Kasteleyn Operators from Mirror Symmetry

Harold Williams

UC Davis

arXiv:1810.05985 joint with D. Treumann and E. Zaslow

The Main Result

Fix an embedded bipartite graph Γ ⊂ T², edge weighting
 C : Γ₁ → C[×], and Kasteleyn orientation κ : Γ₁ → {±1}.

Theorem (Treumann-W.-Zaslow)

The following coherent sheaves on $(\mathbb{C}^{\times})^2$ are isomorphic:

- the spectral transform of the Kasteleyn operator K(x, y) of (Γ, ε, κ), and
- the homological mirror of the conjugate Lagrangian
 L_Γ ⊂ T^{*}T², promoted to an object of the wrapped Fukaya category W(T^{*}T²) using (E, κ).

Dimer Models and the Kasteleyn Operator

• $\kappa: \Gamma_1 \to \{\pm 1\}$ is a Kasteleyn orientation if for each face F of Γ ,

$$\prod_{E \subset \partial F} \kappa(E) = \begin{cases} +1 & \text{if } |\partial F| \equiv 2 \mod 4\\ -1 & \text{if } |\partial F| \equiv 0 \mod 4 \end{cases}$$

• Choose generators $x, y \in H_1(T^2, \mathbb{Z})$ and closed curves γ_x, γ_y in T^2 representing their Poincaré duals.

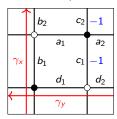
Definition

K(x, y) is the $(\Gamma_0^b \times \Gamma_0^w)$ -matrix-valued Laurent polynomial with entries

$$\mathcal{K}(x,y)_{\langle v_b,v_w\rangle} = \sum_{v_b = v_w} \mathcal{E}(E) \kappa(E) x^{\langle \gamma_x,E \rangle} y^{\langle \gamma_y,E \rangle}.$$

Dimer Models and the Kasteleyn Operator

• An example:



$$K(x,y) = \begin{bmatrix} a_1 + a_2 x & b_1 + b_2 y^{-1} \\ -c_1 - c_2 y & d_1 + d_2 x^{-1} \end{bmatrix}$$

$$det K(x, y) = a_1d_1 + a_2d_2 + b_1c_1 + b_2c_2 + a_1d_2x^{-1} + a_2d_1x + b_1c_2y + b_2c_1y^{-1}$$

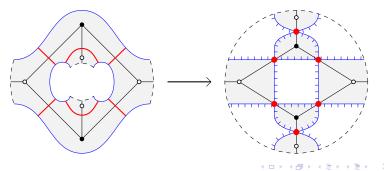
Kenyon-Okounkov-Sheffield: dimer model on lift on Γ to ℝ² controlled by spectral transform of K(x, y), the cokernel of

$$\mathbb{C}[x^{\pm 1}, y^{\pm 1}]^{\Gamma_0^w} \xrightarrow{\mathcal{K}(x, y)} \mathbb{C}[x^{\pm 1}, y^{\pm 1}]^{\Gamma_0^b}.$$

- This is a rank one coherent sheaf on (C[×])² supported on the spectral curve {det K(x, y) = 0} ⊂ (C[×])².
- Up to isomorphism, only depends on \mathcal{E} up to gauge \implies defines family of objects parametrized by $H^1(\Gamma, \mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^{b_1(\Gamma)}$ in $\operatorname{Coh}(\mathbb{C}^{\times})^2$.

Symplectic Geometry of Bipartite Graphs

- Goncharov-Kenyon: Γ embedded bipartite graph in a surface S
 ⇒ Poisson structure on (C[×])^{b₁(Γ)} via conjugate surface L_Γ.
- Start with zig-zag paths of Γ, immersed (co-)oriented curves with exactly one crossing on each edge of Γ. These divides S into "white", "black", and "alternating" regions.
- Define L_{Γ} by blowing up S at crossings, then taking the closure of the white and black regions:



Symplectic Geometry of Bipartite Graphs

- Recall T^*S has exact symplectic form $\omega = d\lambda$, $\lambda = \sum p_i dq_i$.
- A surface $L \subset T^*S$ is exact Lagrangian if $\lambda|_L$ is exact.
- Write ∂T^*S for the fiberwise boundary of T^*S , and let $\Lambda_{\Gamma} \subset \partial T^*S$ denote the conormal lift of the zig-zag paths of Γ .

Theorem (Shende-Treumann-W.-Zaslow)

The surface L_{Γ} embeds into T^*S as an exact Lagrangian asymptotic to Λ_{Γ} , canonical up to Hamiltonian isotopy.

- Corollary: equipping L_Γ with local system, spin structure defines a family of objects parametrized by H¹(Γ, ℂ[×]) ≅ (ℂ[×])^{b₁(Γ)} in the partially wrapped Fukaya category W(T*S, Λ_Γ).
- Useful model: can identify $\mathcal{W}(T^*S, \Lambda_{\Gamma})$ with $Sh_{\Lambda_{\Gamma}}(T^*S)$, the category of constructible sheaves with singular support asymptotic to Λ_{Γ} (Ganatra-Pardon-Shende).

