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0 . Purpose of this talk:
• Present a very simple toy model 
• Based on very standard ideas: 

• spin and coherent states Takahashi & Shibata (1975)

• random matrix hamiltonians Mello, Pereyra & Kumar (1988), Lutz & Weidenmuller (1999), etc. 

• which have been much applied for the spin 1/2 (Q-bit, 2 level system)
MPK (1988), Esposito & Gaspard (2003), Lebowitz, Pastur & Lytova (2004 & 2007), Struntz, Haake & Braun (2002), etc.

• But some (relatively) novel aspects
• general spin j (from quantum to classical spin)
• generic interaction (novel random matrix ensembles)

• It allows to study analytically several aspects decoherence
• In particular the crossover between unitary quantum dynamics and 

stochastic diffusion in classical phase space for the spin
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1 . The model

|�n� , (�n·�S)|�n� = j|�n�

Single spin:
For large spin j ! 1 the spin becomes a classical object

Classical phase space is the 2-sphere

The coherent states behave as quasi classical states

Dynamics of the coupled spin:
H = HS ⌦ 1E +HSE + 1S ⌦HE

spin = j dim(HS) = 2j + 1

A quantum SU(2) spin S + an external system E

dim(HE) = N � j

The Hamiltonians:
• Slow spin dynamics 

 (no dissipative & thermalisation effects)
• Dynamic of the external system generic

HS = 0

HE ! HSE

H = HS ⌦HE
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The interaction Hamiltonian
The interaction hamiltonian is given by a Gaussian random 
matrix ensemble, with the only constraint that the ensemble in 
invariant under

4

SU(2)⇥ U(N)

spin external system

For this, go to Wigner representation of spin operators

⇥r�|H|s⇥⇤ = Hrs
�⇥ � W (lm)

�⇥

Ars = �r|A|s⇥

Hence the operator A can be decomposed into its spin l components A(l)

A =
2j⌅

l=0

A(l) (7)

The matrix elements of the A(l) are

A(l)
rs = ⇤r|A(l)|s⌅ =

j⌅

m=�j

(�1)m

⌃
2l + 1

2j + 1

⇥
j
s

l
�m

����
j
r

⇤
W (l,m)

A (8)

where the coe⇣cients W (l,m)
A are given in terms of the matrix elements Ars = ⇤r|A|s⌅ of

A by the inverse transform

W (l,m)
A =

j⌅

r,s=�j

⌃
2l + 1

2j + 1

⇥
j
r

l
m

����
j
s

⇤
Ars (9)

The
⇥

j
m1

l
m2

����
j
m3

⇤
are the SU(2) Clebsch-Gordan coe⇣cients. Of course only the single

terms such that m = s� r contribute in the sums.
The spin l component of A satisfies

[⌘S, [⌘S,A(l)]] =
3⌅

µ=1

[Sµ, [Sµ, A(l)]] = l(l + 1)A(l) (10)

The coe⇣cients W (lm)
A are complex but satisfy the conjugation constraint

W (l,m)
A† = (�1)mW

(l,�m)
A (11)

2.2.2 Relation with the Wigner and the Husimi distributions

Wigner representation: The coe⇣cients W (l,m)
A are nothing but the (l,m) coe⇣cients

of the Wigner distribution WA(⌘n) associated to the operator A in the basis of spherical
harmonics Y m

l (⌘n) on the unit sphere S2. The Wigner distribution is

WA(⌘n) =
2j⌅

l=0

j⌅

m=�j

W (l,m)
A Y m

l (⌘n) (12)

With the normalisation for the Y m
l

⇧

S2

d2⌘n Y m
l (⌘n)Y m�

l� (⌘n) = �l,l��m,m� , d2⌘n = d⇥ d⇤ sin(⇥) (13)

With these normalisations we have

tr(AB†) =

⇧

S2

d2⌘n WA(⌘n)WB(⌘n) =
⌅

l,m

W (l,m)
A W (l,m)

B (14)

7

j⇥ j = 0� 1� · · ·� 2j

It is enough to take for the             independent gaussian random  
variables with zero mean and variance depending only on l and with 
the Hermiticity constraint.

W (lm)
�⇥

W (l,m)
�⇥ = (�1)mW

(l,�m)
⇥�Var

⇣
Re|Im(W (lm)

�⇥ )
⌘
= �(l)
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NB: The l=m=0 term represents the       HamiltonianHE

We thus get a matrix ensemble characterized by the variances
� = {�(l) , l = 0, 1, · · · 2j}

It can be represented by a standard ribbon propagator for the N 
indices, with a more complicated structure for the spin indices, but 
still planar.

The 2-points correlator is the average over this «GU(2)xU(N)E» 
matrix ensemble, and is

Drs,tu =

variance depending on l. Namely, we take the W (l,m) to be independent Gaussian variables,
subjected only to the Hermiticity constraint

W (l,m) = (�1)mW
(l,�m) (22)

which ensures that the A are Hermitian operators, and to the fact that the variance
depends on l but not on m, which ensures SU(2) invariance of the distribution. More
precisely, we take the W ’s to be for m = 0

W (l,0) = A(l) (23)

and for m > 0

W (l,m) = B(l,m) + iC(l,m) , W (l,�m) = (�1)m
�
B(l,m) � iC(l,m)

⇥
for 0 < m ⇤ l (24)

and to take for the A(l), B(l,m) and C(l,m) random Gaussian independent variables with
zero mean and mean square extend �(l) depending only on l. The cumulants are

E[A(l)] = E[B(l,m)] = E[C(l,m)] = 0 (25)

E[A(l)A(l)] = E[B(l,m)B(l,m)] = E[C(l,m)C(l,m)] = �(l) (26)

All the others cumulants being zero. The �(l)’s are a collection � of 2j + 1 positive
numbers

�(l) ⌅ 0 , l = 0, · · · 2j (27)

which completely characterize the SU(2) gaussian ensemble. This distribution is given by
the Gaussian probability measure on self adjoint (2j + 1)⇥ (2j + 1) matrices

D�[A] ⇧ dA exp

⌃
�

2j 

l=0

1

2�(l)
tr
⌦
A(l)2
↵⌥

(28)

where dA is the standard flat measure, so that E[F [A]] =
�
D�[A]F [A].

