
CHAPTER 2

Fourier theory

To be sung to the tune of Gilbert and Sullivan's Modern Major General:

I am the very model of a genius mathematical,
For I can do mechanics, both dynamical and statical,

Or integrate a function round a contour in the complex plane,
Yes, even if it goes o� to in�nity and back again;

Oh, I know when a detailed proof's required and when a guess'll do
I know about the functions of Laguerre and those of Bessel too,

I've �nished every tripos question back to 1948;
There ain't a function you can name that I can't di�erentiate!

There ain't a function you can name that he can't di�erentiate [Tris]

I've read the text books and I can extremely quickly tell you where
To look to �nd Green's Theorem or the Principal of d'Alembert

Or I can work out Bayes' rule when the loss is not Quadratical
In short I am the model of a genius mathematical!

For he can work out Bayes' rule when the loss is not Quadratical
In short he is the model of a genius mathematical!

Oh, I can tell in seconds if a graph is Hamiltonian,
And I can tell you if a proof of 4CC's a phoney 'un

I read up all the journals and I'm ready with the latest news,
And very good advice about the Part II lectures you should choose.

Oh, I can do numerical analysis without a pause,
Or comment on the far-reaching signi�cance of Newton's laws

I know when polynomials are soluble by radicals,
And I can reel o� simple groups, especially sporadicals.

For he can reel o� simple groups, especially sporadicals [Tris]

Oh, I like relativity and know about fast moving clocks
And I know what you have to do to get round Russel's paradox

In short, I think you'll �nd concerning all things problematical
I am the very model of a genius mathematical!

In short we think you'll �nd concerning all things problematical
He is the very model of a genius mathematical!

Oh, I know when a matrix will be diagonalisable
And I can draw Greek letters so that they are recognizable

And I can �nd the inverse of a non-zero quaternion
I've made a model of a rhombicosidodecahedron;

Oh, I can quote the theorem of the separating hyperplane
I've read MacLane and Birko� not to mention Birko� and MacLane

My understanding of vorticity is not a hazy 'un
And I know why you should (and why you shouldn't) be a Bayesian!

For he knows why you should (and why you shouldn't) be a Bayesian! [Tris]

I'm not deterred by residues and really I am quite at ease
When dealing with essential isolated singularities,

In fact as everyone agrees (and most are quite emphatical)
I am the very model of a genius mathematical!

In fact as everyone agrees (and most are quite emphatical)
He is the very model of a genius mathematical!

|from CUYHA songbook, Cambridge (privately distributed) 1976.

29



30 2. FOURIER THEORY

2.1. Introduction

How can a string vibrate with a number of di�erent frequencies at
the same time? This problem occupied the minds of many of the great
mathematicians and musicians of the seventeenth and eighteenth century.
Among the people whose work contributed to the solution of this prob-
lem are Marin Mersenne, Daniel Bernoulli, the Bach family, Jean-le-Rond
d'Alembert, Leonhard Euler, and Jean Baptiste Joseph Fourier. In this chap-
ter, we discuss Fourier's theory of harmonic analysis. This is the decompo-
sition of a periodic wave into a (usually in�nite) sum of sines and cosines.
The frequencies involved are the integer multiples of the fundamental fre-
quency of the periodic wave, and each has an amplitude which can be deter-
mined as an integral. A superb book on Fourier series and their continuous
frequency spectrum counterpart, Fourier integrals, is Tom K�orner [54]. The
reader should be warned, however, that the level of sophistication of K�orner's
book is much greater than the level of these notes.

We also discuss d'Alembert's solution of the wave equation for strings,
and the role of Bessel functions in the harmonic series for a drum.

2.2. Fourier coeÆcients

Engraving of Jean Baptiste Joseph Fourier
(1768{1850) by Boilly (1823)
Acad�emie des Sciences, Paris
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Fourier introduced the idea that periodic functions can be analyzed by
using trigonometric series as follows.1 The functions cos � and sin � are peri-
odic with period 2�, in the sense that they satisfy

cos(� + 2�) = cos �

sin(� + 2�) = sin �:

In other words, translating by 2� along the � axis leaves these functions un-
a�ected. There are many other functions f(�) which are periodic of period
2�, meaning that they satisfy the equation

f(� + 2�) = f(�):

We need only specify the function f on the half-open interval [0; 2�) in any
way we please, and then the above equation determines the value at all other
values of �.

0 2� 4� 6� 8�

A periodic function with period 2�

Other examples of such functions are the constant functions, and the func-
tions cos(n�) and sin(n�) for any positive integer n. Negative values of n
give us no more, since

cos(�n�) = cos(n�);

sin(�n�) = � sin(n�):

More generally, we can write down any series of the form

f(�) = 1
2a0 +

1X
n=1

(an cos(n�) + bn sin(n�)): (2.2.1)

Here, 1
2a0 is just a constant|the reason for the factor of 1

2 will be explained
in due course. Such a series is called a trigonometric series. Provided that
there are no convergence problems, such a series will always de�ne a func-
tion satisfying f(� + 2�) = f(�).

1The basic ideas behind Fourier series were introduced in Jean Baptiste Joseph Fourier,
La th�eorie analytique de la chaleur, F. Didot, Paris, 1822. Fourier was born in Auxerre,
France in 1768 as the son of a taylor. He was orphaned in childhood and was educated by
a school run by the Benedictine order. He was politically active during the French Revolu-
tion, and was almost executed. After the revolution, he studied in the then new Ecole Nor-
male in Paris with teachers such as Lagrange, Monge and Laplace. In 1822, with the pub-
lication of the work mentioned above, he was elected secretaire perpetuel of the Acad�emie
des Sciences in Paris. Following this, his role seems principally to have been to encourage
younger mathematicians such as Dirichlet, Liouville and Sturm, until his death in 1830.
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The question which naturally arises at this stage is, to what extent can
we �nd a trigonometric series whose sum is equal to a given periodic func-
tion? To begin to answer this question, we �rst ask: given a function de�ned
by a trigonometric series, how can the coeÆcients an and bn be recovered?

The answer lies in the formulae (for m � 0 and n � 0)Z 2�

0
cos(m�) sin(n�) dt = 0 (2.2.2)

Z 2�

0
cos(m�) cos(n�) dt =

8><>:
2� if m = n = 0

� if m = n > 0

0 otherwise

(2.2.3)

Z 2�

0
sin(m�) sin(n�) dt =

(
� if m = n

0 otherwise
(2.2.4)

These equations can be proved by using equations (1.7.7){(1.7.11) to rewrite
the product of trigonometric functions inside the integral as a sum before in-
tegrating.2 The extra factor of two in (2.2.3) for m = n = 0 will explain the
factor of 1

2 in front of a0 in (2.2.1).
This suggests that in order to �nd the coeÆcent am, we multiply f(�)

by cos(m�) and integrate. Let us see what happens when we apply this pro-
cess to equation (2.2.1). Provided we can pass the integral through the in�-
nite sum, only one term gives a nonzero contribution. So for m > 0 we haveZ 2�

0

cos(m�)f(�) d� =

Z 2�

0

cos(m�)
�
1
2a0 +

1X
n=1

(an cos(n�) + bn sin(n�))
�
d�

= 1
2a0

Z 2�

0

cos(m�) d� +

1X
n=1

�
an

Z 2�

0

cos(m�) cos(n�) d� + bn

Z 2�

0

cos(m�) sin(n�) d�
�

= �am:

Thus we obtain, for m > 0,

am =
1

�

Z 2�

0
cos(m�)f(�) d�: (2.2.5)

A standard theorem of analysis says that provided the sum converges abso-
lutely (in other words, if the sum of the absolute values converges) then the
integral can be passed through the in�nite sum in this way. Under the same
conditions, we obtain for m > 0

bm =
1

�

Z 2�

0
sin(m�)f(�) d�: (2.2.6)

2The relations (2.2.2){(2.2.4) are sometimes called orthogonality relations. The idea is
that the integrable periodic functions form an in�nite dimensional vector space with an in-

ner product given by hf; gi = 1
2�

R 2�
0

f(�)g(�)d�. With respect to this inner product, the

functions sin(m�) (m > 0) and cos(m�) (m � 0) are orthogonal, or perpendicular.
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The functions am and bm de�ned by equations (2.2.5) and (2.2.6) are called
the Fourier coeÆcients of the function f(�).

We can now explain the appearance of the coeÆcient of one half in
front of the a0 in equation (2.2.1). Namely, since � is one half of 2� and
cos(0�) = 1 we have

a0 =
1

�

Z 2�

0
cos(0�)f(�) d� (2.2.7)

which means that the formula (2.2.5) for the coeÆcient am holds for allm � 0.
It would be nice to think that when we use equations (2.2.5), (2.2.6)

and (2.2.7) to de�ne am and bm, the right hand side of equation (2.2.1) al-
ways converges to f(�). This is true for nice enough functions f , but unfor-
tunately, not for all functions f . In Section 2.4, we investigate conditions on
f which ensure that this happens.

Of course, any interval of length 2�, representing one complete period,
may be used instead of integrating from 0 to 2�. It is sometimes more con-
venient, for example, to integrate from �� to �:

am =
1

�

Z �

��
cos(m�)f(�) d�

bm =
1

�

Z �

��
sin(m�)f(�) d�:

In practise, the variable � will not quite correspond to time, because
the period is not necessarily 2� seconds. If the fundamental frequency (the
reciprocal of the period) is � then the correct substitution is � = 2��t. Set-
ting F (t) = f(2��t) = f(�) and substituting gives a Fourier series of the form

F (t) = 1
2a0 +

1X
n=0

(an cos(2�n�t) + bn sin(2�n�t));

and the following formula for Fourier coeÆcients.

am = 2�

Z 1=�

0
cos(2�m�t)F (t) dt;

bm = 2�

Z 1=�

0
sin(2�m�t)F (t) dt:

Example. The square wave sounds vaguely like the waveform produced by a clar-
inet, where odd harmonics dominate. It is the function f(�) de�ned by f(�) = 1 for
0 � � < � and f(�) = �1 for � � � < 2� (and then extend to all values of � by
making it periodic, f(� + 2�) = f(�)).
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0 2� 4�

This function has Fourier coeÆcients

am =
1

�

�Z �

0

cos(m�) d� �
Z 2�

�

cos(m�) d�

�

=
1

�

 �
sin(m�)

m

��
0

�
�
sin(m�)

m

�2�
�

!
= 0

bm =
1

�

�Z �

0

sin(m�) d� �
Z 2�

�

sin(m�) d�

�

=
1

�

 �
�cos(m�)

m

��
0

�
�
�cos(m�)

m

�2�
�

!

