢ times s, considered as the sth power of ¢ in the additive group
Z/n, is equal to 1. Since the element 1 is a generator of Z/n, it follows that
1 is also a generator.

On the other hand, if n and 7 have a common factor d > 1, then all pow-
ers of i in Z/n (i.e., all multiples of 4 when thinking additively) give numbers
divisible by d, so the number 1 is not a power of <. So we have the following.

THEOREM 8.6.2. The generators for Z/n are precisely the numbers i

in the range 0 < 1 < n with the property that n and i have no common fac-
tor. O

3To clarify, an empty product is considered to be the identity element. So if S is empty
and G is the group with one element, then S does generate G.
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The number of possibilities for 7 in the above theorem is written ¢(n),
and called the Euler phi function of n.

For example, if n = 12, then the possibilities for 7 are 1, 5, 7 and 11,
and so ¢(12) = 4. In terms of musical intervals, the fact that 7 is a gener-
ator for Z /12 corresponds to the fact that all notes can be obtained from a
given notes by repeatedly going up by a fifth. This is the circle of fifths. So
it can be seen that apart from the circle of semitones upwards and down-
wards, the only other ways of generating all the musical intervals is via the
circle of fifths, again upwards or downwards. This, together with the conso-
nant nature of the fifth, goes some way toward explaining the importance of
the circle of fifths in music.

It is interesting to see that if » happens to be a prime number, for ex-
ample n = 31, then every element of Z/n apart from zero is a generator.

Exercises

1. Write down the generators for Z/24.

Further reading:

Gerald J. Balzano, The group-theoretic description of 12-fold and microtonal pitch
systems, Computer Music Journal 4 (4) (1980), 66-84.

8.7. Tone rows

In twelve tone music, one begins with a twelve tone row, which consists
of a sequence of twelve pitch classes in order, so that each of the twelve pos-
sible pitch classes appears just once.

More generally, we consider sequences of pitch classes, of any length,
and with possible repetitions.

A transposition of a sequence x of pitch classes by n semitones is the
sequence T"(x) in which each of the pitch classes in x has been increased by
n semitones. So for example if

x=308
then
T(x) =74 0.
Inversion I(x) of a sequence x just replaces each pitch class by its neg-
ative (in clock arithmetic). So in the above example

I(x) =90 4.
The sequences T"I(x) are also regarded as inversions of x. So for example
T®I(x) =3 6 10

is an inversion of the above sequence x.
The retrograde R(x) of x is just the same sequence in reverse order.
So in the above example,
R(x) =80 3.
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The relations among the operations T, I and R are
T2=¢, T"R=RT", T'I=IT", RI=IR.

where e represents the identity operation which does nothing.

There are four forms of a tone row x. The prime form is the original
form x of the row, or any of its transpositions T"(x). The inversion form
is any one of the rows T"I(x). The retrograde form is any one of the rows
T"R(x). Finally, the retrograde inversion form of the row is any one of the
rows T"RI(x).

In group theoretic terms, the operations T™ (0 < n < 11) form a cyclic
group Z/12. The operation R together with the identity operation form a
cyclic group Z/2. The operations T and R commute. The group theoretic
way of describing a group with two types of operations which commute with
each other is a Cartesian product.

8.8. Cartesian products

If G and H are groups, then the Cartesian product, or direct product
G x H is the group whose elements are the ordered pairs (g,h) with g € G
and h € H. The multiplication is defined by

(91, h1)(g2, ha) = (9192, h1h2).

The identity element is formed from the identity elements of G and H. The
inverse of (g,h) is (97!, h™"). The axioms of a group are easily verified, so
that G x H with this multiplication does form a group.

Suppose that G and H are subgroups of a bigger group K, with the
properties that each element of G commutes with each element of H, the
only element which G and H have in common is the identity element (writ-
ten GNH = {1}), and every element of K can be written as a product of an
element of G and an element of H (written K = GH). Then there is an iso-
morphism from G x H to K given by sending (g, h) to gh. In this case, K is
said to be an internal direct product of G and H.

For example, the group whose elements are the operations T and T"R.
of §8.7 is an internal direct product of the subgroup consisting of the opera-
tions T™ and the subgroup consisting of the identity and R. So this group
is isomorphic to Z /12 x Z /2.

As another example, the lattice Z? which we used in order to describe
just intonation in §6.8 is really a Cartesian product Z X Z, where 7Z is the
group of integers under addition, as usual. Similarly, the lattice Z? of §6.9 is
7 X1 X 7.

