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0 . Purpose of this talk:
* Present a very simple toy model
 Based on very standard ideas:
» spin and coherent states rakanasi & shibata (1975)
e random matrix hamiltonians weio, Pereyra & Kumar (1988), Lutz & Weidenmuiler (1999), etc.

* which have been much applied for the spin 1/2 (Q-bit, 2 level system)
MPK (1988), Esposito & Gaspard (2003), Lebowitz, Pastur & Lytova (2004 & 2007), Struntz, Haake & Braun (2002), etc.

* But some (relatively) novel aspects
* general spin j (from quantum to classical spin)
e generic interaction (novel random matrix ensembles)
e |t allows to study analytically several aspects decoherence

* |[n particular the crossover between unitary guantum dynamics and
stochastic diffusion in classical phase space for the spin
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1. The model
A quantum SU(2) spin S + an external system & H=Hs X He

spin = j dim(Hs) = 25 +1 dim(Heg) = N >

Single spin:

For large spin 7 — oo the spin becomes a classical object
Classical phase space is the 2-sphere

The coherent states behave as quasi classical states

n) , (n-S)n) = jin)
Dynamics of the coupled spin:
H=Hs®1lg+ Hsg +1s ® H¢

The Hamiltonians:
* Slow spin dynamics Hs =0
(no dissipative & thermalisation effects)
« Dynamic of the external system generic He — Hge
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The interaction Hamiltonian

The interaction hamiltonian is given by a Gaussian random

matrix ensemble, with the only constraint that the ensemble in
invariant under

SU(2) x U(N)
spin / \ external system

For this, go to Wigner representation of spin operators

(ra|H|s8) = HLS — Wi iRj=081d P 2j
J . .
_ (Lm) _ 20+1 /511
Ars — <T‘A|S> WA T Tsz:j 2] 41 <T ml s Ars

It is enough to take for the W(ilﬁm)independent gaussian random

variables with zero mean and variance depending only on / and with
the Hermiticity constraint.

Var (Re\lm(Wgﬁm))) = A(]) Wélﬁ’m) _ (_1)ng£X—m)
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We thus get a matrix ensemble characterized by the variances
A={Al),1=0,1,---25}

NB: The /[=m=0 term represents the H¢s Hamiltonian

The 2-points correlator is the average over this «GU(2)xU(N)E»
matrix ensemble, and is

Ol_ o ______. 0
tu  ———
HTS H% v T 5@5557 rs,tu E _____________________ {(

2l+1 o

IN/J3 L |7
r tu—t

It can be represented by a standard ribbon propagator for the N
indices, with a more complicated structure for the spin indices, but

still planar.
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2 . The evolution functional
separable state — entangled state — mixed state for S
o) ® |po) = |@(2)),  ps(t) = tre([P(2))(P(2)
Evolution functional (POVM, completely positive map, ...)
ps(t) = M(t) - ps(0), M(t) - = tre (e7"" (x @ pe(0)) ")

For simplicity, start from a random state |¥E)

Then the evolution functional is
d d .
/\/l(t) — 7{ axr | 4y R11C ') Q(m,y)

20T 20T
1 1] 1
g(xay)zﬁtrs .CIZ—H@S‘gy—H

tensor product on Hgs A

ordinary product on Hg¢
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We take the large N limit (large external system) and make the
average over H, assuming self averaging as usual.

It is useful to start from the single resolvent

1 1
H(Qf) — Ntrg o

H(x) is given by a sum of planar rainbow diagrams

G(z,y) is also given by a sum
of planar diagrams of the
standard form
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These resolvents obey recursion relations

Thanks to the SU(2) invariance, the solution of these equations
takes a simple diagonal form in the Wigner representation

with
H(z) = Al <$ B \/xz B 4&(0)) Resolvent for a single Wigner
2A(0) matrix (semi circle law)
~ 2T 9l +1
A0) =N} A(l)
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‘ - AM Aa