=
1

�

�
� (�1)m

m
+

1

m
+

1

m
� (�1)m

m

�

=

(
4=m� (m odd)

0 (m even)

Thus the Fourier series for this square wave is
4
� (sin � +

1
3 sin 3� +

1
5 sin 5� + : : : ): (2.2.8)

Let us examine the �rst few terms in this series:

�

4
� (sin � +

1
3 sin 3�)

�

4
� (sin � +

1
3 sin 3� +

1
5 sin 5�)
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�

4
� (sin � +

1
3 sin 3� + � � �+ 1

13 sin 13�)

�

4
� (sin � +

1
3 sin 3� + � � �+ 1

27 sin 27�)

Some features of this example are worth noticing. The �rst observa-
tion is that these graphs seem to be converging to a square wave. But they
seem to be converging quite slowly, and getting more and more bumpy in
the process. Next, observe what happens at the point of discontinuity of the
original function. The Fourier coeÆcients did not depend on what value we
assigned to the function at the discontinuity, so we do not expect to recover
that information. Instead, the series is converging to a value which is equal
to the average of the higher and the lower values of the function. This is a
general phenomenon, which we shall discuss later.

Finally, there is a very interesting phenomenon which is happening
right near the discontinuity. There is an overshoot, which never seems to get
any smaller.

Does this mean that the series is not converging properly? Well, not
quite. At each given value of �, the series is converging just �ne. It's just
when we look at values of � closer and closer to the discontinuity that we �nd
problems. This is because of a lack of uniform convergence. This overshoot
is called the Gibbs phenomenon, and we shall discuss it in more detail in x2.5.

Exercises

1. Prove equations (2.2.2){(2.2.4) by rewriting the products of trigonometric func-
tions inside the integral as sums before integrating.

2. Are the following functions of � periodic? If so, determine the smallest period, and
which multiples of the fundamental frequency are present. If not, explain why not.

(i) sin � + sin 5
4�.

(ii) sin � + sin
p
2 �.

(iii) sin2 �.

(iv) sin(�2).
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(v) sin � + sin(� + �
3 ).

3. Draw graphs of the functions sin(220�t)+sin(440�t) and sin(220�t)+cos(440�t).

Explain why these sound the same, even though the graphs look quite di�erent.

2.3. Even and odd functions

A function f(�) is said to be even if f(��) = f(�), and it is said to be
odd if f(��) = �f(�). For example, cos � is even, while sin � is odd.

Given any function f(�), we can obtain an even function by taking the
average of f(�) and f(��), i.e., 1

2(f(�) + f(��)). Similarly, 12(f(�)� f(��))
is an odd function. These add up to give the original function f(�), so we
have written f(�) as a sum of its even part and its odd part,

f(�) = 1
2(f(�) + f(��)) + 1

2(f(�)� f(��)):

Multiplication of even and odd functions works as you might expect: even
times even or odd times odd gives even, and even times odd or odd times
even gives odd.

Now for any odd function f(�), and for any a > 0, we haveZ 0

�a
f(�) d� = �

Z a

0
f(�) d�

so that Z a

�a
f(�) = 0:

So for example, if f(�) is even and periodic with period 2�, then sin(m�)f(�)
is odd, and so the Fourier coeÆcients bm are zero, since

bm =
1

�

Z 2�

0
sin(m�)f(�) d� =

1

�

Z �

��
sin(m�)f(�) d� = 0:

Similarly, if f(�) is odd and periodic with period 2�, then cos(m�)f(�) is
odd, and so the Fourier coeÆcients am are zero, since

am =
1

�

Z 2�

0
cos(m�)f(�) d� =

1

�

Z �

��
cos(m�)f(�) d� = 0:

This explains, for example, why am = 0 in the example on page 33. The
square wave is not quite an even function, because f(�) 6= f(��), but chang-
ing the value of a function at a �nite set of points in the interval of integra-
tion never a�ects the value of an integral, so we just replace f(�) and f(��)
by zero.

There is a similar explanation for why b2m = 0 in the same example, us-
ing a di�erent symmetry. The discussion of even and odd functions depended
on the symmetry � 7! �� of order two. For periodic functions of period 2�,
there is another symmetry of order two, namely � 7! � + �. The functions
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f(�) satisfying f(�+�) = f(�) are half-period symmetric, while functions sat-
isfying f(� + �) = �f(�) are half-period antisymmetric. Any function f(�)
can be decomposed into half-period symmetric and antisymmetric parts:

f(�) = 1
2 (f(�) + f(� + �)) + 1

2(f(�)� f(� + �)):

Multiplying half-period symmetric and antisymmetric functions works in the
same way as for even and odd functions.

If f(�) is half-period antisymmetric, thenZ 2�

�
f(�) d� = �

Z �

0
f(�) d�

and so Z 2�

0
f(�) d� = 0:

Now the functions sin(m�) and cos(m�) are both half-period symmet-
ric if m is even, and half-period antisymmetric if m is odd. So we deduce
that if f(�) is half-period symmetric, f(� + �) = f(�), then the Fourier co-
eÆcients with odd indices (a2m+1 and b2m+1) are zero, while if f(�) is anti-
symmetric, f(�+ �) = �f(�), then the Fourier coeÆcients with even indices
a2m and b2m are zero (check that this holds for a0 too!). This corresponds to
the fact that half-period symmetry is really the same thing as being periodic
with half the period, so that the frequency components have to be even mul-
tiples of the de�ning frequency; while half-period antisymmetric functions
only have frequency components at odd multiples of the de�ning frequency.

In the example on page 33, the function is half-period antisymmetric,
and so the coeÆcients a2m and b2m are zero.

Exercises

1. Evaluate

Z 2�

0

sin(sin �) sin(2�) d�.

2. Using the theory of even and odd functions, and the theory of half-period sym-
metric and antisymmetric functions, which Fourier coeÆcients of tan � have to be
zero? Find the �rst nonzero coeÆcient.

3. Which Fourier coeÆcients vanish for a periodic function f(�) of period 2� satis-

fying f(�) = f(� � �)? What about f(�) = �f(� � �)?

[Hint: Consider the symmetry � 7! � � �, and compare

Z �=2

��=2

f(�) d� withZ 3�=2

�=2

f(�) d� for antisymmetric functions with respect to this symmetry.]
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2.4. Conditions for convergence

B. Kliban

Unfortunately, it is not true that if we start with a periodic function
f(�), form the Fourier coeÆcients am and bm according to equations (2.2.5)
and (2.2.6) and then form the sum (2.2.1), then we recover the original func-
tion f(�). The most obvious problem is that if two functions di�er just at a
single value of � then the Fourier coeÆcients will be identical. So we cannot
possibly recover the function from its Fourier coeÆcients without some fur-
ther conditions. However, if the function is nice enough, it can be recovered in
the manner indicated. The following is a consequence of the work of Dirichlet.

Theorem 2.4.1. Suppose that f(�) is periodic with period 2�, and that
it is continuous and has a bounded continuous derivative except at a �nite
number of points in the interval [0; 2�]. If am and bm are de�ned by equa-
tions (2.2.5) and (2.2.6) then the series de�ned by equation (2.2.1) converges
to f(�) at all points where f(�) is continuous.

Proof. See K�orner [54], Theorem 1 and Chapters 15 and 16. �

An important special case of the above theorem is the following. A C1

function is de�ned to be a function which is di�erentiable with continuous
derivative. If f(�) is a periodic C1 function with period 2�, then f 0(�) is con-
tinuous on the closed interval [0; 2�], and hence bounded there. So f(�) sat-
is�es the conditions of the above theorem.

It is important to note that continuity, or even di�erentiability of f(�)
is not suÆcient for the Fourier series for f(�) to converge to f(�). Paul
DuBois Reymond constructed an example of a continuous function for which
the coeÆcients am and bm are not bounded. The construction is by no means
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easy and we shall not give it here. The reader may form the impression at
this stage that the only purpose for the existence of such functions is to be-
set theorems such as the above with conditions, and that in real life, all func-
tions are just as di�erentiable as we would like them to be. This point of
view is refuted by the observation that many phenomena in real life are gov-
erned by some form of Brownian motion. Functions describing these phe-
nomena will tend to be everywhere continuous but nowhere di�erentiable.3

In music, noise is an example of the same phenomenon. Many of the func-
tions employed in musical synthesis are not even continuous. Sawtooth func-
tions and square waves are typical examples.

However, the question of convergence of the Fourier series is not the
same as the question of whether the function f(�) can be reconstructed from
its Fourier coeÆcients an and bn. At the age of 19, Fej�er proved the remark-
able theorem that any continuous function f(�) can be reconstructed from
its Fourier coeÆcients. His idea was that if the partial sums sm de�ned by

sm = 1
2a0 +

mX
n=1

(an cos(n�) + bn sin(n�)) (2.4.1)

converge, then their averages

�m =
s0 + � � �+ sm

m+ 1

converge to the same limit. But it is conceivable that the �m could converge
without the sm converging. This idea for smoothing out the convergence had
already been around for some time when Fej�er approached the problem. It
had been used by Euler and extensively studied by Ces�aro, and goes by the
name of Ces�aro summability.

Theorem 2.4.2 (Fej�er). If f(�) is a Riemann integrable periodic func-
tion then the Ces�aro sums �m converge to f(�) as m tends to in�nity at ev-
ery value of � where f(�) is continuous.4

Proof. We shall prove this theorem in Section 2.7. See also K�orner [54],
Chapter 2. �

3The �rst examples of functions which are everywhere continuous but nowhere di�er-
entiable were constructed by Weierstrass, Abhandlungen aus der Functionenlehre, Springer
(1886), p. 97. He showed that if 0 < b < 1, a is an odd integer, and ab > 1 + 3�

2
then

f(t) =
P
1

n=1 b
n cos an(2��)t is a uniformly convergent sum, and that f(t) is everywhere

continuous but nowhere di�erentiable. G. H. Hardy, Weierstrass's non-di�erentiable func-

tion, Trans. Amer. Math. Soc. 17 (1916), 301{325, showed that the same holds if the bound
on ab is replaced by ab > 1. Manfred Schroeder, Fractals, chaos and power laws, W. H. Free-
man and Co., 1991, p. 96, points out that functions of this form can be thought of as fractal
waveforms. For example, if we set a = 213=12, then doubling the speed of this function will
result in a tone which sounds similar to the original, but lowered by a semitone and softer
by a factor of b. This sort of self-similarity is characteristic of fractals. It is ironic that
Weierstrass, in contrast with the vast majority of mathematicians, held a dislike for music.

