
CHAPTER 3

A mathematician's guide to the orchestra

3.1. The wave equation for strings

Now let us return to the subject of x1.6, and consider the relevance of
Fourier series to the vibration of a string held at both ends. To make a more
accurate analysis, we need to regard the displacement y as a function both
of time t and position x along the string. Since y is being regarded as a func-
tion of two variables, the appropriate equations are written in terms of par-
tial derivatives, and Appendix P gives a brief summary of partial derivatives.
The equation describing the vibration of a string is called the wave equation

in one dimension, which we now develop. This equation supposes that the
displacement of the string is such that its slope at any point along its length
at any time is small. For large displacements, the analysis is harder. Note
that we are only concerned here with transverse waves, namely motion per-
pendicular to the string. Motion parallel to the string is called longitudinal

waves, and will be ignored here.
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Write T for the tension on the string (in newtons = kgm/s2), and
� for the linear density of the string (in kg/m). Then at position x along
the string, the angle �(x) between the string and the horizontal will satisfy

tan �(x) =
@y

@x
. On a small segment of string from x to x+�x, the vertical

component of force at the left end will be �T sin �(x), and at the right end
will be T sin �(x+�x).

Provided that �(x) is small, sin �(x) and tan �(x) are approximately
equal. So the di�erence in vertical components of force between the two ends
of the segment will be approximately

T tan �(x+�x)� T tan �(x) = T
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The mass of the segment of string will be approximately ��x. So Newton's

law (F = ma) for the acceleration a =
@2y

@t2
gives

T�x
@2y

@x2
� (��x)

@2y

@t2
:

Cancelling a factor of �x on both sides gives

T
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:

In other words, as long as �(x) never gets large, the motion of the string is
essentially determined by the wave equation
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(3.1.2)

where c =
p
T=�.

D'Alembert1 discovered a strikingly simple method for �nding the gen-
eral solution to equation (3.1.2). Roughly speaking, his idea is to factorize
the di�erential operator
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More precisely, we make a change of variables

u = x+ ct; v = x� ct:
Then by the multivariable form of the chain rule, we have
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1Jean-le-Rond d'Alembert was born in Paris on November 16, 1717, and died there on
October 29, 1783. He was the illegitimate son of a chevalier by the name of Destouches,
and was abandoned by his mother on the steps of a small church called St. Jean-le-Rond,
from which his �rst name is taken. He grew up in the family of a glazier and his wife, and
lived with his adoptive mother until she died in 1757. But his father paid for his educa-
tion, which allowed him to be exposed to mathematics. Two essays written in 1738 and
1740 drew attention to his mathematical abilities, and he was elected to the French Acad-
emy in 1740. Most of his mathematical works were written there in the years 1743{1754,
and his solution of the wave equation appeared in his paper: Recherches sur la courbe que

forme une corde tendue mise en vibration, Hist. Acad. Sci. Berlin 3 (1747), 214{219.
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Jean-le-Rond d'Alembert (1717{1783)

Di�erentiating again, we have
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Similarly,
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Then equation (3.1.2) becomes
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This equation may be integrated directly to see that the general solution is
given by y = f(u) + g(v) for suitably chosen functions f and g. Substituting
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back, we obtain

y = f(x+ ct) + g(x� ct):
This represents a superposition of two waves, one traveling to the right and
one traveling to the left, each with velocity c.

Now the boundary conditions tell us that the left and right ends of the
string are �xed, so that when x = 0 or x = l (the length of the string), we
have y = 0 (independent of t). The condition with x = 0 gives

0 = f(ct) + g(�ct)
for all t, so that

g(�) = �f(��) (3.1.3)

for any value of �. Thus

y = f(x+ ct)� f(ct� x):
Physically, this means that the wave traveling to the left hits the end of the
string and returns inverted as a wave traveling to the right. This is called
the \principle of reection".

Substituting the other boundary condition x = l, y = 0 gives f(l+ct) =
f(ct� l) for all t, so that

f(�) = f(�+ 2l) (3.1.4)

for all values of �. We summarise all the above information in the following
theorem.

Theorem 3.1.1 (d'Alembert). The general solution of the wave equa-

tion
@2y

@t2
= c2

@2y

@x2

is given by

y = f(x+ ct) + g(x� ct):
The solutions satisfying the boundary conditions y = 0 for x = 0 and for

x = l, for all values of t, are of the form

y = f(x+ ct)� f(�x+ ct)

where f satis�es f(�) = f(�+ 2l) for all values of �.

One interesting feature of d'Alembert's solution to the wave equation is
worth emphasizing. Although the wave equation only makes sense for func-
tions with second order partial derivatives, the solutions make sense for any
continuous periodic function f . (Discontinuous functions cannot represent
displacement of an unbroken string!) This allows us, for example, to make
sense of the plucked string, where the initial displacement is continuous, but
not even once di�erentiable. This is a common phenomenon when solving
partial di�erential equations. A technique which is very often used is to
rewrite the equation as an integral equation, meaning an equation involving
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integrals rather than derivatives. Integrable functions are much more gen-
eral than di�erentiable functions, so one should expect a more general class
of solutions.

