Baxter's Q-operator (for the open XXZ Heisenberg chain with diagonal boundaries)

Bart Vlaar
Heriot-Watt University

ICR2019, Presqu'île de Giens, 05/09/2019

Based on joint work with Robert Weston (in progress, on arXiv soon)
(1) Introduction \& Overview
(2) Algebras \& Representations
(3) Intertwiners \& suchlike
(4) Baxter's Q-operator \& the TQ-relation

(1) Introduction \& Overview

(2) Algebras \& Representations

(3) Intertwiners \& suchlike

(4) Baxter's Q-operator \& the TQ-relation

Heisenberg XXZ spin chains

Let $V=\mathbb{C} v_{0} \oplus \mathbb{C} v_{1} \cong \mathbb{C}^{2}$. Quantum-mechanical state space of spin- $\frac{1}{2}$ chain with N sites:

$$
V^{\otimes N}=V \otimes \cdots \otimes V
$$

Quantum Hamiltonian of Heisenberg $X X Z$ spin $-\frac{1}{2}$ chain (nearest-neighbour interaction):

$$
\begin{aligned}
H & \propto \sum_{n=1}^{N-1}\left(\sigma_{n}^{\mathrm{x}} \sigma_{n+1}^{\mathrm{x}}+\sigma_{n}^{\mathrm{y}} \sigma_{n+1}^{\mathrm{y}}+\frac{q+q^{-1}}{2} \sigma_{n}^{\mathrm{z}} \sigma_{n+1}^{\mathrm{z}}\right)+\text { boundary terms } \\
& \in \operatorname{End}\left(V^{\otimes N}\right)
\end{aligned}
$$

where

- $\sigma^{\mathrm{x}}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{\mathrm{y}}=\left(\begin{array}{cc}0 & -\sqrt{-1} \\ \sqrt{-1} & 0\end{array}\right), \sigma^{\mathrm{z}}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$;
- subscripts indicate in which tensor factor the operators $\sigma^{\mathrm{x}, \mathrm{y}, \mathrm{z}}$ act;
- $q \in \mathbb{C}^{\times}$parametrizes the degree of isotropy - we assume $|q|<1$.

To diagonalize H one can do this [Faddeev \& Takhtajan (1979), etc.].

To diagonalize H one can do this [Faddeev \& Takhtajan (1979), etc.].

1. Construct $U^{V}(z) \in \operatorname{End}\left(V \otimes V^{\otimes N}\right.$) (auxiliary copy of V, parameter $z \in \mathbb{C}$) by composing operators each of which acts nontrivially on tensor products of auxiliary V and at most one of the other $V \mathrm{~s}$.

To diagonalize H one can do this [Faddeev \& Takhtajan (1979), etc.].

1. Construct $U^{V}(z) \in \operatorname{End}\left(V \otimes V^{\otimes N}\right)$ (auxiliary copy of V, parameter $z \in \mathbb{C}$) by composing operators each of which acts nontrivially on tensor products of auxiliary V and at most one of the other $V \mathrm{~s}$.
2. Define transfer matrices

$$
T(z)=\operatorname{Tr}_{V} U^{V}(z) \in \operatorname{End}\left(V^{\otimes N}\right)
$$

For "nice" and well-chosen constituent operators we have

$$
[T(y), T(z)]=0,\left.\quad H \propto\left(T(z)^{-1} \frac{\mathrm{~d}}{\mathrm{~d} z} T(z)\right)\right|_{z=1}
$$

To diagonalize H one can do this [Faddeev \& Takhtajan (1979), etc.].

1. Construct $U^{V}(z) \in \operatorname{End}\left(V \otimes V^{\otimes N}\right)$ (auxiliary copy of V, parameter $z \in \mathbb{C}$) by composing operators each of which acts nontrivially on tensor products of auxiliary V and at most one of the other $V \mathrm{~s}$.
2. Define transfer matrices

$$
T(z)=\operatorname{Tr}_{V} U^{V}(z) \in \operatorname{End}\left(V^{\otimes N}\right)
$$

For "nice" and well-chosen constituent operators we have

$$
[T(y), T(z)]=0,\left.\quad H \propto\left(T(z)^{-1} \frac{\mathrm{~d}}{\mathrm{~d} z} T(z)\right)\right|_{z=1}
$$

For step 1 and 2 also cf. "Keeler's Theorem" from [Futurama S6E10 (2010)]

To diagonalize H one can do this [Faddeev \& Takhtajan (1979), etc.].