4Continuous functions are Riemann integrable, so Fej�er's theorem applies to all con-
tinuous periodic functions.
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We shall interpret this theorem as saying that every continuous func-
tion may be reconstructed from its Fourier coeÆcients. But the reader should
bear in mind that if the function does not satisfy the hypotheses of Theorem
2.4.1 then the reconstruction of the function is done via Ces�aro sums, and
not simply as the sum of the Fourier series.

There are other senses in which we could ask for a Fourier series to
converge. One of the most important ones is mean square convergence.

Theorem 2.4.3. Let f(�) be a continuous periodic function with pe-
riod 2�. Then among all the functions g(�) which are linear combinations of
cos(n�) and sin(n�) with 0 � n � m, the partial sum sm de�ned in equation
(2.4.1) minimizes the mean square error of g(�) as an approximation to f(�),

1

2�

Z 2�

0
jf(�)� g(�)j2 d�:

Furthermore, in the limit as m tends to in�nity, the mean square error of sm
as an approximation to f(�) tends to zero.

Proof. See K�orner [54], Chapters 32{34. �

Exercises

1. Show that the function f(x) = x2 sin(1=x2) is di�erentiable for all values of x,
but its derivative is unbounded around x = 0.

2. Find the Fourier series for the periodic function f(�) = j sin �j (the absolute value
of sin �). In other words, �nd the coeÆcients am and bm using equations (2.2.5) and
(2.2.6). You will need to divide the interval from 0 to 2� into two subintervals in
order to evaluate the integral.
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3. Let �(�) be the periodic sawtooth function with period 2� de�ned by �(�) =
(� � �)=2 for 0 < � < 2� and �(0) = �(2�) = 0. Find the Fourier series for �(�).5

@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@

4. Find the Fourier series of the continuous periodic triangular wave function de-
�ned by

f(�) =

(
�
2 � � 0 � � � �

� � 3�
2 � � � � 2�

and f(� + 2�) = f(�).

�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A�
�
�
�
�
�A
A
A
A
A
A

5. (a) Show that if f(�) is a bounded (and Riemann integrable) periodic function
with period 2� then the Fourier coeÆcients am and bm de�ned by (2.2.5){(2.2.7)
are bounded.

(b) If f(�) is a di�erentiable periodic function with period 2�, �nd the rela-
tionship between the Fourier coeÆcients am(f), bm(f) for f(�) and the Fourier co-
eÆcients am(f

0), bm(f
0) for the derivative f 0(�). [Hint: use integration by parts]

(c) Show that if f(�) is a k times di�erentiable periodic function with period
2�, and the kth derivative f (k)(�) is bounded, then the Fourier coeÆcients am and
bm of f(�) are bounded by a constant multiple of 1=mk.

Thus, smoothness of f(�) is re
ected in rapidity of decay of the Fourier coef-
�cients.

6. Find the Fourier series for the function f(�) de�ned by f(�) = �2 for �� � � � �
and and then extended to all values of � by periodicity, f(� + 2�) = f(�). Evaluate

your answer at � = 0 and at � = �, and use your answer to �nd
P
1

n=1
(�1)n

n2 andP
1

n=1
1
n2 .

5The sawtooth waveform is approximately what is produced by a violin or other bowed
instrument. This is because the bow pulls the string, and then suddenly releases it when
the coeÆcient of static friction is exceeded. The coeÆcient of dynamic friction is smaller,
so once the string is released by the bow, it will tend to continue moving rapidly until the
other extreme of its trajectory is reached.
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2.5. The Gibbs phenomenon

A function de�ned on a closed interval is said to be piecewise contin-
uous if it is continuous except at a �nite set of points, and at those points
the left limit and right limit exist although they may not be equal. When we
talk of the size of a discontinuity of a piecewise continuous function f(�) at
� = a, we mean the di�erence f(a+)� f(a�), where

f(a+) = lim
�!a+

f(�); f(a�) = lim
�!a�

f(�)

denote the left limit and the right limit at that point. A periodic function is
said to be piecewise continuous if it is so on a closed interval forming a pe-
riod of the function.

Many of the functions encountered in the theory of synthesized sound
are piecewise continuous but not continuous. These include waveforms such
as the square wave and the sawtooth function.

Denote by �(�) the piecewise continuous periodic function de�ned by
�(�) = (� � �)=2 for 0 < � < 2�, �(0) = 0, and �(� + 2�) = �(�). Then
given any piecewise continuous periodic function f(�), we may add some �-
nite set of functions of the form C�(�+�) (with C and � constants) to make
the left limits and right limits at the discontinuities agree. We can then just
change the values of the function at the discontinuities, which will not a�ect
the Fourier series, to make the function continuous. It follows that in order
to understand the Fourier series for piecewise continuous functions in gen-
eral, it suÆces to understand the Fourier series of continuous functions to-
gether with the Fourier series of the single function �(�). The Fourier series
of this function (see Exercise 3 of x2.4) is

�(�) =
1X
n=1

sinn�

n
:

At the discontinuity (� = 0), this series converges to zero because all the terms
are zero. This is the average of the left limit and the right limit at this point.
It follows that for any piecewise continuous periodic function, the Ces�aro
sums �m described in x2.4 converge everywhere, and at the points of discon-
tinuity �m converges to the average of the left and right limit at the point:

lim
m!1

�m(a) =
1
2(f(a

+) + f(a�)):
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A further examination of the function �(�) shows that the convergence
around the point of discontinuity is not as straightforward as one might sup-
pose. Namely, setting

�m(�) =
mX
n=1

sinn�

n
; (2.5.1)

although it is true that we have pointwise convergence, in the sense that for
each point a we have limm!1 �m(a) = �(a), this convergence is not uniform.

The de�nition in analysis of pointwise convergence is that given a
value a of � and given " > 0, there exists N such that m � N implies
j�m(a) � �(a)j < ". Uniform convergence means that given " > 0, there ex-
ists N (independent of a) such that for all values a of �, m � N implies
j�m(a)��(a)j < ". What happens with the Fourier series for the above func-
tion � is that there is an overshoot, the size of which does not tend to zero
as m gets larger. The peak of the overshoot gets closer and closer to the dis-
continuity though, so that for any particular value a of �, convergence holds.
But choosing " smaller than the size of the overshoot shows that uniform
convergence fails. This overshoot is called the Gibbs phenomenon.6

�

sin � + 1
2 sin 2� + � � �+ 1

14 sin 14�

To demonstrate the reality of the overshoot, we shall compute its size
in the limit. The �rst step is to di�erentiate �m(�) to �nd its local maxima
and minima. We concentrate on the interval 0 � � � �, since �m(2� � �) =
��m(�). We have

�0m(�) =
mX
n=1

cosn� =
sin 1

2m� cos
1
2(m+ 1)�

sin 1
2�

(see Exercise 6 of x1.7). So the zeros of �0m(�) occur at � = (2k+1)�
m+1 and

� = 2k�
m , 0 � k � bm�12 c.7

6Josiah Willard Gibbs described this phenomenon in a series of letters to Nature in
1898 in correspondence with A. E. H. Love. He seems to have been unaware of the previ-
ous treatment of the subject by Henry Wilbraham in his article On a certain periodic func-

tion, Cambridge & Dublin Math. J. 3 (1848), 198{201.
7The notation bxc denotes the largest integer less than or equal to x.
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Now sin 1
2� is positive throughout the interval 0 � � � 2�. At � =

(2k+1)�
m+1 , sin 1

2m� has sign (�1)k while cos 12(m+1)� changes sign from (�1)k

to (�1)k+1, so that �0m(�) changes from positive to negative. It follows that

� = (2k+1)�
m+1 is a local maximum of �m. Similarly, at � = 2k�

m , cos 12(m+ 1)�

has sign (�1)k while sin 1
2m� changes sign from (�1)k�1 to (�1)k, so that

�0m(�) changes from negative to positive. It follows that � = 2k�
m is a local

minimum of �m(�). These local maxima and minima alternate.
The �rst local maximum value of �m(�) for 0 � � � 2� happens at

�
m+1 . The value of �m(�) at this maximum is

�m

�
�

m+1

�
=

mX
n=1

1
n sin

�
n�
m+1

�
=

�

m+ 1

mX
n=1

sin
�

n�
m+1

�
�

n�
m+1

� :

This is the Riemann sum for Z �

0

sin �

�
d�

with m + 1 equal intervals of size �
m+1 (note that lim

�!0

sin �

�
= 1 so that we

should de�ne the integrand to be 1 when � = 0 to make a continuous func-
tion on the closed interval 0 � � � �). Therefore the limit as m tends to
in�nity of the height of the �rst maximum point of the sum of the �rst m
terms in the Fourier series for �(�) isZ �

0

sin �

�
d� � 1:8519370:

This overshoots the maximum value �
2 � 1:5707963 of the function �(�) by

a factor of 1.1789797. Of course, the size of the discontinuity is not �
2 but

�, so that as a proportion of the size of the discontinuity, the overshoot is
about 8.9490%.8 It follows that for any piecewise continuous function, the
overshoot of the Fourier series just after a discontinuity is this proportion of
the size of the discontinuity.

After the function overshoots, it then returns to undershoot, then over-
shoot again, and so on, each time with a smaller value than before. An ar-
gument similar to the above shows that the value at the kth critical point

of �m(�) tends to
R k�
0

sin �
� d� as m tends to in�nity. Thus for example the

�rst undershoot (k = 2) has a value with a limit of about 1.4181516, which
undershoots �

2 by a factor of 0.9028233. The undershoot is therefore about
4.8588% of the size of the discontinuity.

The Gibbs phenomenon can be interpreted in terms of the response of
an ampli�er as follows. No matter how good your ampli�er is, if you feed it

8This value was �rst computed by Maxime Bôcher, Introduction to the theory of

Fourier's series. Ann. of Math. (2) 7 (1905{6), 81{152. A number of otherwise reputable
sources overstate the size of the overshoot by a factor of two for some reason probably as-
sociated with uncritical copying.
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a square wave, the output will overshoot at the discontinuity by roughly 9%.
This is because any ampli�er has a frequency beyond which it does not re-
spond. Improving the ampli�er can only increase this frequency, but cannot
get rid of the limitation altogether.