In this GU2E ensemble, characterised by �, the “propagator" Drs,tu is

Drs,tu = E [ArsAtu] = �s�r,t�u

2j 

l=0

�(l)
2l + 1

2j + 1

⌅
j
s

l
r � s

⇤⇤⇤⇤
j
r

⇧⌅
j
t

l
u� t

⇤⇤⇤⇤
j
u

⇧
(29)

Of course, if all the �(l) are equals to the same �, one recovers the standard GUE
ensemble for (2j + 1)⇥ (2j + 1) matrices, with

E [ArsAtu]GUE = � �r,u �s,t (30)

10

u

β

α
r
s

δ

γ
tHrs

�⇥H
tu
⇤⌅ = ��⌅�⇥⇤Drs,tu
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separable state � entangled state � mixed state for S

Evolution functional (POVM, completely positive map, ...)

|⇤0⌅ � |⇥0⌅ ⇥ |�(t)⌅ , �S(t) = trE(|�(t)⌅⇤�(t)|

2 . The evolution functional

For simplicity, start from a random state | E�

Then the evolution functional is

tensor product on HS

ordinary product on HE
!!!

M(t) =

I
dx

2i⇡

I
dy

2i⇡
eit(x�y) G(x, y)

G(x, y) = 1

N
trE


1

x�H
⌦S ·E

1

y �H

�

⇢S(t) = M(t) · ⇢S(0) , M(t) · ? = trE
�
e�itH (?⌦ ⇢E(0)) e

itH
�
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We take the large N limit (large external system) and make the 
average over H, assuming self averaging as usual.

s tr u

             is also given by a sum 
of planar diagrams of the 
standard form 

G(x, y)

It is useful to start from the single resolvent

H(x) =
1

N
trE


1

x�H

�

          is given by a sum of planar rainbow diagramsH(x)

Formally (integration paths to be discussed later)

Mru,st(t) =

�
dx

2i⇤

�
dy

2i⇤
e�it(x�y) Gru,st(x, y) (49)

We consider first the single resolvent

Hrs(x) =
1

N

⇥

�

⇥r�|(x�H)�1|s�⇤ (50)

To compute these generating functions, we use the standard diagrammatic techniques.
We represent the propagator D�⇥,⇤⌅

rs,tu as a double fat line. The dashed lines represent the

D�⇥,⇤⌅
rs,tu = u

!

"
r
s

#

$
t

Figure 1: Diagramatic representation of the propagator D�⇥,⇤⌅
rs,tu

two external tensors ⇥�,⌅ and ⇥⇥,⇤ , and indicates that the E indices (greek letters) are
conserved. The black ribbon represents the spin tensor Drs,tu. It indicates that the spin
indices (roman letters) are mixed. But the di�erence between the left and right indices is
conserved.

s� t = r � u (51)

3.2.2 Recursion equation for the single resolvent

To compute Hrs(x) we expand in a power series in x�1

Hrs(x) =
⇥⇥

k=0

x�1�k 1

N

⇥

�

⇥r�|Hk|s�⇤ (52)

and use Wick theorem to compute the average Hk. We get a sum of contributions associ-
ated to diagrams of the form depicted in Fig.2. The propagators form arches above a line
going from r to s. Each arch gives a term D proportional to the �(l), and each closed

r s sr sr r s

Figure 2: The first diagrams for Hrs(x)

14

+ ....
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These resolvents obey recursion relations

dashed loop gives a factor N (sum over the E indices �). So each diagram is of order

x�1�2#arches [�]#arches N#loops�1 = x�1
�
x�2[�]N

⇥#arches
N�� (53)

⇤ being the Euler characteristic of the fat diagram. [�] means any �(l). Thus in the
large N limit, only planar diagrams survive, provided we rescale the variances by N

�(l) = N�1 �̃(l) (54)

and we take the limit
�̃(l) = O(1) N ⇥ ⇤ (55)

In this limit only planar rainbow like diagrams survives. Hrs(x) satisfies the recursion
equation

Hrs(x) = x�1⇥r,s + x�1
 

t,u,v

⌦Drt,uvHtu(x)Hvs(x) (56)

with

⌦Drt,uv = N Drt,uv = ⇥s�r,t�u

2j 

l=0

⌦�(l)
2l + 1

2j + 1

⌃
j
s

l
r � s

⇤⇤⇤⇤
j
r

⌥⌃
j
j

l
u� t

⇤⇤⇤⇤
j
u

⌥
(57)

This recursion equation is depicted graphically in Fig. 3. The solution is of the form, in
fact required by SU(2) invariance

Hrs(x) = ⇥r,sH(x) (58)

Inserting this ansatz 58 into 56 and 57 we obtain the simple recursion equation for H(x)

H(x) = x�1 + x�1H(x)2�̂ with �̂ =
2j 

l=0

2l + 1

2j + 1
�̃(l) (59)

Hence
H(x) =

1

2�̂

⌅
x�
↵
x2 � 4�̂

⇧
= x�1Cat(�̂x�2) (60)

where Cat(z) =
�

znCn is the generating function of the Catalan numbers Cn.

r s
=

r s
+

ur stt u v v

Figure 3: Graphical formulation of the recursion relation eq. (56) for Hrs(x)

15

Thanks to the SU(2) invariance, the solution of these equations 
takes a simple diagonal form in the Wigner representation 

Hrs(x) = �rs bH(x)

bH(x) =
1

2b�(0)

✓
x�

q
x

2 � 4b�(0)

◆with 
Resolvent for a single Wigner 

matrix (semi circle law)

b�(0) = N
2jX

l=0

2l + 1

2j + 1
�(l)
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with a bit of SU(2) algebra 
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bG(l)(x, y) =
bH(x) bH(y)

1� b�(l) bH(x) bH(y)

and 

Indeed, we reexpress the initial propagator, �Drs,tu (given by 57) in the (s, t) ⇥ (u, r)
channel as

Drs,tu = ⌥Dru,st i.e.
u

r

s t

u

s

r

t

(63)

The corresponding double Wigner transform of ⌥Dru,st is

W (l1,m1),(l2,m2)
bD

=
j⌃

r,u=�j

j⌃

s,t=�j

 
2l1 + 1

2j + 1

⌅
j
u

l1
m1

����
j
r

⇧ 
2l2 + 1

2j + 1

⌅
j
s

l2
m2

����
j
t

⇧
⌥Dru,st (64)