Equation (3.1.4) means that the function f appearing in d'Alembert's
solution is periodic with period 2l, so that f has a Fourier series expansion.
So for example if only the fundamental frequency is present, then the func-
tion f(x) is a sine wave f(x) = C sin((�x=l) + �). If only the nth harmonic
is present, then we have f(x) = C sin((n�x=l) + �),

y = C sin

�
n�(x+ ct)

l
+ �

�
� C sin

�
n�(ct� x)

l
+ �

�
:

The theory of Fourier series allows us to write the general solution as a
combination of the above harmonics, as long as we take care of the details of
what sort of functions are allowed and what sort of convergence is intended.

Marin Mersenne
(1588{1648)

Using equation (1.7.12), we can rewrite
the nth harmonic solution (3.1) as

y = 2C sin
�n�x

l

�
cos

�
n�ct

l
+ �

�
:

Thus the frequency of the nth harmonic is given
by 2�� = n�c=l, or replacing c by its valuep
T=�,

� = (n=2l)
p
T=�.

This formula for frequency was essentially dis-
covered by Marin Mersenne2 as his \laws of
stretched strings". These say that the frequency
of a stretched string is inversely proportional to
its length, directly proportional to the square

root of its tension, and inversely proportional to the square root of the lin-
ear density.

Exercises

1. Piano wire is manufactured from steel of density approximately 5,900 kg/m3.
The manufacturers recommend a stress of approximately 1:1 � 109 Newtons/m2.
What is the speed of propagation of waves along the wire? Does it depend on cross-
sectional area? How long does the string need to be to sound middle C (262 Hz)?

2. By what factor should the tension on a string be increased, to raise its pitch by

a perfect �fth? Assume that the length and linear density remain constant.

[A perfect �fth represents a frequency ratio of 3:2]

2Marin Mersenne, Harmonie Universelle, Sebastien Cramoisy, Paris, 1636{37. Trans-
lated by R. E. Chapman as Harmonie Universelle: The Books on Instruments, Martinus
Nijho�, The Hague, 1957. Also republished in French by the CNRS in 1975 from a copy
annotated by Mersenne.
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3.2. Initial conditions

In this section, we see that in the analysis of the wave equation (3.1.2)
described in the last section, specifying the initial position and velocity of
each point on the string uniquely determines the subsequent motion.

Let s0(x) and v0(x) be the initial vertical and velocity of the string as
functions of the horizontal coordinate x, for 0 � x � l. These must satisfy
s0(0) = s0(l) = 0 and v0(0) = v0(l) = 0 to �t with the boundary conditions
at the two ends of the string.

The �rst step is to extend the de�nitions of s0 and v0 to all values
of x using the reection principle. If we specify that s0(�x) = �s0(x) and
v0(�x) = �v0(x), so that s0 and v0 are odd functions of x, this extends the
domain of de�nition to the values �l � x � l. The values match up at �l
and l, so we can extend to all values of x by specifying periodicity with pe-
riod 2l; namely that s0(x+ 2l) = s0(x) and v0(x+ 2l) = v0(x).

Now we simply substitute into the solution given by d'Alembert's the-
orem. Namely, we know that

y = f(x+ ct)� f(�x+ ct) (3.2.1)

where f is periodic with period 2l. Di�erentiating with respect to t gives the
formula for velocity

@y

@t
= cf 0(x+ ct)� cf 0(x� ct):

Substituting t = 0 in both the equation and its derivative gives the follow-
ing equations

f(x)� f(�x) = s0(x) (3.2.2)

cf 0(x)� cf 0(�x) = v0(x): (3.2.3)

Integrating equation (3.2.3) and noting that v0(0) = 0, we obtain

cf(x) + cf(�x) =
Z x

0
v0(u) du:

We divide this equation by c to obtain a formula for f(x) + f(�x). So we
can then add equation (3.2.2) and divide by two to obtain f(x). This gives

f(x) = 1
2s0(x) +

1

2c

Z x

0
v0(u) du:

Putting this back into equation (3.2.1) gives

y = 1
2(s0(x+ ct)� s0(�x+ ct)) +

1

2c

�Z x+ct

0
v0(u) du�

Z
�x+ct

0
v0(u) du

�
:

Using the fact that v0 is an odd function, we haveZ
�x+ct

x�ct
v0(u) du = 0:
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So we can rewrite the solution as

y = 1
2(s0(x+ ct)� s0(�x+ ct)) +

1

2c

Z x+ct

x�ct
v0(u) du:

It is now easy to check that this is the unique solution satisfying both the
initial conditions and the boundary conditions.

So for example, if the initial velocity is zero, as is the case for a plucked
string, then the solution is given by

y = 1
2 (s0(x+ ct)� s0(�x+ ct)):

In other words, the initial displacement moves both ways along the string,
with velocity c, and the displacement at time t is the average of the two trav-
eling waves.

Exercises

1. (E�ect of errors in initial conditions) Consider two sets of initial conditions for
the wave equation (3.1.2), s0(x) and v0(x), s

0

0(x) and v0

0(x), and let y and y0 be the
corresponding solutions. If we have bounds (not depending on x) on the distance
between these initial conditions,

js0(x) � s0

0(x)j < "s; jv0(x)� v0

0(x)j < "v ;

show that the distance between y and y0 satis�es

jy � y0j < "s +
L"v

2c

(independently of x and t). This means, in particular, that the solution to the wave

equation (3.1.2) depends continuously on the initial conditions.

3.3. Wind instruments

To understand the vibration of air in a tube or pipe, we introduce two
variables, displacement and acoustic pressure. Both of these will end up sat-
isfying the wave equation, but with di�erent phases.