W X St St W X

?rs,tu(aja y) %W(gll ma) (e, mQ)(CBv y) — 5l1l25m1—|—’m2,0 (_1)m1 G\(l) ($7 y)
and
GO (3, ) = H(z)H(y)
1 —A()H(z)H(y)

with a bit of SU(2) algebra >_< . I

2j S
R . . . ol/

Ay = NS AW @ +1)(~1 29““{“7.]. }
() ( )( )( ) 7 ]l \ 6-j symbol
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The evolution functional for the density matrix of the spin ps(?)
takes a simple diagonal form in the Wigner representation basis

[,m ' [,m
psrs(t) = W™ () = MO (t) - W™ (0)

with the kernel given by a universal decoherence function
MO (t) = M(t/mo, Z(1))

depending on a rescaled time ¢’ = t/7, and a factor Z(I)

A(1)

0= 1/y/A(0) 0= 30

7o IS the dynamical time scale of the system (more later)

The parameter Z(l) depends on the spin sector / considered.

mardi 4 octobre 11



2.2 .The Z(l) function

The | dependence of the factor Z(/) depends on the initial variances
of the GU(2) ensemble for the Hamiltonian.

A(l) = NZJ:A(Z’)(QZ’Jr 1)(—1) %+ {; z ll’} < 6] symbol
Z(1) = A1)/ A(0) Z() € [-1,1

Z(1) 1Is maximal for [=0
Z(l) takes a scaling form in the large spin limit

Z(1) = A(1)/A(0) = Y (z) with = = /2]

Its small [ behavior is quadratic in /

lo _
YA U+ +1)
1 Dy =

Z() =1—1( Dy =

DG+t o, <
> A@Er+1)
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Example 1: /=0 and 1 channels only

coupling distribution A(l) = {1, 1}
total spin ] = {1, 2,4, 8, 16,32, 64, 128} from blue to red

Z(1)

-1.0
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Example 2: /=0 to 12 channels

coupling distribution A(l)={1,1,1,1,1,1,1,1,1,1,1,1,1}
total spin J = {24, 48,96, 192, 384, 768} from blue to red

Z()

-0.5 -

-1.0
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2.3 . The decoherence function (a generalized hypergeometric function)

(o—y) _ H(2)H(y) 1 3
Mt 2) %21# 217'(' )1—ZH(513) H(y) H(x)—i(az— v =4)
) 2(2m + 1)(n + 1)%(2m)!
— m ., n(_q m—+n
;O?%t S o Dl(m — n)(m + 1 1 2)
large time limit:
fast algebraic
decay with ¢
except for Z close
to unity
| R 14z 1 —z
M(t, 2) o ((1 ¢ 012 sm(4t)> (1+0@™))
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Z — 1 scaling M, 2)=¥") with " =t(1-2)
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1 2

Z — 1 scaling function — ¥(t") = | da Vi — g2 et Vg
T J—2

Bessel fct.
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small r and Z ~ 1 behavior M, z)=14+(1—-2)®() + -
O(t)=1— 1F5(—%;1,2; —4¢?)

O(t)
1.0 -
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3 . Evolution of coherent and incoherent states

We can easily study analytically and illustrate the evolution on the
matrix density of the spin, starting from a pure spin state |¥)

) = p =) (| = WE™ - W(7) ZWWYZ

Wigner distribution = function on the sphere

Coherent state

J .
— 2] ' +m _: —m _—1m
7)) = E G+ m()' 87 ) cos(0/2) T sin(0/2)7 e ™ m)
— ! !
20+ 1 [
(1) — _ -~ :

Coherent states are the most localised states on the sphere

|18
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* Coherent states look like a Gaussian on the unit sphere
with width Ay = 1/+/j
 Random states look like random functions on the unit sphere

coherent state random state

stereographic projection and j=20
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4. The time scales of decoherence

There are 4 time scales To <71 K 79 K T3

7o dynamical time scale for the whole system

71 decoherence time scale for generic states [ > \/j
7o evolution time scale for coherent states (onset of quantum diffusion)

73 equilibration time for quantum diffusion

For our simple model with Gaussian Hamiltonian ensembles

70 [Hsel  \
7'0:1/ HHgg—I—HgH — =
- 2
b IS Hsel| { 2 _1 He < [ =0term
| ™ IS| || Hse | i 73 Hse < 1# 0terms

tr(ATA
with the «L. norm» for operators || A H2: t(r(l) )