Using the original expression 29 for Drs,tu, this sum is rewritten as a multiple sum over
products of four Clebsch-Gordan coe�cients. After some SU(2) algebra, it can be reduced
to the simple form

W (l1,m1),(l2,m2)
bD

= �l1,l2 �m1+m2,0 (�1)m1 ⌥�(l1) (65)

with ⌥�(l1) given by

⌥�(l) = N
2j⌃

l�=0

�(l⇥)(2l⇥ + 1)(�1)2j+l�+l

⇥
j
j
j
j
l⇥

l

⇤
(66)

⌥�(l1) =
2j⌃

l�=0

�̃(l⇥)(2l⇥ + 1)(�1)2j+l�+l1

⇥
j
j
j
j
l⇥

l1

⇤
(67)

where
⇥
j1
j4

j2
j5

j3
j6

⇤
is the Racah 6-j symbol. In particular, ⌥�(0) is nothing but the �̂ of

eq. (59)

⌥�(0) = �̂ =
2j⌃

l=0

2l + 1

2j + 1
�̃(l) (68)

Remember that the �̃’s are just the original �’s rescaled by a factor of N , �̃(l) = N�(l).
The constraints l1 = l2 and m1 +m2 = 0 are very important! They just express the

SU(2) invariance of Drs,tu, i.e. the initial contraint s � t = r � u. But when we take
the Wigner transform of the recursion equation 61 for Gru,st(x, y), one see that they are
preserved by the equation and that the solution for W (l1,m1),(l2,m2)

G (x, y) must be of the
same form as W bD

W (l1,m1),(l2,m2)
G (x, y) = �l1,l2 �m1+m2,0 (�1)m1 ⌥G(l1)(x, y) (69)

We can now come back to the recursion equation 61. Using 62 and 69 it factorizes
into independent equations for each ⌥G(l1)(x, y)

⌥G(l)(x, y) = x�1H(y) + x�1 ⌥�(0)H(x)⌥G(l)(x, y) + y�1 ⌥�(l)⌥G(l)(x, y)H(y) (70)
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Indeed, we reexpress the initial propagator, �Drs,tu (given by 57) in the (s, t) ⇥ (u, r)
channel as

Drs,tu = ⌥Dru,st i.e.
u

r

s t

u

s

r

t

(63)
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W (l1,m1),(l2,m2)
bD

=
j⌃

r,u=�j

j⌃

s,t=�j

 
2l1 + 1

2j + 1

⌅
j
u

l1
m1

����
j
r

⇧ 
2l2 + 1

2j + 1

⌅
j
s

l2
m2

����
j
t

⇧
⌥Dru,st (64)
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2j⌃
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�(l⇥)(2l⇥ + 1)(�1)2j+l�+l

⇥
j
j
j
j
l⇥

l

⇤
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⇥
j
j
j
j
l⇥
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6-j symbol

Grs,tu(x, y) ⇥W(l1,m1),(l2,m2)
G (x, y) = �l1l2�m1+m2,0 (�1)m1 bG(l)(x, y)

s tr u

Figure 4: The planar diagrams of Gru,st(x, y)

3.2.3 Recursion equation for the double resolvent

Now we can compute the function Gru,st(x, y). It is given by the sum of the planar
diagrams of the form given in Fig. 4. It thus obeys the recursion equation

Gru,st(x, y) = x�1�r,sHtu(y) + x�1 ⇧Drv,wxHvw(x)Gxu,st(x, y) + y�1 ⇧Drv,wxGvw,st(x, y)Hxu(y)
(61)

To solve this equation, it is better to use its SU(2) invariance properties, and to rewrite

r s t u
=

tr s u
+
r utsv w x

+
r uv s t xw

Figure 5: Graphical formulation of the recursion relation eq. (61) for Gru,st(x, y)

it for its “double Wigner transform” coe�cients

W (l1,m1),(l2,m2)
G (x, y) =

j⌅

r,u=�j

j⌅

s,t=�j

⌃
2l1 + 1

2j + 1

⇥
j
u

l1
m1

����
j
r

⇤⌃
2l2 + 1

2j + 1

⇥
j
s

l2
m2

����
j
t

⇤
Gru,st(x, y)

(62)
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it for its “double Wigner transform” coe�cients

W (l1,m1),(l2,m2)
G (x, y) =

j⌅

r,u=�j

j⌅

s,t=�j

⌃
2l1 + 1

2j + 1

⇥
j
u

l1
m1

����
j
r

⇤⌃
2l2 + 1

2j + 1

⇥
j
s

l2
m2

����
j
t

⇤
Gru,st(x, y)

(62)
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The evolution functional for the density matrix  of the spin           
takes a simple diagonal form in the Wigner representation basis

�S(t)

�Srs(t) � W (l,m)
S (t) = cM(l)(t) ·W (l,m)

S (0)

with the kernel given by a universal decoherence function

The solution is simply (using the explicit form 60 for H)

⌃G(l)(x, y) =
H(x)H(y)

1� ⌃�(l)H(x)H(y)
(71)

3.3 Solution for the evolution functional
3.3.1 General form

We can now obtain the influence functional M(t). As we shall see, the functions ⌃G(l)(x, y)

are analytic in x and y around ⇥, and have a cut in the x and y planes along [�2
�
�̂,�2

�
�̂].

We can integrate in x and y along a closed anticlockwise curve around the cut to obtain
the double Wigner transform of the influence functional Mru,st(t)

W (l1,m1),(l2,m2)
M (t) = �l1,l2 �m1+m2,0 (�1)m1 ⌥M(l1)(t) (72)

where
⌥M(l)(t) =

⇤
dx

2i⇥

⇤
dy

2i⇥
e�it(x�y) ⌃G(l)(x, y) (73)

Therefore, the evolution of the reduced density matrix ⇤S(t) becomes a separate simple
linear evolution in each (l,m) sector when one considers the components of its Wigner
transform. More precisely, if W (l,m)

�S (t) is the (l,m) harmonic, given by 9, we have simply

W (l,m)
�S (t) = ⌥M(l)(t)W (l,m)

�S (0) (74)

Then using 8 we can reconstruct ⇤S(t) in the |r⌅⇤s| basis.