We consider the air in the tube to have a rest position, and the wave
motion is expressed in terms of displacement from that position. So let x de-
note position along the tube, and let �(x; t) denote the displacement of the
air at position x at time t. The pressure also has a rest value, namely the
ambient air pressure �. We measure the acoustic pressure p(x; t) by subtract-
ing � from the absolute pressure P (x; t), so that

p(x; t) = P (x; t)� �:
Hooke's law in this situation states that

p = �B @�
@x

where B is the bulk modulus of air. Newton's second law of motion implies
that

@p

@x
= ��@

2�

@t2
:
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Combining these equations, we obtain the equations

@2�

@x2
=

1

c2
@2�

@t2
(3.3.1)

and
@2p

@x2
=

1

c2
@2p

@t2
: (3.3.2)

where c =
p
B=�. These equations are the wave equation for displacement

and acoustic pressure respectively.
The boundary conditions depend upon whether the end of the tube is

open or closed. For a closed end of a tube, the displacement � is forced to
be zero for all values of t. For an open end of a tube, the acoustic pressure
p is zero for all values of t. Actually, for an open end, this is really only an
approximation, because the volume of air just outside of the tube is not in-
�nite. A good way to adjust to make a more accurate representation of an
actual tube is to work in terms of an e�ective length, and consider the tube
to end a little beyond where it really does.

If both ends are open, the boundary conditions for the di�erential equa-
tion for p are exactly the same as for a string in Section 3.1. So in this case, as
with a string, the solutions can all be expressed in terms of integer multiples
of a fundamental frequency of vibration. Pictures can be found in Section 1.6.

3.4. The horn

The horn can be regarded as a hard walled tube of varying cross-section.
Fortunately, the cross-section matters more than the exact shape and curva-
ture of the tube.

If A(x) represents the cross-section as a function of position x along
the tube, then assuming that the wavefronts are approximately planar and
propagate along the direction of the horn, equation (3.3.2) can be modi�ed
to Webster's horn equation

1

A(x)

@

@x

�
A(x)

@p

@x

�
=

1

c2
@2p

@t2
;

or equivalently
@2p

@x2
+

1

A

dA

dx

@p

@x
=

1

c2
@2p

@t2
:

Solutions of this equation can be described using the theory of Sturm{

Liouville equations. The theory of Sturm{Liouville equations is described in
many standard texts on partial di�erential equations.

Further reading:

Fletcher and Rossing, The physics of musical instruments [30], x8.6.

A. G. Webster, Acoustical impedance, and the theory of horns and of the phono-

graph, Proc. Nat. Acad. Sci. (US) 5 (1919), 275{282.
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3.5. The drum

The Timpani (Ho�nung)

Consider a circular drum whose
skin has area density (mass per unit
area) �. If the boundary is under uni-
form tension T , this ensures that the
entire surface is under the same uni-
form tension. The tension is measured
in force per unit distance (newtons per
meter).

To understand the wave equa-
tion in two dimensions, for a mem-
brane such as the surface of a drum,
the argument is analogous to the one
dimensional case. We parametrize
the surface with two variables x and
y, and we use z to denote the dis-
placement perpendicular to the sur-
face. Consider a rectangular element
of surface of width �x and length �y.
Then the tension on the left and right
sides is T�y, and the argument which
gave equation (3.1.1) in the one dimensional case shows in this case that the
di�erence in vertical components is approximately

(T�y)

�
�x

@2z

@x2

�
:

Similarly, the di�erence in vertical components between the front and back
of the rectangular element is approximately

(T�x)

�
�y

@2z

@y2

�
:

So the total upward force on the element of surface is approximately

T�x�y

�
@2z

@x2
+
@2z

@y2

�
:

The mass of the element of surface is approximately ��x�y, so Newton's
second law of motion gives

T�x�y

�
@2z

@x2
+
@2z

@y2

�
� (��x�y)

@2z

@t2
:

Dividing by �x�y, we obtain the wave equation in two dimensions, namely
the partial di�erential equation

�
@2z

@t2
= T

�
@2z

@x2
+
@2z

@y2

�
:
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As in the one dimensional case, we set c =
p
T=�, which will play the role of

the speed of the waves on the membrane. So the wave equation becomes

@2z

@t2
= c2

�
@2z

@x2
+
@2z

@y2

�
:

Converting to polar coordinates (r; �) using equation (P.4), we obtain

@2z

@t2
= c2

�
@2z

@r2
+
1

r

@z

@r
+

1

r2
@2z

@�2

�
: (3.5.1)

We look for separable solutions of this equation, namely solutions of the form

z = f(r)g(�)h(t):

The reason for looking for separable solutions will be explained further in the
next section. Substituting this into the wave equation, we obtain

f(r)g(�)h00(t) = c2
�
f 00(r)g(�)h(t) +

1

r
f 0(r)g(�)h(t) +

1

r2
f(r)g00(�)h(t)

�
:

Dividing by f(r)g(�)h00(t) gives

h00(t)

h(t)
= c2

�
f 00(r)

f(r)
+
1

r

f 0(r)

f(r)
+

1

r2
g00(�)

g(�)

�
:

In this equation, the left hand side only depends on t, and is independent of r
and �, while the right hand side only depends on r and �, and is independent
of t. Since t, r and � are three independent variables, this implies that the
common value of the two sides is independent of t, r and �, so that it has to
be a constant. We shall see in the next section that this constant has to be a
negative real number, so we shall write it as�!2. So we obtain two equations,

h00(t) = �!2h(t); (3.5.2)

f 00(r)

f(r)
+
1

r

f 0(r)

f(r)
+

1

r2
g00(�)

g(�)
= �!