Manufacturers of cathode ray tubes also have to contend with this
problem. The beam is being made to run across the tube from left to right
linearly and then switch back suddenly to the left. Much e�ort goes into pre-
venting the inevitable overshoot from causing problems.

As mentioned above, the Gibbs phenomenon is a good example to il-
lustrate the distinction between pointwise convergence and uniform conver-
gence. For pointwise convergence of a sequence of functions fn(�) to a func-
tion f(�), it is required that for each value of �, the values fn(�) must con-
verge to f(�). For uniform convergence, it is required that the distance be-
tween fn(�) and f(�) is bounded by a quantity which depends on n and not
on �, and which tends to zero as n tends to in�nity. In the above example,
the distance between the nth partial sum of the Fourier series and the origi-
nal function can at best be bounded by a quantity which depends on n and
not on �, but which tends to roughly 0.28114. So this Fourier series con-
verges pointwise, but not uniformly.

2.6. Complex coeÆcients

The theory of Fourier series is considerably simpli�ed by the introduc-
tion of complex exponentials. See Appendix C for a quick summary of com-
plex numbers and complex exponentials. The relationships (C.1){(C.3)

ei� = cos � + i sin � cos � =
ei� + e�i�

2

e�i� = cos � � i sin � sin � =
ei� � e�i�

2i

mean that equation (2.2.1) can be rewritten as9

f(�) =

1X
n=�1

�ne
in� (2.6.1)

9Note that we are dealing with complex valued functions of a real periodic variable,
and not with functions of a complex variable here.
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where �0 =
1
2a0, and for m > 0, �m = 1

2am + 1
2ibm and ��m = 1

2am � 1
2ibm.

Conversely, given a series of the form (2.6.1) we can reconstruct the series
(2.2.1) using a0 = 2�0, am = �m + ��m and bm = i(�m � ��m) for m > 0.
Equations (2.2.2){(2.2.4) are replaced by the single equation10Z 2�

0
eim�ein� d� =

(
2� if m = �n

0 if m 6= �n

and equations (2.2.5){(2.2.7) are replaced by

�m =
1

2�

Z 2�

0
e�im�f(�) d�: (2.6.2)

Exercises

1. For the square wave example discussed in x2.2, show that

�m =
1

2�

�Z �

0

e�im� d� �
Z 2�

�

e�im� d�

�
=

(
2=im� m odd

0 m even:

so that the Fourier series is
1X

n=�1

2

i(2n+ 1)�
ei(2n+1)�:

2.7. Proof of Fej�er's Theorem

We are now in a position to prove Fej�er's Theorem 2.4.2. This section
may safely be skipped on �rst reading.

In terms of the complex form of the Fourier series, the partial sums
(2.4.1) become

sm =

mX
n=�m

�ne
in�; (2.7.1)

and so the Ces�aro sums �m are given by

�m(�) =
s0 + � � �+ sm

m+ 1

=
1

m+ 1

mX
j=0

jX
n=�j

�ne
in�

=
1

m+ 1

�
��me

�im� + 2��(m�1)e
�i(m�1)� + 3��(m�2)e

�i(m�2)� + : : :

+ � � �+m��1e
�i� + (m+ 1)�0e

0 +m�1e
i� + � � �+ �me

im�
�

=

mX
n=�m

m+ 1� jnj

m+ 1
�ne

in�:

10Over the complex numbers, to interpret this equation as an orthogonality rela-
tion (see the footnote on page 32), the inner product needs to be taken to be hf; gi =
1
2�

R 2�
0

f(�)g(�)d�.
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=
mX

n=�m

m+ 1� jnj

m+ 1

�
1

2�

Z 2�

0
e�inxf(x) dx

�
ein�

=
1

2�

Z 2�

0
f(x)

 
mX

n=�m

m+ 1� jnj

m+ 1
ein(��x)

!
dx

=
1

2�

Z 2�

0
f(x)Km(� � x) dx

where

Km(y) =
mX

n=�m

m+ 1� jnj

m+ 1
einy:

The functions Km are called the Fej�er kernels.
The substitution y = � � x shows that

1

2�

Z 2�

0
f(x)Km(� � x) dx =

1

2�

Z 2�

0
f(� � y)Km(y) dy

By examining what happens when a geometric series is squared, for y 6= 0
we have

Km(y) =
1

m+ 1

�
e�imy + 2e�i(m�1)y + � � �+ (m+ 1)e0 + � � �+ eimy

�
=

1

m+ 1
(e�i

m
2
y + e�i(

m
2
�1)y + � � �+ ei

m
2
y)2 (2.7.2)

=
1

m+ 1

 
ei

m+1
2
y � e�i

m+1
2
y

ei
1
2
y � e�i

1
2
y

!2

=
1

m+ 1

 
sin m+1

2 y

sin 1
2y

!2

;

and Km(0) = m+1 can also be read o� from (2.7.2). Here are the graphs of
Km(y) for some small values of m.
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m = 2

m = 5

m = 8

�� �

The function Km(y) satis�es Km(y) � 0 for all y; for any Æ > 0,

Km(y)! 0 uniformly as m!1 on [Æ; 2� � Æ]; and
R 2�
0 Km(y) dy = 2�. So

�m(�) =
1

2�

Z 2�

0
f(� � y)Km(y) dy �

1

2�

Z Æ

�Æ
f(� � y)Km(y) dy

� f(�)

�
1

2�

Z Æ

�Æ
Km(y) dy

�
� f(�):

If f(�) is continuous at �, then by choosing Æ small enough, the second ap-
proximation may be made as close as desired (independently of m). Then by
choosing m large enough, the �rst and third approximations may be made
as close as desired. This completes the proof of Fej�er's theorem.

Exercises

1. (i) Substitute equation (2.6.2) in equation (2.7.1) to show that

sm(�) =
1

2�

Z 2�

0

f(x)Dm(� � x) dx

where

Dm(y) =
mX

n=�m

einy:

The functions Dm are called the Dirichlet kernels.
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(ii) Use a substitution to show that

sm(�) =
1

2�

Z 2�

0

f(� � y)Dm(y) dy:

(iii) By regarding the formula for Dm(y) as a geometric series, show that

Dm(y) =
sin(m+ 1

2 )y

sin 1
2y

:

(iv) Show that jDm(y)j � j cosec 1
2yj

(v) Sketch the graphs of the Dirichlet kernels for small values of m. What happens

as m gets large?

2.8. Bessel functions

Bessel functions11 are the result of applying the theory of Fourier se-
ries to the functions sin(z sin �) and cos(z sin �) as functions of �, where z is
to be thought of at �rst as a real (or complex) constant, and later it will be
allowed to vary. We shall have two uses for the Bessel functions. One is un-
derstanding the vibrations of a drum in x3.5, and the other is understanding
the amplitudes of side bands in FM synthesis in x7.13.

Now sin(z sin �) is an odd periodic function of �, so its Fourier coeÆ-
cients an (2.2.1) are zero for all n (see x2.3). Since

sin(z sin(� + �)) = � sin(z sin �);

the Fourier coeÆcients b2n are also zero (see x2.3 again). The coeÆcients
b2n+1 depend on the parameter z, and so we write 2J2n+1(z) for this coeÆ-
cient. The factor of two simpli�es some later calculations. So the Fourier ex-
pansion (2.2.1) is

sin(z sin �) = 2

1X
n=0

J2n+1(z) sin(2n+ 1)�: (2.8.1)

Similarly, cos(z sin �) is an even periodic function of �, so the coeÆcients bn
are zero. Since

cos(z sin(� + �)) = cos(z sin �)

we also have a2n+1 = 0, and we write 2J2n(z) for the coeÆcient a2n to obtain

cos(z sin �) = J0(z) + 2
1X
n=1

J2n(z) cos 2n�: (2.8.2)

11Friedrich Wilhelm Bessel was a German astronomer and a friend of Gauss. He was
born in Minden on July 22, 1784. His working life started as a ship's clerk. But in 1806,
he became an assistant at an astronomical observatory in Lilienthal. In 1810 he became
director of the then new Prussian Observatory in K�onigsberg, where he remained until he
died on March 17, 1846. The original context (around 1824) of his investigations of the
functions that bear his name was the study of planetary motion, see Section 2.11.
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The functions Jn(z) giving the Fourier coeÆcients in these expansions are
called the Bessel functions of the �rst kind.

Equations (2.2.5) and (2.2.6) allow us to �nd the Fourier coeÆcients
Jn(z) in the above expansions as integrals. We obtain

2J2n+1(z) =
1

�

Z 2�

0
sin(2n+ 1)� sin(z sin �) d�:

The integrand is an even function of �, so the integral from 0 to 2� is twice
the integral from 0 to �,

J2n+1(z) =
1

�

Z �

0
sin(2n+ 1)� sin(z sin �) d�:

Now the function cos(2n + 1)� cos(z sin �) is negated when � is replaced by
� � �, so

1

�

Z �

0
cos(2n+ 1)� cos(z sin �) d� = 0:

Adding this into the above expression for J2n+1(z), we obtain

J2n+1(z) =
1

�

Z �

0
[cos(2n+ 1)� cos(z sin �) + sin(2n+ 1)� sin(z sin �)] d�

=
1

�

Z �

0
cos((2n+ 1)� � z sin �) d�:

In a similar way, we have

2J2n(z) =
1

�

Z 2�

0
cos 2n� cos(z sin �) d�

which a similar manipulation puts in the form

J2n(z) =
1

�

Z �

0
cos(2n� � z sin �) d�:

This means that we have the single equation for all values of n, even or odd,

Jn(z) =
1

�

Z �

0
cos(n� � z sin �) d� (2.8.3)

which can be taken as a de�nition for the Bessel functions for integers n � 0.
In fact, this de�nition also makes sense when n is a negative integer,12 and
gives

J�n(z) = (�1)nJn(z): (2.8.4)

This means that (2.8.1) and (2.8.2) can be rewritten as

sin(z sin �) =

1X
n=�1

J2n+1(z) sin(2n+ 1)� (2.8.5)

12For non-integer values of n, the above formula is not the correct de�nition of Jn(z).
Rather, one uses the di�erential equation (2.10.1). See for example Whittaker and Wat-
son, A course in modern analysis, Cambridge University Press, 1927, p. 358.
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cos(z sin �) =
1X

n=�1

J2n(z) cos 2n�: (2.8.6)