3.3.2 General decoherence function

Thanks to the SU(2) invariance, the evolution functional reduces to a single function in
each l sector. This function depends on time and on the distributions of the �(l) which
measure the strength of the coupling between the spin and the environment in the di�erent
angular momentum sector l. This function depends in fact only on two parameters, since
it can be rewritten as

⌥M(l)(t) = M(t/⌅0, Z(l)). (75)

where ⌅0 is a time scale

⌅0 = 1/
 
⌃�(0) , ⌃�(0) =

2j⇧

l=0

2l + 1

2j + 1
�̃(l) (76)

and Z(l) a parameter depending on the angular momentum l

Z(l) =
⌃�(l)
⌃�(0)

=

2j⌅
l�=0

(2l⇥ + 1)(�1)2j+l�+l1

�
j
j
j
j
l⇥

l1

⇥
�̃(l⇥)

2j⌅
l�=0
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The solution is simply (using the explicit form 60 for H)

⌃G(l)(x, y) =
H(x)H(y)

1� ⌃�(l)H(x)H(y)
(71)

3.3 Solution for the evolution functional
3.3.1 General form

We can now obtain the influence functional M(t). As we shall see, the functions ⌃G(l)(x, y)

are analytic in x and y around ⇥, and have a cut in the x and y planes along [�2
�
�̂,�2

�
�̂].

We can integrate in x and y along a closed anticlockwise curve around the cut to obtain
the double Wigner transform of the influence functional Mru,st(t)

W (l1,m1),(l2,m2)
M (t) = �l1,l2 �m1+m2,0 (�1)m1 ⌥M(l1)(t) (72)

where
⌥M(l)(t) =

⇤
dx

2i⇥

⇤
dy

2i⇥
e�it(x�y) ⌃G(l)(x, y) (73)

Therefore, the evolution of the reduced density matrix ⇤S(t) becomes a separate simple
linear evolution in each (l,m) sector when one considers the components of its Wigner
transform. More precisely, if W (l,m)

�S (t) is the (l,m) harmonic, given by 9, we have simply

W (l,m)
�S (t) = ⌥M(l)(t)W (l,m)

�S (0) (74)

Then using 8 we can reconstruct ⇤S(t) in the |r⌅⇤s| basis.

3.3.2 General decoherence function

Thanks to the SU(2) invariance, the evolution functional reduces to a single function in
each l sector. This function depends on time and on the distributions of the �(l) which
measure the strength of the coupling between the spin and the environment in the di�erent
angular momentum sector l. This function depends in fact only on two parameters, since
it can be rewritten as

⌥M(l)(t) = M(t/⌅0, Z(l)). (75)
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depending on a rescaled time                 and a factor Z(l)    t0 = t/�0

      is the dynamical time scale of the system  (more later)⌧0

The parameter Z(l) depends on the spin sector l considered.
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The l dependence of the factor Z(l) depends on the initial variances 
of the GU(2) ensemble for the Hamiltonian.

Z(l) is maximal for l=0
Z(l) takes a scaling form in the large spin limit 

Z(l) = b�(l)/b�(0) ! Y (x) with x = l/2j

2.2 . The Z(l) function

3.5.2 Limit j ⇤ ⌅, l/j fixed

The existence of a limit distribution Y (x), x = l/2j when j ⇤ ⌅ is easily explained. We
use Racah formula of the 6j-symbols to rewrite the formula 92 for ⇤�(l) as

⇤�(l) = (2j + 1)
2j⇥

l�=0

�̄(l�) (2l� + 1)
min(l,l�)⇥

k=0

(�1)k

(k!)2
(l� + k)! (l + k)! (2j � k)!

(l� � k)! (l � k)! (2j + k + 1)!
(98)

We use Stirling formula to take the limit

j ⇤ ⌅ , x =
l

2j
fixed (99)

to obtain
⇤�(l) ⇤

l0⇥

l�=0

�̄(l�) (2l� + 1)Fl�(x) (100)

with Fl�(x) the polynomials

Fl�(x) =
l�⇥

k=0

(�1)k

(k!)2
(l� + k)!

(l� � k)!
x2k = 2F1(1 + l�,�l�, 1, x2) (101)

Hence the explicit polynomial form for the limit scaling function Y in eq. (97)

Y (x) =

l0�
l�=0

�̄(l�) (2l� + 1)Fl�(x)

l0�
l�=0

�̄(l�)(2l� + 1)

(102)

3.5.3 Limit j ⇤ ⌅, l ⇥ j

Apart from some very special cases, Z(l) is close to 1 only if l is small. This case is needed
for the study of decoherence. When l ⇥ j we need only to keep the terms k = 0 and
k = 1 in the explicit form 98 for ⇤�(l). We obtain

⇤�(l) = ⇤�(0)� l(l + 1)

4j(j + 1)

l0⇥

l�=1

�̄(l�) (2l� + 1) l�(l� + 1) +O((l/j)4) (103)

Hence

Z(l) = 1� l(l + 1)
1

4

D0

j(j + 1)
+ · · · , D0 =

l0�
l�=1

�̄(l�) (2l� + 1) l�(l� + 1)

l0�
l�=0

�̄(l�)(2l� + 1)

(104)

This approximation is valid on the top of the curve Y (x) near x = 0, i.e. provided that

l(l + 1) ⇥ j(j + 1) (105)

24

Its small l behavior is quadratic in l

Indeed, we reexpress the initial propagator, �Drs,tu (given by 57) in the (s, t) ⇥ (u, r)
channel as

Drs,tu = ⌥Dru,st i.e.
u

r

s t

u

s

r

t

(63)

The corresponding double Wigner transform of ⌥Dru,st is

W (l1,m1),(l2,m2)
bD

=
j⌃

r,u=�j

j⌃

s,t=�j

 
2l1 + 1

2j + 1

⌅
j
u

l1
m1

����
j
r

⇧ 
2l2 + 1

2j + 1

⌅
j
s

l2
m2

����
j
t

⇧
⌥Dru,st (64)

Using the original expression 29 for Drs,tu, this sum is rewritten as a multiple sum over
products of four Clebsch-Gordan coe�cients. After some SU(2) algebra, it can be reduced
to the simple form