2

c2
: (3.5.3)

The general solution to equation (3.5.2) is a multiple of the solution

h(t) = sin(!t+ �);

where � is a constant determined by the initial temporal phase. Multiplying
equation (3.5.3) by r2 and rearranging, we obtain

r2
f 00(r)

f(r)
+ r

f 0(r)

f(r)
+
!2

c2
r2 = �g

00(�)

g(�)
:

The left hand side depends only on r, while the right hand side depends only
on �, so their common value is again a constant. This makes g(�) either a
sine function or an exponential function, depending on the sign of the con-
stant. But the function g(�) has to be periodic of period 2� since it is a func-
tion of angle. So the common value of the constant must be the square of an
integer n, so that

g00(�) = �n2g(�)
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and g(�) is a multiple of sin(n�+  ). Here,  is another constant represent-
ing spatial phase. So we obtain

r2
f 00(r)

f(r)
+ r

f 0(r)

f(r)
+
!2

c2
r2 = n2:

Multiplying by f(r), dividing by r2 and rearranging, this becomes

f 00(r) +
1

r
f 0(r) +

�
!2

c2
� n2

r2

�
= 0:

Now Exercise 2 in x2.10 shows that the general solution to this equation is
a linear combination of Jn(!r=c) and Yn(!r=c). But the function Yn(!r=c)
tends to �1 as r tends to zero, so this would introduce a singularity at the
center of the membrane. So the only physically relevant solutions to the above
equation are multiples of Jn(!r=c). So we have shown that the functions

z = AJn(!r=c) sin(!t+ �) sin(n� +  )

are solutions to the wave equation.
If the radius of the drum is a, then the boundary condition which we

must satisfy is that z = 0 when r = a, for all values of t and �. So it follows
that Jn(!a=c) = 0. This is a constraint on the value of !. The function Jn
takes the value zero for a discrete in�nite set of values of its argument. So !
is also constrained to an in�nite discrete set of values.

It turns out that linear combinations of functions of the above form
uniformly approximate the general, twice continuously di�erentiable solution
of (3.5.1) as closely as desired, so that these form the drum equivalent of the
sine and cosine functions of Fourier series.

Here is a table of the �rst few zeros of the Bessel functions. For more,
see Appendix B.

k J0 J1 J2 J3 J4

1 2.40483 3.83171 5.13562 6.38016 7.58834

2 5.52008 7.01559 8.41724 9.76102 11.06471

3 8.65373 10.17347 11.61984 13.01520 14.37254

We have seen that to choose a vibrational mode, we must choose a nonneg-
ative integer n and we must choose a zero of Jn(z). Denoting the kth zero
of Jn by jn;k, the corresponding vibrational mode has frequency (cjn;k=a),
which is jn;k=j0;1 times the fundamental frequency. The stationary points
have the following pictures. Underneath each picture, we have recorded the
value of jn;k=j0;1 for the relative frequency.
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In practice, for a drum in which the air is con�ned (such as a kettle-
drum) the fundamental mode of the drum is heavily damped, because it in-
volves compression and expansion of the air enclosed in the drum. So what
is heard as the fundamental is really the mode with n = 1, k = 1, namely the
second entry in the top row in the above diagram. The higher modes mostly
involve moving the air from side to side. The inertia of the air has the e�ect
of raising the frequency of the modes with n = 0, especially the fundamen-
tal, while the modes with n > 0 are lowered in frequency in such a way as
to widen the frequency gaps. For an open drum, on the other hand, all the
vibrational frequencies are lowered by the inertia of the air, but the ones of
lower frequency are lowered the most.

The design of the orchestral kettledrum carefully utilises the inertia of
the air to arrange for the modes with n = 1, k = 1 and n = 2, k = 1 to have
frequency ratio approximating 3:2, so that what is perceived is a missing fun-
damental at half the actual fundamental frequency. Furthermore, the modes
with n = 3, 4 and 5 (still with k = 1) are arranged to approximate frequency
ratios of 4:2, 5:2 and 6:2 with the n = 1, k = 1 mode, thus accentuating the
perception of the missing fundamental. The frequency of the n = 1, k = 1
mode is called the nominal frequency of the drum.

It is not true that the air in the kettle of a kettledrum acts as a res-
onator. A kettledrum can be retuned by a little more than a perfect fourth,
whereas if the air were acting as a resonator, it could only do so for a small
part of the frequency range. In fact, the resonances of the body of air are usu-
ally much higher in pitch, and do not have much e�ect on the overall sound.
A more important e�ect is that the underside of the drum skin is prevented
from radiating sound, and this makes the radiation of sound from the upper
side more eÆcient.
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Exercises

1. Find the separable solutions (i.e., the ones of the form z = f(x)g(y)h(t)) to the

wave equation for a square drum. Write the answer in the form of an essay, with ti-

tle: \What does a square drum sound like?". Try to integrate the words with the

mathematics. Explain what you're doing at each step, and don't forget to answer

the title question (i.e., describe the frequency spectrum).

Further reading:

Campbell and Greated, The musician's guide to acoustics [11], chapter 10.

Elmore and Heald, Physics of waves [28], chapter 2.

Rossing, Science of percussion instruments [98].