We also have
1X

n=�1

J2n(z) sin 2n� = 0

1X
n=�1

J2n+1(z) cos(2n+ 1)� = 0;

because the terms with positive subscript cancel with the corresponding terms
with negative subscript. So we can rewrite equations (2.8.5) and (2.8.6) as

sin(z sin �) =

1X
n=�1

Jn(z) sinn� (2.8.7)

cos(z sin �) =

1X
n=�1

Jn(z) cos n�: (2.8.8)

So using equation (1.7.2) we have

sin(�+ z sin �) = sin� cos(z sin �) + cos� sin(z sin �)

= sin�

1X
n=�1

Jn(z) cos n� + cos�

1X
n=�1

Jn(z) sinn�

=

1X
n=�1

Jn(z)(sin� cosn� + cos� sinn�):

Finally, recombining the terms using equation (1.7.2), we obtain

sin(�+ z sin �) =

1X
n=�1

Jn(z) sin(�+ n�): (2.8.9)

This equation will be of fundamental importance for FM synthesis in x7.13.
A similar argument gives

cos(�+ z sin �) =

1X
n=�1

Jn(z) cos(�+ n�); (2.8.10)

which can also be obtained from equation (2.8.9) by replacing � by �+ �
2 , or

by di�erentiating with respect to �, keeping z and � constant.
Here are graphs of the �rst few Bessel functions:
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z

J0(z)

z

J1(z)

z

J2(z)

2.9. Properties of Bessel functions

From equation (2.8.9), we can obtain relationships between the Bessel
functions and their derivatives, as follows. Di�erentiating (2.8.9) with re-
spect to z, keeping � and � constant, we obtain

sin � cos(�+ z sin �) =

1X
n=�1

J 0n(z) sin(�+ n�) (2.9.1)

On the other hand, multiplying equation (2.8.10) by sin � and using (1.7.7),
we have

sin � cos(�+ z sin �) =

1X
n=�1

Jn(z):
1
2

�
sin(�+ (n+ 1)�)� sin(�+ (n� 1)�)

�
=

1X
n=�1

1
2

�
Jn�1(z)� Jn+1(z)

�
sin(�+ n�): (2.9.2)

In the last step, we have split the sum into two parts, reindexed by replacing n
by n�1 and n+1 respectively in the two parts, and then recombined the parts.
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We would like to compare formulas (2.9.1) and (2.9.2) and deduce that

J 0n(z) =
1
2

�
Jn�1(z)� Jn+1(z)

�
(2.9.3)

In order to do this, we need to know that the functions sin(�+n�) are inde-
pendent. This can be seen using Fourier series as follows.

Lemma 2.9.1. If
1X

n=�1

an sin(�+ n�) =
1X

n=�1

a0n sin(�+ n�);

as an identity between functions of � and �, where an and a0n do not depend
on � and �, then each coeÆcient an = a0n.

Proof. Subtracting one side from the other, we see that we must prove
that if

P
1

n=�1 cn sin(�+n�) = 0 (where cn = an�a
0

n) then each cn = 0. To
prove this, we expand using (1.7.2) to give

1X
n=�1

cn sin� cosn� +

1X
n=�1

cn cos� sinn� = 0:

Putting � = 0 and � = �
2 in this equation, we obtain

1X
n=�1

cn cosn� = 0; (2.9.4)

1X
n=�1

cn sinn� = 0: (2.9.5)

Multiply equation (2.9.4) by cosm�, integrate from 0 to 2� and divide
by �. Using equation (2.2.3), we get cm + c�m = 0. Similarly, from equa-
tions (2.9.5) and (2.2.4), we get cm � c�m = 0. Adding and dividing by two,
we get cm = 0. �

This completes the proof of equation (2.9.3). As an example, setting
n = 0 in (2.9.3) and using (2.8.4), we obtain

J1(z) = �J 00(z): (2.9.6)

In a similar way, we can di�erentiate (2.8.9) with respect to �, keeping
z and � constant to obtain

z cos � cos(�+ z sin �) =

1X
n=�1

nJn(z) cos(�+ n�): (2.9.7)

On the other hand, multiplying equation (2.8.10) by z cos � and using (1.7.10),
we obtain

z cos � cos(�+ z sin �)

=
1X

n=�1

Jn(z):
z
2

�
cos(�+ (n+ 1)�) + cos(�+ (n� 1)�)

�
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=
1X

n=�1

z
2

�
Jn�1(z) + Jn+1(z)

�
cos(�+ n�): (2.9.8)

Comparing equations (2.9.7) and (2.9.8) and using Lemma 2.9.1, we obtain
the recurrence relation

Jn(z) =
z

2n

�
Jn�1(z) + Jn+1(z)

�
. (2.9.9)

Exercises

1. Show that

Z
1

0

J1(z) dz = 1.

[You may use the fact that lim
z!1

J0(z) = 0]

2.10. Bessel's equation and power series

Using equations (2.9.3) and (2.9.9), we can now derive the di�erential
equation (2.10.1) for the Bessel functions Jn(z). Using (2.9.3) twice, we ob-
tain

J 00n(z) =
1
2(J

0

n�1(z)� J 0n+1(z))

= 1
4Jn�2(z)�

1
2Jn(z) +

1
4Jn+2(z):

On the other hand, substituting (2.9.9) into (2.9.3), we obtain

J 0n(z) =
1
2

�
z

2(n�1) (Jn�2(z) + Jn(z)) �
z

2(n+1) (Jn(z) + Jn+2(z))
�

= z
4(n�1)Jn�2(z) +

z
2(n2�1)Jn(z)�

z
4(n�1)Jn+2(z):

In a similar way, using (2.9.9) twice gives

Jn(z) =
z
2n

�
z

2(n�1) (Jn�2(z) + Jn(z)) +
z2

2(n+1) (Jn(z) + Jn+2(z))
�

= z
4n(n�1)Jn�2(z) +

z2

n2�1
Jn(z) +

z2

4n(n+1)Jn+2(z):

Combining these three formulas, we obtain

J 00n(z) +
1
zJ

0

n(z)�
n2

z2
Jn(z) = �Jn(z);

or

J 00n(z) +
1

z
J 0n(z) +

�
1�

n2

z2

�
Jn(z) = 0: (2.10.1)

We now discuss the general solution to Bessel's Equation, namely the
di�erential equation

f 00(z) +
1

z
f 0(z) +

�
1�

n2

z2

�
f(z) = 0: (2.10.2)
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This is an example of a second order linear di�erential equation, and once
one solution is known, there is a general proceedure for obtaining all solu-
tions. In this case, this consists of substituting f(z) = Jn(z)g(z), and �nd-
ing the di�erential equation satis�ed by the new function g(z). We �nd that

f 0(z) = J 0n(z)g(z) + Jn(z)g
0(z);

f 00(z) = J 00n(z)g(z) + 2J 0n(z)g
0(z) + Jn(z)g

00(z):

So substituting into Bessel's equation (2.10.2), we obtain�
J 00n(z) +

1

z
J 0n(z) +

�
1�

n2

z2

�
Jn(z)

�
g(z)+�

2J 0n(z) +
1

z
Jn(z)

�
g0(z) + Jn(z)g

00(z) = 0:

The coeÆcient of g(z) vanishes by equation (2.10.1), and so we are left with�
2J 0n(z) +

1

z
Jn(z)

�
g0(z) + Jn(z)g

00(z) = 0; (2.10.3)

This is a separable �rst order equation for g0(z), so we separate the variables

g00(z)

g0(z)
= �2

J 0n(z)

Jn(z)
�

1

z

and integrate to obtain

ln jg0(z)j = �2 ln jJn(z)j � ln jzj+ C

where C is the constant of integration. Exponentiating, we obtain

g0(z) =
B

zJn(z)2

where B = �eC . Alternatively, we could have obtained this directly from
equation (2.10.3) by multiplying by zJn(z) to see that the derivative of
zJn(z)

2g0(z) is zero.
Integrating again, we obtain

g(z) = A+B

Z
dz

zJn(z)2

where the integral sign denotes a chosen antiderivative. Finally, it follows
that the general solution to Bessel's equation is given by

f(z) = AJn(z) +BJn(z)

Z
dz

zJn(z)2
: (2.10.4)

The function

Yn(z) =
2

�
Jn(z)

Z
dz

zJn(z)2
;

for a suitable choice of constant of integration, is called Neumann's Bessel
function of the second kind, or Weber's function. The factor of 2=� is intro-
duced (by most, but not all authors) so that formulas involving Jn(z) and
Yn(z) look similar; we shall not go into the details. From the above integral,
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it is not hard to see that Yn(z) tends to �1 as z tends to zero from above;
we shall be more explicit about this towards the end of this section.

Next, we develop the power series for Jn(z). We begin with J0(z).
Putting z = � = 0 in equation (2.8.2), we see that J0(0) = 1. By (2.8.4),
J0(z) is an even function of z, so we look for a power series of the form

J0(z) = 1 + a2z
2 + a4z

4 + � � � =

1X
k=0

a2kz
2k

where a0 = 1. Then

J 00(z) = 2a2z + 4a4z
3 + � � � =

1X
k=1

2ka2kz
2k�1;

J 000 (z) = 2 � 1 a2 + 4 � 3 a4z
2 + � � � =

1X
k=1

2k(2k � 1)a2kz
2k�2:

Putting n = 0 in equation (2.10.1) and comparing coeÆcients of a2k�2,
we obtain

2k(2k � 1)a2k + 2ka2k + a2k�2 = 0;

or
(2k)2a2k = �a2k�2:

So starting with a0 = 1, we obtain a2 = �1=22, a4 = 1=(22 � 42), . . . , and by
induction on k, we have

a2k =
(�1)k

22 � 42 : : : (2k)2
=

(�1)k

2k(k!)2
:

So we have

J0(z) = 1�
z2

22
+

z4

22 � 42
�

z6

22 � 42 � 62
+ � � � =

1X
k=0

(�1)k
�
z
2

�2k
(k!)2

: (2.10.5)

Since the coeÆcients in this power series are tending to zero very rapidly, it
has an in�nite radius of convergence.13 So it is uniformly convergent, and
can be di�erentiated term by term. It follows that the sum of the power se-
ries satis�es Bessel's equation, because that's how we chose the coeÆcients.
We have already seen that there is only one solution of Bessel's equation with
value 1 at z = 0, which completes the proof that the sum of the power series
is indeed J0(z).

Di�erentiating equation (2.10.5) term by term and using (2.9.6), we
see that

J1(z) =
z

2
�

z3

22 � 4
+

z5

22 � 42 � 6
� � � � =

1X
k=0

(�1)k
�
z
2

�1+2k
k!(1 + k)!