Exercises

1. Find an isomorphism between Z/3 x Z/4 and Z/12. Interpret this in
terms of transpositions by major and minor thirds.

2. Show that there is no isomorphism between Z/12 x Z/2 and Z/24.
[Hint: how many elements of order two are there?]
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8.9. Dihedral groups

The operations T and I of §8.7 do not commute, but rather satisfy the
relations T"I = IT~"™. So we do not obtain a direct product in this case, but
rather a more complicated construction, which in this case describes a dihe-
dral group.

A dihedral group has two elements g and h such that h?> = 1 and
gh = hg~'. Every element is either of the form ¢’ or of the form g’h. The
powers of g form a cyclic subgroup which is either Z/n or Z. In the former
case, the group has 2n elements and is written* Ds,. In the latter case, the
group has infinitely many elements, and is written Do, and called the infi-
nite dihedral group. This is one of the groups which appeared in Section 8.1.

So the operations T" and T"I form a group isomorphic to the dihedral
group Ds4. Finally, putting all this together, the group whose operations are

™ T"R, T"I, T"RI
form a group which is isomorphic to Doy X Z /2.

The dihedral group D2, has an obvious interpretation as the symme-

tries of a regular polygon with n sides.
g

The element g corresponds to counterclockwise rotation through 1/n of a cir-
cle, while h corresponds to reflection about a horizontal axis. Then ¢’h cor-
responds to a reflection about an axis of symmetry which is rotated from the
horizontal by i/n of a semicircle. The above diagram is for the case n = 6.

Exercises

1. Find an isomorphism between the dihedral group Dg and the symmetric
group S3.

2. Find an isomorphism between Di and S3 x Z/2.

3. Show that D4 is not isomorphic to S3 x Z/4.

8.10. Orbits and cosets

If a group G acts on a set X, then we say that two elements z and z’
of X are in the same orbit if there is an element g € G such that g(z) = z'.
This partitions X into disjoint subsets, each consisting of elements related
this way. These subsets are the orbits of G on X.

So for example, if G is a cyclic group generated by an element g, then
the cycles of g as described in §8.2 are the orbits of G on X.

4Some authors write D,, for the dihedral group of order 2n, just to confuse matters.
Presumably these authors think that I'm confusing matters.
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As another example, the group Z /12 acts on the set of tone rows of a
given length, via the operations T". Two tone rows are in the same orbit ex-
actly when one is a transposition of the other.

If there is only one orbit for the action of G on X, we say that G acts
transitively on X.

We discussed the related concept of cosets briefly in §6.8. Here we
make the discussion more precise, and show how this concept is connected
with permutations. If H is a subgroup of a group G, we can partition the el-
ements of G into left cosets of H as follows. Two elements g and ¢’ are in
the same left coset of H in G if there exists some element h € H such that
gh = ¢'. This partitions the group G into disjoint subsets, each consisting of
elements related this way. These subsets are the left cosets of H in G. The
notation for the left coset containing g is gH. So gH and ¢'H are equal pre-
cisely when there exists an element h € H such that gh = ¢'; in other words,
when ¢~ !¢’ is an element of H. The coset gH consists of all the elements gh
as h runs through the elements of H. The way of writing this is

gH ={gh|h € H}.

The left cosets of H in G all have the same size as H does. So the
number of left cosets, written |G : H|, is equal to |G|/|H].

The example in §6.8 goes as follows. The group G is Z? = Z x Z. The
subgroup H is the unison sublattice. Each coset consists of a set of vectors
related by translation by the unison sublattice. The group theoretic notion
corresponding to a periodicity block is a set of coset representatives. A set
of left coset representatives for a subgroup H in a group G just consists of a
choice of one element from each left coset.

If G acts as permutations on a set X, then there is a close connection be-
tween orbits and cosets of subgroups, which can be described in terms of stabi-
lizers. If z is an element of X, then the stabilizer in G of z, written Stabg(z),
is the subgroup of G consisting of the elements h satisfying h(z) = x.

THEOREM 8.10.1. Let H = Stabg(x). Then the map sending the coset
gH to the element g(z) € X is well defined, and establishes a bijective cor-
respondence between the left cosets of H in G and the elements of X in the
orbit containing x.

PrOOF. To say that the map is well defined is to say that if we are given
another element ¢’ such that gH = ¢'H, then g(z) = ¢'(z). The reason why
this is true is that there is an element h € H such that gh = ¢/, and then
g'(z) = gh(z) = g(h(z)) = g(z).