3.6. Eigenvalues of the Laplace operator

In this section, we put the discussion of the vibrational modes of the
drum into a broader context. Namely, we explain the relationship between
the shape of a drum and its frequency spectrum, in terms of the eigenvalues
of the Laplace operator. This discussion explains the connection between the
uses of the word \spectrum" in linear algebra, where it refers to the eigen-
values of an operator, and in music, where it refers to the distribution of fre-
quency components. Parts of this discussion assume that the reader is famil-
iar with elementary vector calculus and the divergence theorem.

We write r2 for the operator @2

@x2 +
@2

@y2 . This is known as the Laplace

operator (in three dimensions the Laplace operatorr2 denotes @2

@x2
+ @2

@y2
+ @2

@z2
;

the analogous operator makes sense for any number of variables). In this no-
tation, the wave equation becomes

@2z

@t2
= c2r2z:
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We consider the solutions to this equation on a closed and bounded region

. So for the drum of the last section, 
 was a disc in two dimensions.

A separable solution to the wave equation is one of the form

z = f(x; y)h(t):

Substituting into the wave equation, we obtain

f(x; y)h00(t) = c2r2f(x; y)h(t)

or
h00(t)

h(t)
= c2

r2f(x; y)

f(x; y)
:

The left hand side is independent of x and y, while the right hand side is in-
dependent of t, so their common value is a constant. We write this constant
as �!2, because it will transpire that it has to be negative. Then we have

g00(t) = �!2g(t); (3.6.1)

r2f(x; y) = �!
2

c2
f(x; y): (3.6.2)

The �rst of these equations is just the equation for simple harmonic motion
with angular frequency !, so the general solution is

g(t) = A sin(!t+ �):

A nonzero, twice di�erentiable function f(x; y) satisfying the second equa-
tion is called an eigenfunction of the Laplace operator r2, with eigenvalue3

� = !2=c2: (3.6.3)

There are two important kinds of eigenfunctions and eigenvalues. The Dirich-
let spectrum is the set of eigenvalues for eigenfunctions which vanish on the
boundary of the region 
. The Neumann spectrum is the set of eigenvalues
for eigenfunctions with vanishing derivative normal (i.e., perpendicular) to
the boundary. The latter functions are important when studying the wave
equation for sound waves, where the dependent variable is acoustic pressure
(i.e., pressure minus the average ambient pressure).

For the bene�t of the reader who knows vector calculus, in Appen-
dix W we give the proof that the eigenvalues of r2 (i.e., the values of � for
which r2z = ��z has a nonzero solution) are positive and real, along with
some other standard facts about the wave equation.

Furthermore, the Dirichlet spectrum, namely the set of eigenvalues �
for eigenfunctions which vanish on the boundary, is known to be discrete|
there is no positive real number with an accumulation of Dirichlet eigenvalues
around it. So the eigenvalues can be ordered:

0 < �1 < �2 < : : :

3In linear algebra, it would be more usual to say that �!2=c2 is the eigenvalue, but
the usage here is more usual in the theory of partial di�erential equations.
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For each eigenvalue, there can only be a �nite number of linearly indepen-
dent Dirichlet eigenfunctions. The eigenvalue � determines the frequency of
the corresponding vibration via (3.6.3):

! = c
p
�: (3.6.4)

The crucial property of the eigenvalues of the Laplace operator is com-

pleteness. This states that every twice continuously di�erentiable function
f(x; y) on a closed bounded region 
 can be written as the sum of an abso-
lutely and uniformly convergent series of the form f(x; y) =

P
� a�f�(x; y).

Here, the sum runs over Dirichlet eigenvalues, and each f� is a Dirichlet
eigenfunction on 
 with eigenvalue �.

Initial conditions for the wave equation on 
 are speci�ed by stipulating
the values of z and @z

@t for (x; y) in 
, at t = 0. To solve the wave equation sub-
ject to these initial conditions, use completeness to write z =

P
� a�f�(x; y)

and @z
@t =

P
� b�g�(x; y) at t = 0. Then the unique solution is given by

z =
X
�

�
a�f�(x; y) cos(c

p
� t) +

b�

c
p
�
g�(x; y) sin(c

p
� t)

�
:

The angular frequency of c
p
� comes from equation (3.6.4).

We have phrased the above discussion in terms of the two dimensional
wave equation, but the same arguments work in any number of dimensions.
For example, in one dimension it corresponds to the vibrational modes of a
string, and we recover the theory of Fourier series, but with more stringent
di�erentiability conditions.

An interesting problem, which was posed by Mark Kac in 1965 and
solved by Gordon, Webb and Wolpert in 1991, is whether one can hear the

shape of a drum. In other words, can one tell the shape of a simply connected
closed region in two dimensions from its Dirichlet spectrum? Simply con-
nected just means there are no holes in the region. Based on a method de-
veloped by Sunada a few years previously, Gordon, Webb and Wolpert found
examples of pairs of regions with the same Dirichlet spectrum. The example
which appears in their paper is the following.

@
@�

�

@
@

�
�

�
�

�
�
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Admittedly, it had probably not occurred to anyone to make drums using vi-
brating surfaces of these shapes, prior to this investigation. Many other pairs
of regions with the same Dirichlet spectrum have been found more recently,
including the following much simpler example which was investigated by To-
bin Driscoll.