:

13For any value of z, the ratio of successive terms tends to zero, so by the ratio test
the series converges.
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Now using equation (2.9.9) and induction on n, we �nd that

Jn(z) =
1X
k=0

(�1)k( z2 )
n+2k

k!(n+ k)!
; (2.10.6)

with in�nite radius of convergence.
From the power series, we see that for small positive values of z,

Jn(z) is equal to z
n=2nn! plus much smaller terms. So 1=zJn(z)

2 is equal
to 22n(n!)2z�2n�1 plus much smaller terms, and

R
1=zJn(z)

2 dz is equal to
�22n�1n!(n � 1)!z�2n plus much smaller terms. Finally, Yn(z) is equal to
�2n(n � 1)!z�n=� plus much smaller terms. In particular, this shows that
Yn(z) ! �1 as z ! 0+.

Exercises

1. Replace � by �
2 � � in equations (2.8.1) and (2.8.2) to obtain the Fourier series

for sin(z cos �) and cos(z cos �).

2. Show that y = Jn(�x) is a solution of the di�erential equation

d2y

dx2
+

1

x

dy

dx
+

�
�2 � n2

x2

�
y = 0:

Show that the general solution to this equation is given by y = AJn(�x)+BYn(�x).

3. Show that y =
p
xJn(x) is a solution of the di�erential equation

d2y

dx2
+

�
1 +

1
4 � n2

x2

�
y = 0:

Find the general solution of this equation.

4. Show that y = Jn(e
x) is a solution of the di�erential equation

d2y

dx2
+ (e2x � n2)y = 0:

Find the general solution of this equation.

5. The following exercise is another route to Bessel's di�erential equation (2.10.1).

(a) Di�erentiate equation (2.8.9) twice with respect to z, keeping � and � constant.

(b) Di�erentiate equation (2.8.9) twice with respect to �, keeping z and � constant.

(c) Divide the result of (b) by z2 and add to the result of (a), and use the relation
sin2 � + cos2 � = 1. Deduce that

1X
n=�1

�
J 00n(z) +

1

z
J 0n(z) +

�
1� n2

z2

�
Jn(z)

�
sin(�+ z�) = 0:

(d) Finally, use Lemma 2.9.1 to show that Bessel's equation (2.8.9) holds.

(The following exercises suppose some knowledge of complex analysis in order to
give an alternative development of the power series and recurrence relations for the
Bessel functions)

6. Show that

Jn(z) =
1

2�

Z �

0

ei(n��z sin �) d� +
1

2�

Z �

0

e�i(n��z sin �) d�
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=
1

2�

Z �

��

e�i(n��z sin �) d�:

Substitute t = ei� (so that 1
2i (t� 1

t ) = sin �) to obtain

Jn(z) =
1

2�i

I
t�n�1e

1

2
z(t� 1

t
) dt (2.10.7)

where the contour of integration goes counterclockwise once around the unit circle.
Use Cauchy's integral formula to deduce that Jn(z) is the coeÆcient of tn in the

Laurent expansion of e
1

2
z(t� 1

t
):

e
1

2
z(t� 1

t
) =

1X
n=�1

Jn(z)t
n:

7. Substitute t = 2s=z in (2.10.7) to obtain

Jn(z) =
1

2�i

�z
2

�n I
s�n�1es�

z
2

4s ds:

Discuss the contour of integration. Expand the integrand in powers of z to give

Jn(z) =
1

2�i

1X
k=0

(�1)k
k!

�z
2

�n+2k I
s�n�k�1es ds

and justify the term by term integration. Show that the residue of the integrand at
s = 0 is 1=(n+ k)! when n+ k � 0 and is zero when n+ k < 0. Deduce the power
series (2.10.6).

8. (a) Use the power series (2.10.6) to show that

Jn(z) =
z
2n (Jn�1(z) + Jn+1(z)):

(b) Di�erentiate the power series (2.10.6) term by term to show that

J 0n(z) =
1
2 (Jn�1(z)� Jn+1(z)):

Further reading on Bessel functions:

Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions, Na-
tional Bureau of Standards, 1964, reprinted by Dover in 1965 and still in print.
This contains extensive tables of many mathematical functions including Jn(z) and
Yn(z).

Frank Bowman, Introduction to Bessel functions, reprinted by Dover in 1958 and
still in print.

G. N. Watson, A treatise on the theory of Bessel functions [111] is an 800 page tome
on the theory of Bessel functions. This work contains essentially everything that was
known in 1922 about these functions, and is still pretty much the standard reference.

E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge University Press,

1927, chapter XVII.
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2.11. Fourier series for FM feedback and planetary motion

We shall see in x7.13 that in the theory of FM synthesis, feedback is
represented by an equation of the form

� = sin(!t+ z�); (2.11.1)

where ! and z are constants with jzj � 1.
In the theory of planetary motion, Kepler's laws imply that the angle

� subtended at the center (not the focus) of the elliptic orbit by the planet,
measured from the major axis of the ellipse, satis�es

!t = � � z sin � (2.11.2)

where z is the eccentricity14 of the ellipse, a number in the range 0 � z � 1,
and ! = 2�� is angular velocity.

Both of these equations de�ne periodic functions of t, namely � in the
�rst case and sin � = (� � !t)=z in the second. In fact, they are really just
di�erent ways of writing the same equation. To get from equation (2.11.2)
to (2.11.1), we use the substitution � = !t+ z�. To go the other way, we use
the inverse substitution � = (� � !t)=z.

To graph � as a function of t, it is best to use � as a parameter and set
t = (� � z sin �)=!, � = sin �. Here is the result when z = 1

2 :

t

�

When jzj > 1, the parametrized form of the equation still makes sense,
but it is easy to see that the resulting graph does not de�ne � uniquely as a
function of t. Here is the result when z = 3

2 :

t

�

14The eccentricity of an ellipse is de�ned to be the distance from the center to the fo-
cus, as a proportion of the major radius.
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In this section, we examine equation (2.11.2), and �nd the Fourier co-
eÆcients of � = sin � as a function of t, regarding z as a constant. The an-
swer is given in terms of Bessel functions. In fact, the solution of this equa-
tion in the context of planetary motion was the original motivation for Bessel
to introduce his functions Jn(z).

15

First, for convenience we write T = !t. Next, we observe that pro-
vided jzj � 1, � � z sin � is a strictly increasing fuction of � whose domain
and range are the whole real line. It follows that solving equation (2.11.2)
gives a unique value of � for each T , so that � may be regarded as a contin-
uous function of T . Furthermore, adding 2� to both � and T , or negating
both � and T does not a�ect equation (2.11.2), so z� = z sin � = �� T is an
odd periodic function of T with period 2�. So it has a Fourier expansion

z� =
1X
n=1

bn sinnT: (2.11.3)

The coeÆcients bn can be calculated directly using equation (2.2.6):

bn =
1

�

Z 2�

0
z� sinnT dT =

2

�

Z �

0
z� sinnT dT:

Integrating by parts gives

bn =
2

�

�
�z�

cosnT

n

��
0

+
2

�

Z �

0
z
d�

dT

cosnT

n
dT:

We have � = 0 when T = 0 or T = �, so the �rst term vanishes. Rewriting
the second term, we obtain

bn =
2

n�

Z �

0
cosnT

d(z�)

dT
dT:

Now

Z �

0
cosnT dT = 0, so we can rewrite this as

bn =
2

n�

Z �

0
cosnT

d(z�+ T )

dT
dT =

2

n�

Z �

0
cosnT

d�

dT
dT

=
2

n�

Z �

0
cosnT d�:

In the last step, we have used the fact that as T increases from 0 to �, so
does �. Substituting T = � � z sin � now gives

bn =
2

n�

Z �

0
cos(n� � nz sin �) d�:

Comparing with equation (2.8.3) �nally gives

bn =
2

n
Jn(nz):

15Bessel, Untersuchung der Theils der planetarischen St�orungen, welcher aus der Be-

wegung der Sonne entsteht, Berliner Abh. (1826), 1{52.



2.12. PULSE STREAMS 61

Substituting back into equation (2.11.3) gives

� = sin � =
1X
n=1

2Jn(nz)

nz
sinn!t. (2.11.4)

So this equation gives the Fourier series relevant to both feedback in FM syn-
thesis (2.11.1) and planetary motion (2.11.2).

2.12. Pulse streams

In this section, we examine streams of square pulses. The purpose of
this is twofold. First, in analog synthesizers16 one method for obtaining a time
varying frequency spectrum is to use pulse width modulation (PWM). A low
frequency oscillator (LFO, x7.7) is used to control the pulse width of a square
wave, while keeping the fundamental frequency constant. The second point
is that by keeping the pulse width constant and decreasing the frequency, we
motivate the de�nition of Fourier transform, to be introduced in x2.13.

Let us investigate the frequency spectrum of the square wave given by

f(t) =

8><>:
1 0 � t < �=2

0 �=2 � t < T � �=2

1 T � �=2 � t < T

where � is some number between 0 and T , and f(t+ T ) = f(t).

��=2 0 �=2 T

The Fourier coeÆcients are given by

�m =
1

T

Z �=2

��=2
e�2�imt=T dt =

1

�m
sin(�m�=T ):

For example, if T = 5�, the frequency spectrum is as follows

16This is also used in some of the more modern analog modeling synthesizers such as
the Roland JP-8000/JP-8080.
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If we keep � constant and increase T , the shape of the spectrum stays
the same, but vertically scaled down in proportion, so as to keep the energy
density along the horizontal axis constant. It makes sense to rescale to take
account of this, and to plot T�m instead of �m. If we do this, and increase
T while keeping � constant, all that happens is that the graph �lls in. So for
example, removing every second peak from the original square wave

then the spectrum �lls in as follows.

Letting T tend to in�nity while keeping � constant, we obtain the
Fourier transform of a single square pulse, which (after suitable scaling) is
the function sin(�)=�. Here, � is a continuously variable quantity represent-
ing frequency.