W (l1,m1),(l2,m2)
bD

= �l1,l2 �m1+m2,0 (�1)m1 ⌥�(l1) (65)

with ⌥�(l1) given by

⌥�(l) = N
2j⌃

l�=0

�(l⇥)(2l⇥ + 1)(�1)2j+l�+l

⇥
j
j
j
j
l⇥

l

⇤
(66)

⌥�(l1) =
2j⌃

l�=0

�̃(l⇥)(2l⇥ + 1)(�1)2j+l�+l1

⇥
j
j
j
j
l⇥

l1

⇤
(67)

where
⇥
j1
j4

j2
j5

j3
j6

⇤
is the Racah 6-j symbol. In particular, ⌥�(0) is nothing but the �̂ of

eq. (59)

⌥�(0) = �̂ =
2j⌃

l=0

2l + 1

2j + 1
�̃(l) (68)

Remember that the �̃’s are just the original �’s rescaled by a factor of N , �̃(l) = N�(l).
The constraints l1 = l2 and m1 +m2 = 0 are very important! They just express the

SU(2) invariance of Drs,tu, i.e. the initial contraint s � t = r � u. But when we take
the Wigner transform of the recursion equation 61 for Gru,st(x, y), one see that they are
preserved by the equation and that the solution for W (l1,m1),(l2,m2)

G (x, y) must be of the
same form as W bD

W (l1,m1),(l2,m2)
G (x, y) = �l1,l2 �m1+m2,0 (�1)m1 ⌥G(l1)(x, y) (69)

We can now come back to the recursion equation 61. Using 62 and 69 it factorizes
into independent equations for each ⌥G(l1)(x, y)

⌥G(l)(x, y) = x�1H(y) + x�1 ⌥�(0)H(x)⌥G(l)(x, y) + y�1 ⌥�(l)⌥G(l)(x, y)H(y) (70)

17

6-j symbol

Z(l) 2 [�1, 1]Z(l) = b�(l)/b�(0)
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Example 1: l=0 and 1 channels only

0.2 0.4 0.6 0.8 1.0
lê2 j

-1.0

-0.5

0.5

1.0

ZHlL
coupling distribution DHlL = 81, 1<

total spin j = 81, 2, 4, 8, 16, 32, 64, 128< from blue to red
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Example 2: l=0 to 12 channels

0.2 0.4 0.6 0.8 1.0
lê2 j

-1.0

-0.5

0.5

1.0

ZHlL
coupling distribution DHlL = 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<
total spin j = 824, 48, 96, 192, 384, 768< from blue to red
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large time limit:
fast algebraic 
decay with t 
except for Z close 
to unity 

14

2.3 . The decoherence function (a generalized hypergeometric function)and the decoherence function M(t, Z) is simply

M(t, Z) =

�
dx

2i�

�
dy

2i�
e�it(x�y) H(x)H(y)

1� Z H(x)H(y)
, H(x) =

1

2
(x�

 
x2 � 4) (78)

H(x) is nothing but the resolvent of the standard normalized GUE ensemble. It is the
Hilbert-Stieltjes transform of the Wigner-Dyson semi-circle density distribution. It has
a cut along the interval [�2, 2], behaves as x�1 at ⌥ and its modulus is |H(x)| < 1 for
x � C\[�2, 2]. Hence the function M(t, Z) is well defined for any real t, and analytic in
the disc |Z| ⇤ 1. We shall discuss its properties below.

Thus we have a completely closed and simple formula for the evolution functional of
a spin coupled to a large environment via a random coupling Hamiltonian which belongs
to an SU(2)⇥SU(N) invariant ensemble. Our formula is valid for any value of the spin
j, going from j = 1/2 (the q-bit or two level system) to j ⌅ ⌥ (the classical spin), and
for any distribution �(l) of the strength of the couplings as a function of the total spin l
exchanged via the interaction.

Our result separates in two parts: (1) the universal decoherence function M(t, z) which
comes from the RMT part of the calculation; (2) the parameters ⇤�(l) which depend
linearly from the initial distribution �(l) of the couplings as a function of the angular
momentum l, which come from the SU(2) group theory part of the calculation. They give
simply the time scale ⇥0 and the parameter Z(l)

3.4 Properties of the decoherence function M(t, Z):
3.4.1 Analytic representation

Making the standard inversion of variables x ⌅ H as in [Zee, 1996] (i.e. going from the
Green function H(x) to the so-called “Blue function” B(w))

w = H(x) ⇧⌃ x = B(w) = w + w�1 (79)

we rewrite M as

M(t, z) =

�
dw1

2i�

�
dw2

2i�
e�itB(w1)eitB(w2)

(w1 � w�1
1 )(w2 � w�1

2 )

1� z w1w2
(80)

where integrating along the cut [�2, 2] in 78 amounts to integrate along the unit circle in
80. We can use it to obtain the double (t, x) series expansion of M(t, z) which is found
(after a bit of algebra)

M(t, z) =
⇥⇥

m=0

m⇥

n=0

t2m zn (�1)m+n 2(2m+ 1)(n+ 1)2(2m)!

m!(m+ 1)!(m� n)!(m+ n+ 2)!
(81)

Thus M(t, z) is a generalized hypergeometric function of the two variables t2 and z. It is
depicted on fig. (6)
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Figure 6: The decoherence function M(t, z) as a function of the rescaled time t and the
parameter z ⌅ [�1, 1]. Decoherence is fast when z < 1 but very slow when z ⇤ 1.

3.4.2 Small t limit

The small t behavior of M(t, z) is

M(t, z) = 1 + t2(z � 1) +O(t4) (82)

3.4.3 Large t limit

The large time behaviour of M(t, z) is most easily calculated from the integral represen-
tation 80 by using the steepest descent method at the saddle points w1 = ±1, w2 = ±1.
We obtain an algebraic decay as t�3, with an oscillatory term negligible when z ⇥ 1 and
dominant when z ⇥ �1.