@
@
@�

�
�

@
@
@

�
�
�
�
��

�
�
�

Many more can be found in a paper of Buser, Conway, Doyle and Semmler,
but it is still not known whether there are any convex examples.

Further reading:

David Colton, Partial di�erential equations, an introduction [14], contains a proof
of eigenvalue completeness for the Laplace operator on a compact domain; a C2

boundary is assumed.

Tobin Driscoll, Eigenmodes of isospectral drums. SIAM Rev. 39 (1997), 1-17.

Carolyn Gordon, David L. Webb, and Scott Wolpert, One cannot hear the shape of

a drum, Bulletin of the Amer. Math. Soc. 27 (1992), 134{138.

Carolyn Gordon, David L. Webb, and Scott Wolpert, Isospectral plane domains and

surfaces via Riemannian orbifolds, Invent. Math. 110 (1992), 1{22.
Mark Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73, (1966),
1{23.

M. H. Protter, Can one hear the shape of a drum? Revisited. SIAM Rev. 29 (1987),
185{197.

T. Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. 121

(1985), 169{186.

3.7. Xylophones and tubular bells

In this section we examine the theory of transverse waves in a slender
sti� rod. This theory applies to instruments such as the xylophone and the
tubular bells. We shall see that in this case, just as in the case of the drum,
the vibrational modes do not consist of integer multiples of a fundamental fre-
quency. Our goal will be to derive and solve the di�erential equation (3.7.2).

As well as the assumptions made in x3.1 about small angles, the ba-
sic assumption we shall make in order to obtain the appropriate di�erential
equation is that terms coming from the resistance to motion caused by the
rotational inertia of a segment of the rod are very small compared with terms
coming from (vertical) linear inertia. This is only realistic for a slender rod.
The upshot of this assumption is that the total torque on a segment of rod
can be taken to be zero. Recall that if we try to twist an object about an
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axis, by applying a force F at distance s from the axis, then the torque ap-
plied is de�ned to be Fs. This is reasonable because the e�ect of such a turn-
ing force is proportional to the distance from the axis, as well as to the mag-
nitude of the force.

s

F

Torque = Fs

Consider a segment of rod of length �x, and let V (x) be the vertical
force (or shearing force) applied by the left end of the segment on the right
end of the adjacent segment.

V (x+�x)

V (x)

M(x+�x)M(x)

�x
2

The torque on the segment due to this shearing force is

�V (x)
�
�x

2

�
� V (x+�x)

�
�x

2

�
� �V (x)�x

(the minus sign is because we regard counterclockwise as the positive direc-
tion for torque). Since we are regarding rotational inertia as negligible, this
means that the torque, or bending moment, M(x) applied by the segment on
the adjacent segment satis�es

M(x+�x)�M(x)� V (x)�x � 0;

or

V (x) � M(x+�x)�M(x)

�x
:

Taking limits as �x! 0, we obtain

V (x) =
dM(x)

dx
:

The upward force on the segment can now be calculated as

V (x)� V (x+�x) � ��xdV (x)
dx

� ��xd
2M(x)

dx2
:
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Now the functions V (x), M(x), etc. are really functions of both x and
t; we have suppressed the dependence on t in the above discussion. So we re-
ally need to write the total upwards force on the segment as

��x@
2M(x; t)

@x2
:

If the linear density of the rod is � (measured in kg/m) then the mass
of the segment is ��x. Writing y for the vertical displacement, Newton's sec-
ond law of motion gives

��x@
2M

@x2
= ��x

@2y

@t2
;

or
@2y

@t2
+
1

�

@2M

@x2
= 0: (3.7.1)

Now the bending moment M causes the rod to bend, and so there is
a close relationship between M and @2y=@x2. To understand this relation-
ship, we must begin by introducing the concepts of stress, strain and Young's
modulus. If a force F = F2 � F1 stretches or compresses a sti� slender rod
of length L and cross-sectional area A,

F2F1

L

then the length will increase by an amount �L. The tension stress (or just
the tension) is de�ned to be

f = F=A:

The tension strain (or extension) is de�ned to be the proportional increase
in length,

� = �L=L:

Hooke's law for a sti� rod states that the extension is proportional to the
tension,

f = E�:

The constant of proportionality E is called the Young's modulus4 (or longi-
tudinal elasticity). Values for the Young's modulus for various materials at
room temperature (18oC) are given in the following table.

4Named after the British physicist and physician Thomas Young (1773{1829).
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Material Young's modulus (N/m2)

Aluminum 7:05 � 1010

Brass 9:7{10:4 � 1010

Copper 12:98 � 1010

Gold 7:8� 1010

Iron 21:2 � 1010

Lead 1:62 � 1010

Silver 8:27 � 1010

Steel 21:0 � 1010

Zinc 9:0� 1010

Now we are ready to examine the segment of rod in more detail as it
bends. There is a neutral surface in the middle of the rod, which is neither
compressed nor stretched. It is represented by the dotted line in the dia-
gram below. One side of this surface the horizontal �laments of rod are com-
pressed, the other side they are stretched. Denote by � the distance from the
neutral surface to the �lament.

�
�(x)

�(x+�x)

Write R for the radius of curvature of the neutral surface, so that the
length of the segment at the neutral surface is R��. The length of the �la-
ment is (R � �)��, so the tension strain is �(���)=(R��) = ��=R. So by
Hooke's law, the tension stress on the �lament is �E��A=R, where �A is
the cross-sectional area of the �lament.