2.13. The Fourier transform

The theory of Fourier series, as described in xx2.2{2.4, decomposes pe-
riodic waveforms into in�nite sums of sines and cosines, or equivalently (x2.6)
complex exponential functions of the form eint. It is often desirable to anal-
yse nonperiodic functions in a similar way. This leads to the theory of Fourier
transforms. The theory is more beset with conditions than the theory of
Fourier series. In particular, the theory only describes functions which tend
to zero for large positive or negative values of the time variable t. To deal
with this from a musical perspective, we introduce the theory of window-
ing. The point is that any actual sound is not really periodic, since periodic
functions have no starting point and no end point. Moreover, we don't re-
ally want a frequency analysis of, for example, the whole of a symphony, be-
cause the answer would be dominated by extremely phase sensitive low fre-
quency information. We'd really like to know at each instant what the fre-
quency spectrum of the sound is, and to plot this frequency spectrum against
time. Now, it turns out that it doesn't really make sense to ask for the in-
stantaneous frequency spectrum of a sound, because there's not enough in-
formation. We really need to know the waveform for a time window around
each point, and analyse that. Small window sizes give information which is
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more localized in time, but the frequency components are smeared out along
the spectrum. Large window sizes give information in which the frequency
components are more accurately described, but more smeared out along the
time axis. This limitation is inherent to the process, and has nothing to do
with how accurately the waveform is measured. In this respect, it resembles
the Heisenberg uncertainty principle.17

If f(t) is a real or complex valued function of a real variable t, then its

Fourier transform f̂(�) is the function of a real variable � de�ned by18

f̂(�) =

Z
1

�1

f(t)e�2�i�t dt. (2.13.1)

Existence of a Fourier transform for a function assumes convergence of
the above integral, and this already puts restrictions on the function f(t).
A reasonable condition which ensures convergence is the following. A func-
tion f(t) is said to be L1, or absolutely integrable on (�1;1) if the integralR
1

�1
jf(t)j dt converges.
Calculating the Fourier transform of a function is usually a diÆcult

process. As an example, we now calculate the Fourier transform of e��t
2
.

This function is unusual, in that it turns out to be its own Fourier transform.

Theorem 2.13.1. The Fourier transform of e��t
2
is e���

2
.

Proof. Let f(t) = e��t
2
. Then

f̂(�) =

Z
1

�1

e��t
2
e�2�i�t dt

17In fact, this is more than just an analogy. In quantum mechanics, the probability
distributions for position and velocity of a particle are related by the Fourier transform,
with an extra factor of ~=m, where ~ is Planck's constant and m is the mass. The Heisen-
berg uncertainty principle applies to the expected deviation from the average value of any
two quantities related by the Fourier transform, and says that the product of these ex-
pected deviations is at least 1

2
. So in the quantum mechanical context the product is at

least ~=2m, because of the extra factor.
18There are a number of variations on this de�nition to be found in the literature, de-

pending mostly on the placement of the factor of 2�. The way we have set it up means
that the variable � directly represents frequency. Most authors delete the 2� from the ex-
ponential in this de�nition, which amounts to using the angular velocity ! instead. This
means that they either have a factor of 1=2� appearing in formula (2.13.3), causing an an-

noying asymmetry, or a factor of 1=
p
2� in both (2.13.1) and (2.13.3).

Strictly speaking, the meaning of equation (2.13.1) should be

lim
a!�1

lim
b!1

Z b

a

f(t)e�2�i�t dt:

However, under some conditions this double limit may not exist, while

lim
R!1

Z R

�R

f(t)e�2�i�t dt

may exist. This weaker symmetric limit is called the Cauchy principal value of the inte-
gral. Principal values are often used in the theory of Fourier transforms.
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=

Z
1

�1

e��(t
2+2i�t) dt

=

Z
1

�1

e��((t+i�)
2+�2) dt:

Substituting x = t+ i�, dx = dt, we obtain

f̂(�) =

Z
1

�1

e��(x
2+�2) dx: (2.13.2)

This form of the integral makes it obvious that f̂(�) is positive and real, but
it is not obvious how to evaluate the integral. It turns out that it can be
evaluated using a trick. The trick is to square both sides, and then regard
the right hand side as a double integral.

f̂(�)2 =

Z
1

�1

e��(x
2+�2) dx

Z
1

�1

e��(y
2+�2) dy

=

Z
1

�1

Z
1

�1

e��(x
2+y2+2�2) dx dy:

We now convert this double integral over the (x; y) plane into polar coordi-
nates (r; �). Remembering that the element of area in polar coordinates is
r dr d�, we get

f̂(�)2 =

Z 2�

0

Z
1

0
e��(r

2+2�2) r dr d�:

We can easily perform the integration with respect to �, since the integrand
is constant with respect to �. And then the other integral can be carried out
explicitly.

f̂(�)2 =

Z
1

0
2�re��(r

2+2�2) dr

=
h
�e��(r

2+2�2)
i
1

0

= e�2��
2
:

Finally, since equation (2.13.2) shows that f̂(�) is positive, taking square

roots gives f̂(�) = e���
2
as desired. �

The inversion formula is the following, which should be compared with
Theorem 2.4.1.

Theorem 2.13.2. Let f(t) be a piecewise C1 function (i.e., on any �-
nite interval, f(t) is C1 except at a �nite set of points) which is also L1.
Then at points where f(t) is continuous, its value is given by the inverse

Fourier transform

f(t) =

Z
1

�1

f̂(�)e2�i�t d�: (2.13.3)
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(Note the change of sign in the exponent from equation (2.13.1))
At discontinuities, the expression on the right of this formula gives the aver-
age of the left limit and the right limit, 1

2(f(t
+) + f(t�)), just as in x2.5.

Just as in the case of Fourier series, it is not true that a piecewise con-
tinuous L1 function satis�es the conclusions of the above theorem. But a de-
vice analogous to Ces�aro summation works equally well here. The analogue
of averaging the �rst n sums is to introduce a factor of 1� j�j=R into the in-
tegral de�ning the inverse Fourier transform, before taking principal values.

Theorem 2.13.3. Let f(t) be a piecewise continuous L1 function. Then
at points where f(t) is continuous, its value is given by

f(t) = lim
R!1

Z R

�R

�
1�

j�j

R

�
f̂(�)e2�i�t d�:

At discontinuities, this formula gives 1
2 (f(t

+) + f(t�)).

How does the Fourier transform tell us about the frequency distribu-
tion in the original function? Well, just as in x2.6, the relations (C.1){(C.3)
tell us how to rewrite complex exponentials in terms of sines and cosines,
and vice-versa. So the values of f̂ at � and at �� tell us not only about the
magnitude of the frequency component with frequency �, but also the phase.
If the original function f(t) is real valued, then f̂(��) is the complex conju-

gate f̂(�). The energy density at a particular value of � is de�ned to be the

square of the amplitude jf̂(�)j,

Energy Density = jf̂(�)j2:

Integrating this quantity over an interval will measure the total energy cor-
responding to frequencies in this interval. But note that both � and �� con-
tribute to energy, so if only positive values of � are used, we must remember
to double the answer.

The usual way to represent the frequency spectrum of a real valued sig-
nal is to represent the amplitude and the phase of f(�) separately for posi-
tive values of �. Recall from Appendix C that in polar coordinates, we can
write f(�) as rei�, where r = jf(�)j is the amplitude of the correpsonding
frequency component and � is the phase. So r is always nonnegative, and we
take � to lie between �� and �. Then f(��) = f(�) = re�i�, so we have al-
ready represented this information.

Parseval's formula states that the total energy of a signal is equal to
the total energy in its spectrum:Z

1

�1

jf(t)j2 dt =

Z
1

�1

jf̂(�)j2 d�:

More generally, if f(t) and g(t) are two functions, it states thatZ
1

�1

f(t)g(t) dt =

Z
1

�1

f̂(�)ĝ(�) d�: (2.13.4)
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The term white noise refers to a waveform whose spectrum is 
at; for
pink noise, the spectrum level decreases by 3dB per octave, while for brown
noise (named after Brownian motion), the spectrum level decreases by 6dB
per octave.

The windowed Fourier transform was introduced by Gabor,19 and is
described as follows. Given a windowing function  (t) and a waveform f(t),
the windowed Fourier transform is the function of two variables

F (f)(p; q) =

Z
1

�1

f(t)e�2�iqt (t� p) dt;

for p and q real numbers. This may be thought of as using all possible time
translations of the windowing function, and pulling out the frequency com-
ponents of the result.

Exercises

1. Download a copy of Spectrogram from

http://www.monumental.com/rshorne/gram.html

This is a freeware realtime audio frequency analysing program for a PC running
Windows 95/98/ME. Plug a microphone into the audio card on your PC and use
this program to watch the frequency spectrum of sounds such as your voice, any mu-
sical instruments you may have around, and so on.

2. Find
R
1

�1
e�x

2

dx.

[Hint: Square the integral and convert to polar coordinates, as in the proof of The-
orem 2.13.1]

3. Show that if a is a constant then the Fourier transform of f(at) is 1
a f̂(

�
a ).

4. Show that if a is a constant then the Fourier transform of f(t�a) is e�2�ia� f̂(�).

2.14. The Poisson summation formula

When we come to study digital music in Chapter 7, we shall need to
use the Poisson summation formula.

Theorem 2.14.1 (Poisson's summation formula).
1X

n=�1

f(n) =

1X
n=�1

f̂(n): (2.14.1)

Proof. De�ne

g(�) =

1X
n=�1

f

�
�

2�
+ n

�
:

19D. Gabor, Theory of communication, J. Inst. Electr. Eng. 93 (1946), 429{457.
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Then the left hand side of the desired formula is g(0). Furthermore, g(�) is
periodic with period 2�, g(� + 2�) = g(�). So we may apply the theory of
Fourier series to g(�). By equation (2.6.1), we have

g(�) =

1X
n=�1

�ne
in�

and by equation (2.6.2), we have

�m =
1

2�

Z 2�

0
g(�)e�im� d�

=
1

2�

Z 2�

0

1X
n=�1

f

�
�

2�
+ n

�
e�im� d�

=
1

2�

1X
n=�1

Z 2�

0
f

�
�

2�
+ n

�
e�im� d�

=
1

2�

Z
1

�1

f

�
�

2�

�
e�im� d�

=

Z
1

�1

f(t)e�2�imt dt

= f̂(m):

The third step above consists of piecing together the real line from segments
of length 2�. The fourth step is given by the substitution � = 2�t. Finally,
we have

1X
n=�1

f(n) = g(0) =

1X
n=�1

�n =

1X
n=�1

f̂(n): �

2.15. The Dirac delta function

Dirac's delta function Æ(t) is de�ned by the following properties:

(i) Æ(t) = 0 for t 6= 0, and

(ii)

Z
1

�1

Æ(t) dt = 1.