To see that the map is injective, if g(z) = ¢/(z) then z = g~ '¢/(z) and
so g g’ € H, and gH = ¢'H. Tt is obviously surjective, by the definition of
an orbit. n

A consequence of this theorem is that the size of an orbit is equal to
the index of the stabilizer of one of its elements,

|Orbit(z)| = |G : Stabg(z)]. (8.10.1)
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8.11. Normal subgroups and quotients

In the last section, we discussed left cosets of a subgroup. Of course,
right cosets make just as much sense; the reason why left rather than right
cosets made their appearance in understanding orbits was that we write func-
tions on the left of their arguments. We write Hg for the right coset contain-
ing g, so that

Hg={hg|he H}.
It does not always happen that the left and right cosets of H are the same.
For example, if G is the symmetric group S3, and H is the subgroup consist-
ing of the identity and the permutation (12), then the left cosets are

{e, (12)}, {(123), (13)}, {(132), (23)}

while the right cosets are

{e, (12)}, {(123), (23)}, {(132), (13)}.
This is because (123)(12) = (13) while (12)(123) = (23).
A subgroup N of G is said to be normal if the left cosets and the right
cosets agree. For example, if G is abelian, then every subgroup is normal.

THEOREM 8.11.1. A subgroup N of G is normal if and only if, for each
g € G we have gNg~' = N.

PrOOF. To say that the subgroup N is normal means that for each g € G
we have gN = Ng. Multiplying on the right by ¢~!, and noticing that this
can be undone by multiplication on the right by g, we see that this is equiv-
alent to the condition that for each g € G we have gNg ' = N. O

If N is normal in G, then the cosets can be made into a group as fol-
lows. If gN and ¢’ N are cosets then we multiply them to form the coset gg’ N.
If you check that this is well defined, in other words, that the product does
not depend on which elements are used to define the cosets, you will discover
that it works precisely when H is normal in G. To check the axioms for a
group, we need an identity element, which is provided by the coset eN = N
containing the identity element e of G. The inverse of the coset gV is the
coset g~'N. Tt is an easy exercise to check the axioms with these definitions.

Clock arithmetic is a good example of a quotient group. Inside the
additive group Z of integers, we have a (normal) subgroup nZ consisting of
the integers divisible by n. The quotient group Z/nZ is the clock arithmetic
group, which we have been writing in the more usual notation Z/n.

Another example is given by the unison vectors and periodicity blocks
of §6.8. The quotient of Z? (or more generally Z") by the unison sublattice
is a finite abelian group whose order is equal to the absolute value of the de-
terminant of the matrix formed from the unison vectors.

There is a standard theorem of abstract algebra which says that every
finite abelian group can be written in the form

Zny X Z/ng X -+ X L[ny.
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The positive integers nq,...,n, are not uniquely determined; for example
Z/12 is isomorphic to Z/4 x Z/3. However, they can be chosen in such a
way that each one is a divisor of the next one. If they are chosen in this way,
then they are uniquely determined, and then they are called the elementary
divisors of the finite abelian group. There is a standard algorithm for find-
ing the elementary divisors, which can be found in many books on abstract
algebra. From the point of view of scales, it seems relevant to try to choose
the unison sublattice so that the quotient group is cyclic, which corresponds
to the case where there is just one elementary divisor.

There is an intimate relationship between normal subgroups and ho-
momorphisms. If f is a homomorphism from G to H, then the kernel of f is
defined to be the set of elements g € G for which f(g) is equal to the iden-
tity element of H. Writing N for the kernel of f, it is not hard to check that
N is a normal subgroup of G.

THEOREM 8.11.2 (First Isomorphism Theorem). Let f be a homomor-
phism from G to H. Then there is an isomorphism between the quotient
group G/N and the subgroup of H consisting of the image of the homomor-
phism f. This isomorphism takes a coset gN to f(g).

PROOF. There are a number of things to check here. We need to check
that the function from G /N to the image of f which takes gN to f(g) is well
defined, that it is a group homomorphism, that it is injective, and that its
image is the same as the image of f. These checks are all straightforward,
and are left for the reader to fill in. O

There are actually three isomorphism theorems in elementary group
theory, but we shall not mention the second or third.

An example of the first isomorphism theorem is again provided by clock
arithmetic. The homomorphism from Z to Z/12 is surjective and has kernel
127, and so Z/12 is isomorphic to the quotient of Z by 127Z, as we already
knew.

8.12. Burnside’s lemma

This section and the next are concerned with problems of counting. A
typical example of the kind of problem we are interested in is as follows. Re-
call that a tone row consists of the twelve possible pitch classes in some or-
der. The total number of tone rows is

12x11x10x9%x---x3x2x1=12!

or 479001600.