Since the total horizontal force is supposed to be zero, we have

�E
R

Z
� dA = 0

so that
R
� dA = 0. This says that the neutral surface passes through the

centroid of the cross-sectional area. The total bending moment is obtained
by multiplying by �� and integrating:5

M =
E

R

Z
�2 dA:

5The minus sign comes from the fact that counterclockwise moment is positive.
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The quantity I =
R
�2 dA is called the sectional moment of the cross-section

of the rod. So we obtain M = �EI=R. Now the formula for radius of cur-

vature is R =
�
1 + ( dydx)

2
�3
2 = d

2y
dx2

. Assuming that dy
dx is small, this can be ap-

proximated by the formula 1=R = d2y
dx2

, so that

M(x; t) = EI
@2y

@x2
:

Combining this with equation (3.7.1) gives

@2y

@t2
+
EI

�

@4y

@x4
= 0. (3.7.2)

This is the di�erential equation which governs the transverse waves on the
rod. It is known as the Euler{Bernoulli beam equation.

We look for separable solutions to equation (3.7.2). Setting

y = f(x)g(t)

we obtain

f(x)g00(t) +
EI

�
f (4)(x)g(t) = 0

or
g00(t)

g(t)
= �EI

�

f (4)(x)

f(x)
:

Since the left hand side does not depend on x and the right hand side does
not depend on t, both sides are constant. So

g00(t) = �!2g(t) (3.7.3)

f (4)(x) =
!2�

EI
f(x): (3.7.4)

Equation (3.7.3) says that g(t) is a multiple of sin(!t + �), while equation
(3.7.4) has solutions

f(x) = A sin�x+B cos �x+ C sinh�x+D cosh�x

where

� =
4

r
!2�

EI
(3.7.5)

(see Appendix C for the hyperbolic functions sinh and cosh). The general
solution then decomposes as a sum of the normal modes

y = (A sin�x+B cos�x+ C sinh�x+D cosh �x) sin(!t+ �):

The boundary conditions depend on what happens at the end of the
rod. It is these boundary conditions which constrain ! to a discrete set of
values. If an end of the rod is free, then the quantities V (x; t) and M(x; t)
have to vanish for all t, at the value of x corresponding to the end of the rod.
So @2y=@x2 = 0 and @3y=@x3 = 0. If an end of the rod is clamped, then the
displacement and slope vanish, so y = 0 and @y=@x = 0 for all t at the value
of x corresponding to the end of the rod.
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We calculate

@y=@x = �(A cos �x�B sin�x+ C cosh�x+D sinh�x)

@2y=@x2 = �2(�A sin�x�B cos �x+ C sinh�x+D cosh�x)

@3y=@x3 = �3(�A cos �x+B sin�x+ C cosh�x+D sinh�x):

In the case of the xylophone or tubular bell, both ends are free. We take
the two ends to be at x = 0 and x = `. The conditions @2y=@x2 = 0 and
@3y=@x3 = 0 at x = 0 give B = D and A = C. These conditions at x = ` give

A(sinh�`� sin�`) +B(cosh�`� cos �`) = 0

A(cosh�`� cos �`) +B(sinh�`+ sin�`) = 0:

These equations admit a nonzero solution in A and B exactly when the de-
terminant

(sinh�`� sin�`)(sinh�`+ sin�`)� (cosh �`� cos �`)2

vanishes. Using the relations cosh2 �`�sinh2 �` = 1 and sin2 �`+cos2 �` = 1,
this condition becomes

cosh�` cos �` = 1:

The values of �` for which this equation holds determine the allowed frequen-
cies via the formula (3.7.5).

Set � = �`, so that � has to be a solution of the equation

cosh� cos � = 1: (3.7.6)

Then equation (3.7.5) shows that the angular frequency and the frequency
are given by

! =

s
EI

�

�2

`2
; � =

!

2�
=

s
EI

�

�2

2�`2
: (3.7.7)

Numerical computations for the positive solutions to equation (3.7.6)
(using Newton's method) give the following values, with more accuracy than
is strictly necessary.

�1 = 4:7300407448627040260240481

�2 = 7:8532046240958375564770667

�3 = 10:9956078380016709066690325

�4 = 14:1371654912574641771059179

As n increases, cosh �n increases exponentially, and so cos �n has to be very
small and positive. So �n is close to (n+

1
2)�, the nth zero of the cosine func-

tion. For n � 5, the approximation

�n � (n+ 1
2)� +

(�1)n+1
cosh(n+ 1

2)�
(3.7.8)

holds to at least ten decimal places.
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Using equation (3.7.7), we �nd that the frequency ratios as multiples
of the fundamental are given by the quantities �2n=�

2
1:

n �2n=�
2
1

1 1:00000
2 2:75654
3 5:40392
4 8:93295

The resulting set of frequencies is certainly inharmonic, just as in the case
of the drum. But as n increases, equation (3.7.8) shows that the higher par-
tials have ratios approximating those of the squares of odd integers.

Further reading:

Elmore and Heald, Physics of waves [28], Chapter 3.

Rossing, Science of percussion instruments [98], Chapters 5{7.