M(t, z) =
1

2�
t�3

⇤
1 + z

(1� z)3
� 1� z

(1 + z)3
sin(4t)

⌅�
1 +O(t�1)

⇥
(83)

3.4.4 The z ⇥ 1 and t(1� z) = O(1) scaling

When z = 1, we have in fact
lim
z⇥1�

M(t, z) = 1 (84)

but the function M(t, z) takes a scaling form when z ⇥ 1 while t is large. In fact

M(t, z) = �(t⇤) with t⇤ = t(1� z) in the limit t⇤ = O(1) , z ⇥ 1� (85)

20
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Z(l)

               scaling M(t0, z) = �(t00) with t00 = t0(1� z)Z ! 1
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small t and             behavior M(t, z) = 1 + (1� z)�(t) + · · ·

Indeed, in this limit, the measure in eq. (80) concentrates around w2 = w1 and the integral
becomes a single integral representation. We get a simple hypergeometric function

⇤(t⇥) =

⇤
dw

2i⇤
e�t�B(w) 1

2w
B(w)2 =

2

⇤

⇧ ⇥/2

�⇥/2

d⇥ e�2t� cos(�) cos(⇥)2

=
1

2⇤

⇧ 2

�2

dx
⌃
4� x2 e�t�

⌅
4�x2 (86)

whose series expansion is explicitely

⇤(t⇥) =
2⌃
⇤

⇤⌅

k=0

(�2t⇥)k
�((3 + k)/2)

k!�(2 + k/2)
(87)

This function is depicted on fig. (7). Its asymptotic behavior is

⇤(t⇥) = 1� 16

3 ⇤
t⇥ +O(t⇥2) t⇥ ⌅ 0 , ⌅(t⇥) =

1

⇤
t⇥�3 + O(t⇥�4) t⇥ ⌅ ⇧ (88)

0 1 2 3 4
t

0.2

0.4

0.6

0.8

1.0
��t⇥

Figure 7: The scaling function ⇤(t) for the decoherence function when z ⌅ 1�

3.4.5 The z ⌅ 1 and t = O(1) scaling

Note that ⇤(t) is linear in t at small time, not quadratic in t like M(t, z) for z < 1. For
z = 1� � close to 1 (� ⇤ 1) but t of order 1, the function M(t, z) behaves as

M(t, z) = 1 + �⇥(t) +O(�2) (89)

with ⇥(t) = 1� 1F2

�
�1

2 ; 1, 2;�4t2
⇥

a universal non-linear function which behaves as

⇥(t) = �t2 +O(t4) when t ⌅ 0 , ⇥(t) = � 1

⇤
t+O(1) when t ⌅ ⇧ (90)

Therefore, the crossover between the non-linear regime 89 for small t and the linear
regime 85 for large t ⇥ ��1 occurs in a domain of t of size O(1), hence in a very small
interval in t⇥ of size O(�).
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3 . Evolution of coherent and incoherent states

We can easily study analytically and illustrate the evolution on the 
matrix density of the spin, starting from a pure spin state | �

|⇥⇤ � � = |⇥⇤⇥⇥| � W (l,m) � W (⇤n) =
X

l,m

W (l,m) Y m
l (⇤n)

and in particular

1� Zav =
2j⇤

l=1

(2l + 1)
�̄(l)
⌅�(0)

=

�
||H ⇥||2
||H||2

⇥2

, H ⇥ = H �H(0) (120)

4 Decoherence and emergence of coherent states
It is easy now to study the dynamics of decoherence and the emergence of the coherent
states for spin as semi-classical states robust against the interaction with the environment.

4.1 Coherent states
4.1.1 Pure coherent states:

Coherent states are the pure states which minimize the uncertaincy relations for spin, i.e.
the states with maximally localized Wigner distribution. They read explicitely

|⇧n⌅ =
j⇤

m=�j

⇧
(2j)!

(j +m)! (j �m)!
cos(⇥/2)j+m sin(⇥/2)j�me�im�|m⌅ (121)

with (⇥,⇤) the spherical coordinates of the unit vector ⇧n. Coherent states are formed by
a coherent superposition of modes such that l ⇥

⇧
j ⇤ j. Indeed for the single pure state

|⇧ez⌅ = |j⌅ (122)

the matrix density components are

W (l,m)
|j⌅⇤j| = �m,0W

(l)
c.s. , W (l)

c.s. =

⇧
((2j)!)2 (2l + 1)

(2j + l + 1)!(2j � l)!
(123)

and for large j and small l Stirling formula gives

W (l)
c.s. =

2l + 1⇧
2j + 1

exp

�
� l2

2j

⇥�
1 +O

�
l3

j2

⇥⇥
(124)

The Wigner representation of the coherent state |⇧n⌅ is a Gaussian-like positive distribution
with width 1/

⇧
j centered at ⇧n on the unit sphere.

4.1.2 Random pure states:

At variance with coherent states, a random pure spin state |⌅⌅ is such that its density
matrix components are independent equally distributed random variables

W (l,m)
|⇥⌅⇤⇥| ⇥

1

2j + 1
(125)

and its Wigner representation is a random function on the sphere (analogous to a random
polynomial with zeros obeying Wigner statistics with short distance cut-o� 1/

⇧
j).
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and in particular

1� Zav =
2j⇤

l=1

(2l + 1)
�̄(l)
⌅�(0)

=

�
||H ⇥||2
||H||2

⇥2

, H ⇥ = H �H(0) (120)

4 Decoherence and emergence of coherent states
It is easy now to study the dynamics of decoherence and the emergence of the coherent
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|⇧n⌅ =
j⇤

m=�j

⇧
(2j)!