We might wish to count the number of possible twelve tone rows, where
two tone rows are considered to be the same if one can be obtained from
the other by applying an operation of the form T". In this case, each tone
row has twelve distinct images under these operations. So the total number
of tone rows up to this notion of equivalence is 1/12 of the number of tone
rows, or 11! = 39916800.
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If we want to complicate the situation further, we might consider two
tone rows to be equivalent if one can be obtained from the other using the op-
erations T, T and R. Now the problem is that some of the tone rows are fixed
by some of the elements of the group. So the counting problem degenerates
into a lot of special cases, unless we find a more clever way of counting. This
is the kind of problem that can be solved using Burnside’s counting lemma.

The abstract formulation of the problem is that we have a finite group
acting as permutations on a finite set, and we want to know the number of
orbits.

Burnside’s lemma allows us to count the number of orbits of G, pro-
vided we know the number of fixed points of each element. It says that the
number of orbits is the average number of fixed points.

LEMMA 8.12.1 (Burnside). Let G be a finite group acting by permuta-
tions on a finite set X. For an element g € G, write n(g) for the number of
fized points of g on X. Then the number of orbits of G on X is equal to

1
@ Z”(g)-

gelG

PROOF. We count in two different ways the number of pairs (g,z) con-
sisting of an element g € G and a point z € X such that g(z) = z. If we
count the elements of the group first, then for each element of the group we
have to count the number of fixed points, and we get 3> ;7n(g). On the
other hand, if we count the elements of X first, then for each z, equation
(8.10.1) shows that the number of elements g € G stabilizing it is equal to
|G| divided by the length of the orbit in which = lies. So each orbit con-
tributes |G| to the count. O

So let us return to the problem of counting tone rows. Suppose that
we wish to count the number of tone rows, and we wish to regard one tone
row as equivalent to another if the first can be manipulated to the second us-
ing the operations T, I and R. In other words, we wish to count the num-
ber of orbits of the group G = D4 x 7Z/2 generated by T, I and R on the
set X of tone rows.

In order to apply Burnside’s lemma, we should find the number of tone
rows fixed by each operation in the group. The identity operation fixes all
tone rows, so that one is easy. The operations T” with 1 < n < 11 don’t
fix any tone rows, so that’s also easy. The operation R fixes the tone rows
whose last six entries are the reverse of the first six; but then there are rep-
etitions so these aren’t allowed as tone rows. For the operation T®R, the
fixed tone rows are the ones where the last six entries are the reverse of the
first six, but transposed by a tritone (half an octave). So the first six have to
be chosen in a way that uses just one of each pair related by a tritone. The
number of ways of doing this is

12 x 10 x 8 x 6 x 4 x 2 = 46080.
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For values of n other than zero or six, T"R does not fix any tone rows, be-
cause doing this operation twice gives T?", which doesn’t fix any tone rows.

Next, we need to consider inversions. The operation I fixes only those
tone rows comprised of the entries 0 and 6; but then there must be repeti-
tions, so these aren’t tone rows. The same goes for any operation of the form
T"I; the entries come from a subset of size at most two, so we can’t form a
tone row this way.

Finally, for an operation T"IR, the entries in a fixed tone row are again
determined by the first six entries. So the tone row has the form

ay, az, az, a4, a5, Gg, N — 4g, N — a5, N — a4, N — a3, N — a2, N — ajp.

If n is even, there is some tone fixed by T"I, which forces us to repeat a
tone, so there are no fixed tone rows. If n is odd, however, there are fixed
tone rows, and there are

12x10x 8 x 6 x4 x 2=46080

of them.
We summarize this information in the following table.
operation how many in G | fixed points
identity 1 479001600
T" (1 <n<11) 11 0
T°R 1 46080
T"R (n # 6) 11 0
T"1 12 0
T"IR (n even) 6 0
T"IR (n odd) 6 46080

So the sum over g € G of the number of fixed points of ¢ on X is
479001600 + 7 x 46080 = 479324160.
Dividing by |G| = 48, the total number of orbits of G on tone rows is equal
to 9985920. This proves the following theorem.

THEOREM 8.12.2 (David Reiner). If two twelve tone rows are consid-
ered the same when one may be obtained from the other using the operations

T, I and R, then the total number of tone rows is 9985920. O
Further reading:

D. Reiner, Enumeration in music theory, Amer. Math. Monthly 92 (1) (1985), 51—
54.
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8.13. Pdlya’s enumeration theorem

In this section, we address some more complicated counting problems.
For example, suppose we want to know how many of chords there are, con-
sisting of three of the twelve possible pitch classes. Suppose further that we
wish to consider two chords to be equivalent if one can be obtained from the
other by means of an operation T" for some n. This is a typical kind of prob-
lem which can be solved using Pélya’s enumeration theorem.