3.8. The gong

As a �rst approximation, the gong can be thought of as a circular at
sti� metal plate. In practise, the gong is slightly curved, but for the moment
we shall ignore this. The sti� metal plate behaves like a mixture of the drum
and the sti� rod. So the partial di�erential equation governing its motion is
fourth order, as in the case of the sti� rod, but there are two directions in
which to take partial derivatives, as in the case of the drum. If z represents
displacement, and x and y represent Cartesian coordinates on the gong, then
the equation is

@2z

@t2
+

Eh2

12�(1 � s2)r
4z = 0: (3.8.1)

This equation �rst appears (without the explicit value of the constant in front
of the second term) in a paper of Sophie Germain.6 In this equation, h is the

thickness of the plate, and an easy calculation shows that h2

12 =
1
h

R +h=2
�h=2 z

2 dz

is the corresponding sectional moment in the one thickness direction (in the
case of the sti� rod, there were two dimensions for the cross-section, so the
case of the sti� plate is easier in this regard). The quantity E is the Young's
modulus as before, � is area density, and s is Poisson's ratio. This is a mea-
sure of the ratio of sideways spreading to the compression. The extra factor
of (1� s2) in the denominator on the right hand of the above equation does

6Sophie Germain's paper, \Recherches sur la th�eorie des surfaces �elastiques," written
in 1815 and published in 1821, won her a prize of a kilogram of gold from the French Acad-
emy of Sciences in 1816. The paper contained some signi�cant errors, but became the ba-
sis for work on the subject by Lagrange, Poisson, Kircho�, Navier and others.

Sophie Germain is probably better known for having made one of the �rst signi�cant
breakthroughs in the study of Fermat's last theorem. She proved that if x, y and z are in-
tegers satisfying x5+y5 = z5, then at least one of x, y and z has to be divisible by 5. More
generally, she showed that the same was true when 5 is replaced by any prime p such that
2p+ 1 is also a prime.
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not correspond to any term in equation (3.7.2). It arises from the fact that
when the plate is bent downwards in one direction, it causes it to curl up in
the perpendicular direction along the plate.

The term r4z denotes

r2r2z =
@4z

@x4
+ 2

@4z

@x2@y2
+
@4z

@y4
:

Observe the cross terms carefully. Without them, a rotational change of co-
ordinates would not preserve this operation.

In the case of the sti� rod, we had to use the hyperbolic functions as
well as the trigonometric functions. In this case, we are going to need to use
the hyperbolic Bessel functions. These are de�ned by

In(z) = i�nJn(iz):

Looking for separable solutions z = Z(x; y)h(t) = f(r)g(�)h(t) to equa-
tion (3.8.1), we arrive at the equations

r4Z = �4Z (3.8.2)

and
@2h

@t2
= �!2h (3.8.3)

where ! and � are related by

�4 =
12�(1 � s2)!2

Eh2
:

We factor equation (3.8.2) as

(r2 � �2)(r2 + �2)z = 0: (3.8.4)

So any solution to either the equation

r2z = �2z (3.8.5)

or to the equation
r2z = ��2z (3.8.6)

is also a solution to (3.8.2).

Lemma 3.8.1. Every solution z to equation (3.8.2) can be written

uniquely as z1 + z2 where z1 satis�es equation (3.8.5) and z2 satis�es equa-

tion (3.8.6).

Proof. We use a variation of the even and odd function method. If
r4z = �4z, we set

z1 =
1
2(z + ��2r2z); z2 =

1
2(z � ��2r2z):

Then

r2z1 =
1
2(r2z + ��2r4z) = 1

2(r2z + �2z) = �2z1;

r2z2 =
1
2(r2z � ��2r4z) = 1

2(r2z � �2z) = ��2z2:
and z1 + z2 = z.
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For the uniqueness, if z01 and z02 constitute another choice, then rear-
ranging the equation z1 + z2 = z01 + z02, we have z1 � z01 = z02 � z2. The
common value z3 of z1 � z01 and z

0

2 � z2 satis�es both equations (3.8.5) and
(3.8.6). So z3 = ��2r2z3 = �z3, and hence z3 = 0. It follows that z1 = z01
and z2 = z02. �

Solving equation 3.8.5 is just the same as in the case of the drum, and
the solutions are given as trigonometric functions of � multiplied by Bessel
functions of r. Equation 3.8.6 is similar, except that we must use the hyper-
bolic Bessel functions instead of the Bessel functions. We then have to com-
bine the two classes of solutions in order to satisfy the boundary conditions,
just as we did with the trigonometric and hyperbolic functions for the sti�
rod. This leads us to solutions of the form

z = (AJn(�r) +BIn(�r)) sin(!t+ �) sin(n� +  ):

The boundary conditions for the gong require considerable care, and
the �rst correct analysis was given by Kircho� in 1850. His boundary condi-
tions can be stated for any region with smooth boundary. Choosing coordi-
nates in such a way that the element of boundary is a small segment of the
y axis going through the origin, they are as follows.

@2z

@x2
+ s

@2z

@y2
= 0

@3z

@x3
+ (2 � s) @3w

@x@y2
= 0:

Further reading:

Fletcher and Rossing, The physics of musical instruments [30], xx3.5{3.6.

Gra�, Wave motion in elastic solids [37].

Morse and Ingard, Theoretical acoustics [74], x5.3.

Rossing, Science of percussion instruments [98], Chapters 8 and 9.

T. D. Rossing and N. H. Fletcher, Nonlinear vibrations in plates and gongs, J.
Acoust. Soc. Am. 73 (1983), 345{351.

M. D. Waller, Vibrations of free circular plates. Part I: Normal modes, Proc. Phys.

Soc. 50 (1938), 70{76.