(j +m)! (j �m)!
cos(⇥/2)j+m sin(⇥/2)j�me�im�|m⌅ (121)
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⇧
j ⇤ j. Indeed for the single pure state

|⇧ez⌅ = |j⌅ (122)

the matrix density components are

W (l,m)
|j⌅⇤j| = �m,0W

(l)
c.s. , W (l)

c.s. =

⇧
((2j)!)2 (2l + 1)

(2j + l + 1)!(2j � l)!
(123)

and for large j and small l Stirling formula gives

W (l)
c.s. =

2l + 1⇧
2j + 1

exp

�
� l2

2j

⇥�
1 +O

�
l3

j2

⇥⇥
(124)
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l ⇠
p
j

Coherent state

Coherent states are the most localised states on the sphere

Wigner distribution = function on the sphere 
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• Coherent states look like a Gaussian on the unit sphere
with width

• Random states look like random functions on the unit sphere 
�✓ = 1/

p
j

coherent state random state

stereographic projection and j=20
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4. The time scales of decoherence

There are 4 time scales ⌧0  ⌧1 ⌧ ⌧2 ⌧ ⌧3

For our simple model with Gaussian Hamiltonian ensembles

⌧0 dynamical time scale for the whole system

�1 decoherence time scale for generic states l �
p
j

⌧2 evolution time scale for coherent states (onset of quantum diffusion)

⌧3 equilibration time for quantum diffusion

�0 = 1/ kHSE +HE k

�1
�2

=

 
k [⇥S, HSE ]k
k⇥Sk kHSE k

!2

�0
�1

=

✓
kHSE k

kHSE +HE k

◆2

�2
�3

=
1

j

with the «L2 norm» for operators kAk2= tr(A†A)

tr(1)

HE  l = 0 term
HSE  l 6= 0 terms
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Coherent states are robust against decoherence and play the role 
of pointer states if

The dynamics of decoherence depends on the details of the 
Hamiltonian ensemble

� = {�(l), l = 0, · · · l0}

Beyond the decoherence time scale       , the dynamics of coherent 
states is much simpler and exhibit some universal features.

⌧1

�(l) 6= 0 for l  l0 and j � l20

The ratio               is large iff the commutator                is «small»⌧2 � ⌧1
h
�S,HSE

i

h
�S,HSE

i
⌧ �S ⇥HSE
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This suggests a random 
walk in phase space
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5 . Quantum diffusion 

But the probability profile 
can be computed and  is 
not a Gaussian ! This is a 
signal that the evolution is 
not a Markovian short 
range process, even at 
large times! 1 2 3 4

z

0.05

0.10

0.15

W

Quantum

Classical

This is an effect of quantum diffusion, i.e. the remaining weak effect 
of the external system on the coherent states.

For �1 ⌧ t ⌧ �2 only semiclassical coherent states survive

The width of the distribution function in phase space is found to 
grow like �✓(t) /

p
t

For �2 < t coherent states start to become mixed states

j � 1
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The calculation can be extended to a general Hamiltonian for the 
external system with a general eigenvalue distribution,
and to a given initial state         such as an energy eigenstate 

V - Dynamics and initial conditions for E

E 0−E0 E

1/�0

1/
p
�0�1

here a semi-circle,
but general case solvable
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A general and solvable random matrix model for spin decoherence

As in the previous situation, the evolution of the reduced density matrix factorizes
into each (l, m) sector, and the influence functional becomes a single function of the time
t, of the angular momentum l, and now of the initial state energy E. Thanks to the SU(2)
invariance it is still independent of m. It is given by the integral

M̂(l)(t, E) =

∮
dx

2iπ

∮
dy

2iπ
e−it(x−y)F̃(l)(x, y, E). (186)

This can be rewritten in a simpler form by means of the change of variables (and its
inverse)

w = W (x) = x − ∆̂′C̃(x), x = X(w). (187)

Indeed equation (181) becomes

C̃(x) =

∫
dE

ν(E)

w − E
, C̃(x, E) =

1

w − E
(188)

so C̃(X(w)) is the Hilbert transform of ν(N), i.e. the resolvent of H (0). Then in
equation (183) we rewrite the integral as
∫

dE ′ ν(E ′) C̃(x1, E
′)C̃(x2, E

′) =

∫
dE ′ ν(E ′)

1

W (x1) − E ′
1

W (x2) − E ′

= −C̃(W (x1)) − C̃(W (x2))

W (x1) − W (x2)
=

1

∆̂′

(
− x1 − x2

W (x1) − W (x2)
+ 1

)
(189)

and after some algebra the evolution kernel M̂(l)(t, E) is written in a form similar to
that of equation (77), as an integral representation involving the variances ∆(l) for the
interaction Hamiltonians HSE =

∑
H(l,m) and the Hamiltonian for E, HE = H(0), through

the function W (x) (related to the inverse of the resolvent for HS), and a parameter Z ′(l):

M̂(l)(t, E) =

∮
dx1

2iπ

∮
dx2

2iπ

e−it(x1−x2)

(W (x1) − E)(W (x2) − E)

× 1

(1 − Z ′(l)) + Z ′(l)((x1 − x2)/(W (x1) − W (x2)))
(190)

where

Z ′(l)) =
∆̂′(l)

∆̂′(0)
(191)

with ∆̂′(l) defined through equations (178) and (183).

5.3. Application to the Wigner ensemble

5.3.1. The general form of the solution. As a simple and illustrative ensemble, let us treat
the case where the density spectrum of HE is the Wigner semi-circle distribution with
width 2E0:

ν(E) =
2

πE2
0

√
E2

0 − E2. (192)

doi:10.1088/1742-5468/2011/01/P01001 39

J.S
tat.M

ech.
(2011)

P
01001

A general and solvable random matrix model for spin decoherence

As in the previous situation, the evolution of the reduced density matrix factorizes
into each (l, m) sector, and the influence functional becomes a single function of the time
t, of the angular momentum l, and now of the initial state energy E. Thanks to the SU(2)
invariance it is still independent of m. It is given by the integral

M̂(l)(t, E) =

∮
dx

2iπ

∮
dy

2iπ
e−it(x−y)F̃(l)(x, y, E). (186)

This can be rewritten in a simpler form by means of the change of variables (and its
inverse)

w = W (x) = x − ∆̂′C̃(x), x = X(w). (187)

Indeed equation (181) becomes

C̃(x) =

∫
dE

ν(E)

w − E
, C̃(x, E) =

1

w − E
(188)

so C̃(X(w)) is the Hilbert transform of ν(N), i.e. the resolvent of H (0). Then in
equation (183) we rewrite the integral as
∫

dE ′ ν(E ′) C̃(x1, E
′)C̃(x2, E

′) =

∫
dE ′ ν(E ′)

1

W (x1) − E ′
1

W (x2) − E ′

= −C̃(W (x1)) − C̃(W (x2))

W (x1) − W (x2)
=

1

∆̂′

(
− x1 − x2

W (x1) − W (x2)
+ 1

)
(189)

and after some algebra the evolution kernel M̂(l)(t, E) is written in a form similar to
that of equation (77), as an integral representation involving the variances ∆(l) for the
interaction Hamiltonians HSE =

∑
H(l,m) and the Hamiltonian for E, HE = H(0), through

the function W (x) (related to the inverse of the resolvent for HS), and a parameter Z ′(l):

M̂(l)(t, E) =

∮
dx1

2iπ

∮
dx2

2iπ

e−it(x1−x2)

(W (x1) − E)(W (x2) − E)

× 1

(1 − Z ′(l)) + Z ′(l)((x1 − x2)/(W (x1) − W (x2)))
(190)

where

Z ′(l)) =
∆̂′(l)

∆̂′(0)
(191)

with ∆̂′(l) defined through equations (178) and (183).