A lot of physical counting problems involving symmetry are of a sim-
ilar nature. A typical example would involve counting how many different
necklaces can be made from three yellow beads, two blue beads and five red
beads. The symmetry group in this situation is a dihedral group whose or-
der is twice the number of beads.

In the general form of the problem, the configurations being counted
are regarded as functions from a set X to a set Y, and the symmetry group
G acts on the set X. In the bead problem, the set X would consist of the
places in the necklace where we wish to put the beads, and the set Y would
consist of the possible colors. A function from X to Y then specifies for each
place in the necklace what color bead to use. The group G acts on X by ro-
tating and turning over the necklace.

The action is of G on the set of functions from X to Y is given by the
formula

9(f)(@) = Flg~ (@)).
The reason for the inverse sign is so that composition works right. For a
group action, we need g1 (g2(f)) = (g192)(f). To see that this holds, we have

(91(92(N)))(@) = (92())) (g7 " (2)) = f g5 (g1 () = Fll9z 91 ) (2))
= f((g9192) 7" (2)) = ((9292) () (2),

whereas without the inverse sign the order of g; and go would be reversed.
To be continued. . .

8.14. The Mathieu group M,

The combinatorics of twelve tone music has given rise to curious coinci-
dence, which I find worth mentioning. Messiaen, in his Ile de feu 2 for piano,
nearly rediscovered the Mathieu group Mis. On pages 409-414 of Berry,’
you can read about how Messiaen uses the permutations

123 456 7 8 9 10 11 12
7 6 8 59 4 10 3 11 2 12 1

123 45 6 7 8 9 10 11 12
6 7 5 8 4 9 3 10 2 11 1 12
SWallace Berry, Structural function in music, Prentice-Hall, 1976. Reprinted by Dover,
1987. 447 pages, in print. ISBN 0486253848.

and
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to generate sequences of tones and sequences of durations. These permuta-
tions generate a group Mis of order 95,040 discovered by Mathieu in the
nineteenth century.®

A group is said to be simple if it has just two normal subgroups, namely
the whole group and the subgroup consisting of just the identity element.”
One of the outstanding achievements of twentieth century mathematics was
the classification of the finite simple groups. Roughly speaking, the classi-
fication theorem says that the finite simple groups fall into certain infinite
families which can be explicitly described, with the exception of 26 sporadic
groups. Five of these 26 groups were discovered by Mathieu in the nineteenth
century, and the remaining ones were discovered in the nineteen sixties and
seventies.

Diaconis, Graham and Kantor discovered that M, was generated by
the above two permutations, which they call Mongean shuffles. Start with a
pack of twelve cards in your left hand, and transfer them to your right hand
by placing them alternately under and over the stack you have so far. When
you have finished, hand the pack back to your left hand. Since I did not tell
you whether to start under or over, this describes two different permutations
of the twelve cards. These are the permutations shown above. In cycle no-
tation, these permutations are

(1,7,10,2,6,4,5,9,11,12)(3,8)

of order ten, and
(1,6,9,2,7,3,5,4,8,10,11)(12)
of order eleven. These permutations can be visualized as follows.

—
1 2 3 4 5 6 7 8 9 10 11 12
-

e
1 2 3 4 5 6 7 8 9 10 11 12

Exercises

1. (Carl E. Linderholm [61]) If this book is read backwards (beginning at
the last word of the last page), the last thing read is the introduction (re-
versed, of course). Thus the introduction acts as a sort of extraduction, and
is suggested as a simple form of therapy, used in this way, if the reader gets
stuck. Read this exercise backwards, and write an extraduction from it.

6E. Mathieu, Mémoire sur l’étude des fonctions de plusieurs quantités, J. Math. Pures
Appl. 6 (1861), 241-243; Sur la fonction cing fois transitive de 24 quantités, J. Math.
Pures Appl. 18 (1873), 25-46.

"So for example the group with only one element is not simple, because it has only
one, not two, normal subgroups.
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Further reading:

J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren
der mathematischen Wissenschaften 290, Springer-Verlag, Berlin/New York, 1988.
§11.17 of this book contains more information on Mongean shuffles and the Math-
ieu group M2, as well as a huge amount of information about the sporadic groups
in general.

P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles,
Adv. Appl. Math. 4 (1983), 175-196.
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Unlike Mozart’s Requiem and Bartok’s Third Piano Concerto,
the piece that P. D. Q. Bach was working on when he
died has never been finished by anyone else.®

8Professor Peter Schickele, The definitive biography of P. D. Q. Bach (1807-1742)¢,
Random House, New York, 1976.