1. Construct $U^{V}(z) \in \operatorname{End}\left(V \otimes V^{\otimes N}\right)$ (auxiliary copy of V, parameter $z \in \mathbb{C}$) by composing operators each of which acts nontrivially on tensor products of auxiliary V and at most one of the other $V \mathrm{~s}$.
2. Define transfer matrices

$$
T(z)=\operatorname{Tr}_{V} U^{V}(z) \in \operatorname{End}\left(V^{\otimes N}\right)
$$

For "nice" and well-chosen constituent operators we have

$$
[T(y), T(z)]=0,\left.\quad H \propto\left(T(z)^{-1} \frac{\mathrm{~d}}{\mathrm{~d} z} T(z)\right)\right|_{z=1}
$$

3. (Algebraic Bethe ansatz) Decompose $U^{V}(z)$ w.r.t. auxiliary V $U^{V}(z)=\left(\begin{array}{cc}A(z) & B(z) \\ C(z) & D(z)\end{array}\right)$ with $A(z), B(z), C(z), D(z) \in \operatorname{End}\left(V^{\otimes N}\right) ;$ derive commutation relations; hope you have a joint eigenvector v_{0} of $A(z)$ and $D(z)$; show that $B\left(z_{1}\right) \cdots B\left(z_{M}\right) v_{0}$ is an eigenvector of $T(z)=A(z)+D(z)$ subject to cancellation of "unwanted terms"; show this cancellation is equivalent to a set of equations on z_{1}, \ldots, z_{M} : Bethe ansatz equations.
For step 1 and 2 also cf. "Keeler's Theorem" from [Futurama S6E10 (2010)]

Let $\widetilde{\beta}, \beta \in \mathbb{C}$. We will consider the open XXZ chain with diagonal boundaries:

$$
H \propto \widetilde{\beta} \sigma_{1}^{\mathrm{z}}+\sum_{i=1}^{N-1}\left(\sigma_{i}^{\mathrm{x}} \sigma_{i+1}^{\mathrm{x}}+\sigma_{i}^{\mathrm{y}} \sigma_{i+1}^{\mathrm{y}}+\frac{q+q^{-1}}{2} \sigma_{i}^{\mathrm{z}} \sigma_{i+1}^{\mathrm{z}}\right)+\beta \sigma_{N}^{\mathrm{z}}
$$

Let $\widetilde{\beta}, \beta \in \mathbb{C}$. We will consider the open XXZ chain with diagonal boundaries:

$$
H \propto \widetilde{\beta} \sigma_{1}^{\mathrm{z}}+\sum_{i=1}^{N-1}\left(\sigma_{i}^{\mathrm{x}} \sigma_{i+1}^{\mathrm{x}}+\sigma_{i}^{\mathrm{y}} \sigma_{i+1}^{\mathrm{y}}+\frac{q+q^{-1}}{2} \sigma_{i}^{\mathrm{z}} \sigma_{i+1}^{\mathrm{z}}\right)+\beta \sigma_{N}^{\mathrm{z}} .
$$

Sklyanin defined the two-row transfer matrix

$$
T(z)=\operatorname{Tr}_{V} \widetilde{K}_{a}^{V}(z) R_{1 a}(z) \cdots R_{N a}(z) K_{a}^{V}(z) R_{a N}(z) \cdots R_{a 1}(z)
$$

(the auxiliary space has the label a). Then $[T(y), T(z)]=0$ if

- $R(z) \in \operatorname{End}(V \otimes V)$ satisfies the Yang-Baxter equation
- $K^{V}(z), \widetilde{K}^{V}(z) \in \operatorname{End}(V)$ satisfy appropriate reflection equations.

Let $\widetilde{\beta}, \beta \in \mathbb{C}$. We will consider the open XXZ chain with diagonal boundaries:

$$
H \propto \widetilde{\beta} \sigma_{1}^{\mathrm{z}}+\sum_{i=1}^{N-1}\left(\sigma_{i}^{\mathrm{x}} \sigma_{i+1}^{\mathrm{x}}+\sigma_{i}^{\mathrm{y}} \sigma_{i+1}^{\mathrm{y}}+\frac{q+q^{-1}}{2} \sigma_{i}^{\mathrm{z}} \sigma_{i+1}^{\mathrm{z}}\right)+\beta \sigma_{N}^{\mathrm{z}} .
$$

Sklyanin defined the two-row transfer matrix

$$
T(z)=\operatorname{Tr}_{V} \widetilde{K}_{a}^{V}(z) R_{1 a}(z) \cdots R_{N a}(z) K_{a}^{V}(z) R_{a N}(z) \cdots R_{a 1}(z)
$$

(the auxiliary space has the label a). Then $[T(y), T(z)]=0$ if

- $R(z) \in \operatorname{End}(V \otimes V)$ satisfies the Yang-Baxter equation
- $K^{V}(z), \widetilde{K}^{V}(z) \in \operatorname{End}(V)$ satisfy appropriate reflection equations.