Think of Æ(t) as being zero except for a spike at t = 0, so large that
the area under it is equal to one. The awake reader will immediately notice
that these properties are contradictory. This is because changing the value
of a function at a single point does not change the value of an integral, and
the function is zero except at one point, so the integral should be zero. Later
in this section, we'll explain the resolution of this problem, but for the mo-
ment, let's continue as though there were no problem, and as though equa-
tions (2.13.1) and (2.13.3) work for functions involving Æ(t).
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It is often useful to shift the spike in the de�nition of the delta function
to another value of t, say t = t0, by using Æ(t � t0) instead of Æ(t). The fun-
damental property of the delta function is that it can be used to pick out the
value of another function at a desired point by integrating. Namely, if we want
to �nd the value of f(t) at t = t0, we notice that f(t)Æ(t�t0) = f(t0)Æ(t�t0),
because Æ(t� t0) is only nonzero at t = t0. SoZ
1

�1

f(t)Æ(t� t0) dt =

Z
1

�1

f(t0)Æ(t � t0) dt = f(t0)

Z
1

�1

Æ(t � t0) dt = f(t0):

Next, notice what happens if we take the Fourier transform of a delta func-
tion. If f(t) = Æ(t� t0) then by equation (2.13.1)

f̂(�) =

Z
1

�1

Æ(t� t0)e
�2�i�t dt = e�2�i�t0 :

So the Fourier transform of 1
2(Æ(t� t0) + Æ(t+ t0)) is

1
2(e

�2�i�t0 + e2�i�t0) = cos(2��t0)

(see equation (C.2)).
Conversely, if we apply the inverse Fourier transform (2.13.3) to the

function f̂(�) = Æ(� � �0), we obtain f(t) = e2�i�0t. So we can think of the
Dirac delta function concentrated at a frequency �0 as the Fourier transform
of a complex exponential. Similarly, 1

2 (Æ(� � �0) + Æ(� + �0)) is the Fourier
transform of a cosine wave cos(2��0t) with frequency �0.

The relationship between Fourier series and the Fourier transform can
be made more explicit in terms of the delta function. Suppose that f(t) is a
periodic function of t of the form

P
1

n=�1 �ne
in� (see equation (2.6.1)) where

� = 2��0t. Then we have

f̂(�) =
1X

n=�1

�nÆ(� � n�0):

So the Fourier transform has a spike at plus and minus each frequency com-
ponent, consisting of a delta function multiplied by the amplitude of that fre-
quency component.

So what kind of a function is Æ(t)? The answer is that it really isn't a
function at all, it's a distribution, sometimes also called a generalized func-
tion. A distribution is only de�ned in terms of what happens when we mul-
tiply by a function and integrate. Whenever a delta function appears, there
is an implicit integration lurking in the background.
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More formally, one starts with a suitable space of test functions,20 and a
distribution is de�ned as a continuous linear map from the space of test func-
tions to the complex numbers (or the real numbers, according to context).

A function f(t) can be regarded as a distribution, namely we identify
it with the linear map taking g(t) to

R
1

�1
f(t)g(t) dt, as long as this makes

sense. The delta function is the distribution which corresponds to the linear
map taking a test function g(t) to g(0). It is easy to see that this distribu-
tion does not come from an ordinary function in the above way. The argu-
ment is given at the beginning of this section.

There is one warning that must be stressed at this stage. Namely, it
does not make sense to multiply distributions. So for example, the square
of the delta function does not make sense as a distribution. After all, what
would

R
1

�1
Æ(t)2g(t) dt be? It would have to be Æ(0)g(0), which isn't a num-

ber!
However, distributions can be multiplied by functions. The value of a

distribution times f(t) on g(t) is equal to the value of the original distribu-
tion on f(t)g(t).

To illustrate how to manipulate distributions, let us �nd t ddt (Æ(t)). In-
tegration by parts shows that if g(t) is a test function, thenZ

1

�1

t
d

dt
(Æ(t))g(t) dt = �

Z
1

�1

Æ(t)
d

dt
(tg(t)) dt = �

Z
1

�1

Æ(t)(tg0(t) + g(t)) dt:

Now tÆ(t) = 0, so this gives �f(0). If two distributions take the same value
on all test functions, they are by de�nition the same distribution. So we have

t
d

dt
(Æ(t)) = �Æ(t):

The reader should be warned, however, that extreme caution is necessary
when playing with equations of this kind.

It is also useful at this stage to go back to the proof of Fej�er's theo-
rem give in x2.7. Basically, the reason why this proof works is that the func-
tions Km(y) are �nite approximations to the distribution 2�Æ(y). Approxi-
mations to delta functions, used in this way, are called kernel functions, and
they play a very important role in the theory of partial di�erential equations,
analogous to the role they play in the proof of Fej�er's theorem.

20In the context of the theory of Fourier transforms, it is usual to start with the
Schwartz space S consisting of in�nitely di�erentiable functions f(t) with the property that

there is a bound not depending on m and n for the value of any derivative f (m)(t) times
any power tn of t (m;n � 0). So these functions are very smooth and all their derivatives

tend to zero very rapidly as jtj ! 1. An example of a function in S is the function e�t
2

.
The sum, product and Fourier transform of functions in S are again in S. For the pur-
pose of saying what it means for a linear map on S to be continuous, the distance between
two functions f(t) and g(t) in S is de�ned to be the largest distance between the values of

tnf (m)(t) and tng(m)(t) as m and n run through the nonnegative integers. The space of dis-
tributions de�ned on S is written S

0. Distributions in S
0 are called tempered distributions.



70 2. FOURIER THEORY

Exercises

1. Find the Fourier transform of the sine wave f(t) = sin(2��0t) in terms of the
Dirac delta function.

2. Show that if C is a constant then

Æ(Ct) =
1

jCjÆ(t):

3. The Heaviside function H(t) is de�ned by

H(t) =

(
1 if t � 0

0 if t < 0:

Prove that the derivative of H(t) is equal to the Dirac delta function Æ(t). [Hint:
Use integration by parts]

4. Show that tÆ(t) = 0.

Further reading:

F. G. Friedlander and M. Joshi, Introduction to the theory of distributions, second

edition, CUP, 1998.

2.16. Convolution

The Fourier transform does not preserve multiplication. Instead, it
turns it into convolution. If f(t) and g(t) are two functions, their convolu-
tion f � g is de�ned by

(f � g)(t) =

Z
1

�1

f(s)g(t� s) ds:

The corresponding verb is to convolve the function f with the function g. It
is easy to check the following properties of convolution.

(i) (commutativity) f � g = g � f .

(ii) (associativity) (f � g) � h = f � (g � h).

(iii) (distributivity) f � (g + h) = f � g + f � h.

(iv) (identity element) Æ � f = f � Æ = f .

Here, Æ denotes the Dirac delta function.

Theorem 2.16.1. (i)[f � g(�) = f̂(�)ĝ(�),

(ii) cfg(�) = (f̂ � ĝ)(�).

Proof. To prove part (i), from the de�nition of convolution we have

[f � g(�) =

Z
1

�1

Z
1

�1

f(s)g(t� s)e�2�i�t ds dt

=

Z
1

�1

Z
1

�1

f(s)g(u)e�2�i�(s+u) ds du
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=

�Z
1

�1

f(s)e�2�i�s ds

��Z
1

�1

g(u)e�2�i�u du

�
= f̂(�)ĝ(�):

Here, we have made the substitution u = t � s. Part (ii) follows from part
(i) by the Fourier inversion formula (2.13.3); in other words, by reversing the
roles of t and �. �

Part (i) of this theorem can be interpreted in terms of frequency �lters.
Applying a frequency �lter to an audio signal is supposed to have the e�ect
of multiplying the frequency distribution by a �lter function. So in the time
domain, this corresponds to convolving the signal with the inverse Fourier
transform of the �lter function.

The output of a �lter is usually taken to depend only on the input at
the current and previous times. Looking at the formula for convolution, this
corresponds to the statement that the inverse Fourier transform of the �lter
function should be zero for negative values of its argument.

Further reading:

Curtis Roads, Sound transformation by convolution, appears as article 12 of Roads

et al [94], pages 411{438.

2.17. Wavelets

The wavelet transform is a relative of the windowed Fourier transform,
in which all possible time translations and dilations are applied to a given
window, to give a function of two variables as the transform. The exponen-
tial functions used in the windowed Fourier transforms are no longer present,
but in some sense they are replaced by the use of dilations on the window-
ing function.

To be more precise, a wavelet is a function  (t) of a real variable t
which satis�es the admissibility condition

0 < c <1

where c is the constant de�ned by

c = 2�

Z
1

�1

j b (�)j2
j�j

d�:

The wavelet  is chosen once and for all, and is interpreted as the shape
of the window. The wavelet transform L (f) of a waveform f is de�ned as
the function of two variables

L (f)(a; b) =
1p
jajc 

Z
1

�1

f(t) 
� t� b

a

�
dt

for real a 6= 0 and b.
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An example of a wavelet often used in practise is the Mexican hat, de-
�ned by

 (t) = (1� t2)e�t
2=2:

t

The Fourier transform of the Mexican hat isb (�) = �2e��
2=2

�

and we have c = 1.
The inverse wavelet transform L� with respect to  is de�ned as fol-

lows. If g(a; b) is a function of two real variables, then L� (g) is the function
of the single real variable t de�ned by

L� (g)(t) =

Z
1

�1

Z
1

�1

1p
jajc 

g(a; b) 
� t� b

a

� da db
a2

:

Note that at a = 0 the integrand is not de�ned, so the integral with respect
to a simply misses out this value.

Theorem 2.17.1. If f(t) is a square integrable function of a real vari-
able t then L� L f agrees with f at almost all values of t, and in particular,

at all points where f(t) is continuous.

Further reading:

G. Evangelista, Wavelet representations of musical signals, appears as article 4 in
Roads et al [94], pages 127{154.

R. Kronland{Martinet, The wavelet transform for the analysis, synthesis, and pro-

cessing of speech and music sounds, Computer Music Journal 12 (4) (1988), 11{20.

A. K. Louis, P. Maa� and A. Rieder, Wavelets, theory and applications, Wiley, 1997.
ISBN 0471967920.

St�ephane Mallat, A wavelet tour of signal processing, Academic Press, 1998. ISBN
0124666051.
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P. Polotti and G. Evangelista, Fractal additive synthesis via harmonic-band wavelets,
Computer Music Journal 25 (3) (2001), 22{37.

Curtis Roads, The computer music tutorial [93], pages 581{589.