5.3. Application to the Wigner ensemble

5.3.1. The general form of the solution. As a simple and illustrative ensemble, let us treat
the case where the density spectrum of HE is the Wigner semi-circle distribution with
width 2E0:

ν(E) =
2

πE2
0

√
E2

0 − E2. (192)

doi:10.1088/1742-5468/2011/01/P01001 39

J.S
tat.M

ech.
(2011)

P
01001

A general and solvable random matrix model for spin decoherence

Ĝα,β
(l) (x, y) is given by a planar recursion equation similar to that of equation (69) for

Ĝ(l)(x, y). Its solution is

Ĝα,β
(l) (x, y) = δα,β C̃α(x) C̃α(y) +

D̂(l) C̃α(x)C̃α(y)C̃β(x)C̃β(y)

1 − D̂(l)(
∑N

γ=1 C̃γ(x)C̃γ(y))
(177)

where the D̂(l) are defined, as in equation (66) (the same SU(2) structure), by

D̂(l1) =
2j∑

l′=1

∆(l′)(2l′ + 1)(−1)2j+l′+l1

{
j
j

j
j

l′

l1

}
. (178)

Note however that in equation (178) the sum over l excludes the l = 0 case, in contrast
to the sum in equation (66) which defines the ∆̂(l).

Since we are only interested in taking the trace over the final states |β〉, we simply
have to consider

F̂α
(l)(x, y) =

N∑

β=1

Ĝα,β
(l) (x, y) =

C̃α(x)C̃α(y)

1 − D̂(l)(
∑N

γ=1 C̃γ(x)C̃γ(y))
. (179)

It is of course natural in the large N limit to re-express the sum over states of E as a
continuum integral over the spectrum of H (0):

N∑

α=1

→ N

∫
dE ν(E), C̃α(x) → C̃(x, Eα), F̃ α

(l)(x, y) → F̃(l)(x, y, Eα). (180)

Equation (174) becomes

C̃(x, E) =
1

x − E − ∆̂′C̃(x)
, C̃(x) =

∫
dE ν(E)C̃(x, E) (181)

with

∆̂′ = N D̂ =
2j∑

l=1

2l + 1

2j + 1
∆̃(l), ∆̃(l) = N∆(l) (182)

while equation (179) becomes

F̃(l)(x, y, E) =
C̃(x, E)C̃(y, E)

1 − ∆̂′(l)
∫

dE ′ ν(E ′)C̃(x, E ′)C̃(y, E ′)
(183)

where

∆̂′(l) = ND̂(l) =
2j∑

l′=1

∆̃(l′)(2l′ + 1)(−1)2j+l′+l1

{
j
j

j
j

l′

l1

}
. (184)

The notation ∆̂′ and ∆̂′(l) (with a tilde) in the definitions of equations (182) and (184) is
here to recall that there is no l = 0 contribution in the sum over l, in contrast to the case
for the definition for ∆̂(l) and ∆̂(0) given by equations (66) and (67). We have obviously

∆̂′(0) = ∆̂′. (185)
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Ĝα,β
(l) (x, y) = δα,β C̃α(x) C̃α(y) +

D̂(l) C̃α(x)C̃α(y)C̃β(x)C̃β(y)

1 − D̂(l)(
∑N

γ=1 C̃γ(x)C̃γ(y))
(177)

where the D̂(l) are defined, as in equation (66) (the same SU(2) structure), by

D̂(l1) =
2j∑

l′=1

∆(l′)(2l′ + 1)(−1)2j+l′+l1

{
j
j

j
j

l′

l1

}
. (178)

Note however that in equation (178) the sum over l excludes the l = 0 case, in contrast
to the sum in equation (66) which defines the ∆̂(l).

Since we are only interested in taking the trace over the final states |β〉, we simply
have to consider

F̂α
(l)(x, y) =

N∑

β=1
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The calculations and the explicit solutions are less simple
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We are led to the following conjecture

If               and if one starts from an energy eigenstate
then the diffusion is Markovian and the diffusion coefficient is  

This is a Golden Rule formula

Not too surprising, one must be able to write a master equation for 
the evolution of the density matrix

typical size of a matrix element of  the commutator

d.o.s. of the external system

External system: fast dynamics + initial energy eigenstate
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The                      are all ~ orthogonals

The processes are taken with probability weight 
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If the initial state is a quantum superposition of energy eigenstates

we expect that the diffusive regime will be a randomisation of the 
collection of Markovian diffusion processes           

Each diffusion process           is a RW with diffusion constant D(E)            

This reflects the decoherence between energy eigenstates (of the 
the external system) induced by the coupling with the large spin

|�n⇤ � |E⇤ t⇥
X

�n0

�(E,�n0; t) |�n0⇤ � |E,�n0;�n, t⇤

|E,�n0;�n, t�
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A simple but rich model

A starting point to study more realistic physical models with interesting 
dynamics (works in progress/project)
• Dissipation and thermalisation (add a specific dynamics for the spin, e.g. 

external field).
• Study backreaction of the spin on the environment (decoherence in the 

environment  by the spin)
• More physical models for the environment (bath of oscillators, of spins) 

and the couplings
• Relation with standard approximations used in open quantum systems: 

Master equations and Lindbladians, RWA (Rotating Wave Approximation), 
TCL (Time Convolutionless Limit)

• Finite N effects, large N versus large j limits
• Multi-times functions (relation with quantum stochastic processes)

Is these interesting/new mathematics?
• Random representations matrix models: Consider a group G and a 

representation R of G onto some V. Classify the (Gaussian) Random 
matrix ensembles (in VxV) invariants under G. What are their properties?

Conclusion
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