< ロ > < 同 > < 回 > < 回 >

Toric Mirror Symmetry

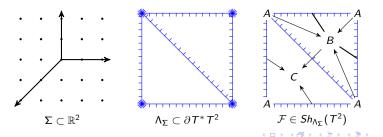
Given a fan Σ ⊂ ℝⁿ, write X_Σ for the associated toric compactification of (ℂ[×])ⁿ.

Theorem (Fang-Liu-Treumann-Zaslow, Kuwagaki)

There exists a Legendrian subset $\Lambda_{\Sigma} \subset \partial T^* T^n$ and an equivalence

 $Sh_{\Lambda_{\Sigma}}(T^n) \cong \operatorname{Coh}(X_{\Sigma}).$

• Example (after Beilinson): $X_{\Sigma} = \mathbb{P}^2$



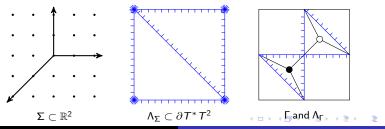
Toric Mirror Symmetry

Given Γ, let Σ(Γ) denote the complete fan in H¹(T², ℝ) ≅ ℝ² with rays generated by the classes of the zig-zag paths of Γ.

Lemma

If Γ is consistent there is a Legendrian isotopy from Λ_{Γ} into $\Lambda_{\Sigma}.$

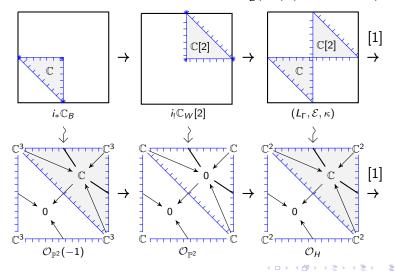
- Note: consistency does not restrict curves which appear.
- Caveat: should really consider stacky fans in general.
- Guillermou-Kashiwara-Schapira: an isotopy as above induces a fully faithful functor Sh_{ΛΓ}(T²) → Sh_{ΛΣ}(T²).
- Example: a graph for \mathbb{P}^2



Kasteleyn Operators from Mirror Symmetry

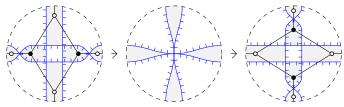
Example of Main Result: A Hyperplane $H \subset \mathbb{P}^2$

• The triple $(L_{\Gamma}, \mathcal{E}, \kappa)$ defines a sheaf in $Sh_{\Lambda_{\Gamma}}(T^2)$ (top right), which we can isotope to a sheaf in $Sh_{\Lambda_{\Sigma}}(T^2)$ (bottom right).



Bonus: Discrete Integrability via Mirror Symmetry

• The square move is a basic operation on bipartite graphs. It acts on Λ_{Γ} by a Legendrian isotopy.



Theorem (Shende-Treumann-W.-Zaslow)

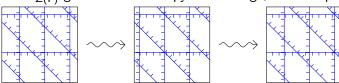
 $\Gamma \mapsto \Gamma'$ square move \implies functor $Sh_{\Lambda_{\Gamma}}(T^2) \to Sh_{\Lambda_{\Gamma'}}(T^2)$ relates families $(\mathbb{C}^{\times})^{b_1(\Gamma)}$ and $(\mathbb{C}^{\times})^{b_1(\Gamma')}$ by cluster \mathcal{X} -transformation.

Corollary (Goncharov-Kenyon)

 Γ , Γ' differ by square move, \mathcal{E} , \mathcal{E}' by cluster \mathcal{X} -transformation, and κ , κ' in the obvious way \implies Kasteleyn operators associated to $(\Gamma, \mathcal{E}, \kappa)$ and $(\Gamma', \mathcal{E}', \kappa')$ have the same spectral transform.

Bonus: Discrete Integrability via Mirror Symmetry

 Corollary: a periodic sequence of square moves of Γ acts by a Legendrian autoisotopy of Λ_Γ. Conjugating this by an isotopy Λ_Γ → Λ_{Σ(Γ)} gives an autoisotopy of its image, for example:



• The group of such autoisotopies is $\mathbb{Z}^{|\Sigma_1|}$, hence is equivalent to the group of line bundles $\mathcal{O}(\sum_i n_i D_i)$ on $X_{\Sigma(\Gamma)}$.

Theorem (Treumann-W.-Zaslow)

Mirror symmetry intertwines the autoequivalence of $Sh_{\Sigma(\Gamma)}(T^2)$ defined by the isotopy $(n_i) \in \mathbb{Z}^{|\Sigma_1|}$ with tensoring by $\mathcal{O}(\sum_i n_i D_i)$.

• Corollary: the action of a periodic square move sequence on spectral data is given by tensoring with the corresponding $\mathcal{O}(\sum_{i} n_{i}D_{i})$ (c.f. Fock-Marshakov, Goncharov).