20

mardi 4 octobre 11



The ratio 72 > 71 Is large iff the commutator {§, Hgg] IS «small»
[g, Hgg} < §>< Hgg

Coherent states are robust against decoherence and play the role
of pointer states if

A(l)#£0 for [ <ly and j > I3

The dynamics of decoherence depends on the details of the
Hamiltonian ensemble

A={A®0), =0,y

Beyond the decoherence time scale 71 , the dynamics of coherent
states is much simpler and exhibit some universal features.
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5 . Quantum diffusion

For m; < t < 19 only semiclassical coherent states survive
For o < t coherent states start to become mixed states 17>1

This is an effect of quantum diffusion, i.e. the remaining weak effect
of the external system on the coherent states.

The width of the distribution function in phase space is found to
grow like Ag(t) o< V't

This suggests a random v
walk in phase space 015

Classical

/

Quantum

But the probability profile f
can be computed and is "
not a Gaussian ! This is a j
signal that the evolution is s
not a Markovian short :
range process, even at \ \ e
large times! 23 4
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V - Dynamics and initial conditions for £

The calculation can be extended to a general Hamiltonian for the
external system with a general eigenvalue distribution,
and to a given initial state |¢<) such as an energy eigenstate

e.v. distribution for Hg,

/ here a semi-circle,
but general case solvable

e.v. distribution for Hg g

initial state energy |E)
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The calculations and the explicit solutions are less simple

Spin part: now sum over the [>0 sectors

Z'(1) = = Al = ND(I) = ST A@) @ 4 1)(—1) 0 {i st }

77k

Random matrix part: now involves the Hilbert transform of the E d.o.s.

(%@—/M%ﬁ% w=W()=z—-ANC)  AO)=A

Decoherence function: depends on £ (energy at t=0) and [ (spin channel)
Amym:%ﬂ%%ﬂ@ o it(r1—e2)
’ 2ir | 2im — EY(W (x9) — F)
1
X
(1 =2'()) + 2" (D) ((x1 — 22) /(W (1) = W(22)))
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We are led to the following conjecture

External system: fast dynamics + initial energy eigenstate

If 71 > 10 and if one starts from an energy eigenstate |F)
then the diffusion is Markovian and the diffusion coefficient is

2
Daigr = zm< ) |(@[[S, Hoe] @)

d.o.s. of the external system /

typical size of a matrix element of the commutator

This is a Golden Rule formula

Not too surprising, one must be able to write a master equation for
the evolution of the density matrix

25
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If the initial state is a quantum superposition of energy eigenstates
pe) =)  G(E)|E
E

we expect that the diffusive regime will be a randomisation of the
collection of Markovian diffusion processes P(FE)

Each diffusion process IP(E) iIs a RW with diffusion constant D(E)
) @ |E) = Z\pE i\ @ |E,@'; i, t)

The processes are taken W|th probability weight W (E) = |¢(E)|?

The |E,7';7,t) are all ~orthogonals

This reflects the decoherence between energy eigenstates (of the
the external system) induced by the coupling with the large spin
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Conclusion
A simple but rich model

A starting point to study more realistic physical models with interesting
dynamics (works in progress/project)
* Dissipation and thermalisation (add a specific dynamics for the spin, e.g.
external field).
e Study backreaction of the spin on the environment (decoherence in the
environment by the spin)
* More physical models for the environment (bath of oscillators, of spins)
and the couplings
* Relation with standard approximations used in open quantum systems:
Master equations and Lindbladians, RWA (Rotating Wave Approximation),
TCL (Time Convolutionless Limit)

* Finite N effects, large N versus large j limits

e Multi-times functions (relation with quantum stochastic processes)
Is these interesting/new mathematics!?
* Random representations matrix models: Consider a group G and a
representation R of G onto some V. Classify the (Gaussian) Random

matrix ensembles (in VxV) invariants under G.What are their properties!?
27
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