Moreover, for the open XXZ chain with diagonal boundaries, choosing $R(z)$ to be the quantum affine $\mathfrak{s l}_{2}$ R-matrix and $K^{V}(z), \widetilde{K}^{V}(z)$ particular diagonal matrices, we also have $H=\left.\frac{\mathrm{d}}{\mathrm{d} z} \log T(z)\right|_{z=1}$ and ABA [Sklyanin (1988)].

Let $\widetilde{\beta}, \beta \in \mathbb{C}$. We will consider the open XXZ chain with diagonal boundaries:

$$
H \propto \widetilde{\beta} \sigma_{1}^{\mathrm{z}}+\sum_{i=1}^{N-1}\left(\sigma_{i}^{\mathrm{x}} \sigma_{i+1}^{\mathrm{x}}+\sigma_{i}^{\mathrm{y}} \sigma_{i+1}^{\mathrm{y}}+\frac{q+q^{-1}}{2} \sigma_{i}^{\mathrm{z}} \sigma_{i+1}^{\mathrm{z}}\right)+\beta \sigma_{N}^{\mathrm{z}} .
$$

Sklyanin defined the two-row transfer matrix

$$
T(z)=\operatorname{Tr}_{V} \widetilde{K}_{a}^{V}(z) R_{1 a}(z) \cdots R_{N a}(z) K_{a}^{V}(z) R_{a N}(z) \cdots R_{a 1}(z)
$$

(the auxiliary space has the label a). Then $[T(y), T(z)]=0$ if

- $R(z) \in \operatorname{End}(V \otimes V)$ satisfies the Yang-Baxter equation
- $K^{V}(z), \widetilde{K}^{V}(z) \in \operatorname{End}(V)$ satisfy appropriate reflection equations.

Moreover, for the open XXZ chain with diagonal boundaries, choosing $R(z)$ to be the quantum affine $\mathfrak{s l}_{2}$ R-matrix and $K^{V}(z), \widetilde{K}^{V}(z)$ particular diagonal matrices, we also have $H=\left.\frac{\mathrm{d}}{\mathrm{d} z} \log T(z)\right|_{z=1}$ and ABA [Sklyanin (1988)].
Sklyanin's ABA cannot be done for the most general $K^{V}(z), \widetilde{K}^{V}(z)$.

An alternative method: Baxter's Q-operator

Suppose we have another family $\left\{Q(z) \in \operatorname{End}\left(V^{\otimes N}\right)\right\}_{z \in \mathbb{C}}$ such that

- $\quad[T(y), T(z)]=[T(y), Q(z)]=[Q(y), Q(z)]=0$;
- $Q(z)$ and $T(z)$ are diagonalizable and entire functions of z (hence the eigenvalues of $Q(z)$ and $T(z)$ are entire functions of z);
- Baxter's TQ-relation holds

$$
T(z) Q(z)=\alpha_{+}(z) Q(p z)+\alpha_{-}(z) Q\left(p^{-1} z\right)
$$

for some $p \in \mathbb{C}^{\times}$and $\alpha_{+}(z), \alpha_{-}(z) \in \mathbb{C}$ (meromorphic in z).
Then one can derive equations for the zeroes of the eigenvalues of $Q(z)$ in terms of their Weierstrass factorization and $\alpha_{ \pm}(z)$.

An alternative method: Baxter's Q-operator

Suppose we have another family $\left\{Q(z) \in \operatorname{End}\left(V^{\otimes N}\right)\right\}_{z \in \mathbb{C}}$ such that

- $\quad[T(y), T(z)]=[T(y), Q(z)]=[Q(y), Q(z)]=0$;
- $Q(z)$ and $T(z)$ are diagonalizable and entire functions of z (hence the eigenvalues of $Q(z)$ and $T(z)$ are entire functions of z);
- Baxter's TQ-relation holds

$$
T(z) Q(z)=\alpha_{+}(z) Q(p z)+\alpha_{-}(z) Q\left(p^{-1} z\right)
$$

for some $p \in \mathbb{C}^{\times}$and $\alpha_{+}(z), \alpha_{-}(z) \in \mathbb{C}$ (meromorphic in z).
Then one can derive equations for the zeroes of the eigenvalues of $Q(z)$ in terms of their Weierstrass factorization and $\alpha_{ \pm}(z)$.
Baxter (1971) diagonalized the closed XYZ chain Hamiltonian this way.

An alternative method: Baxter's Q-operator

Suppose we have another family $\left\{Q(z) \in \operatorname{End}\left(V^{\otimes N}\right)\right\}_{z \in \mathbb{C}}$ such that

- $\quad[T(y), T(z)]=[T(y), Q(z)]=[Q(y), Q(z)]=0$;
- $Q(z)$ and $T(z)$ are diagonalizable and entire functions of z (hence the eigenvalues of $Q(z)$ and $T(z)$ are entire functions of z);
- Baxter's TQ-relation holds

$$
T(z) Q(z)=\alpha_{+}(z) Q(p z)+\alpha_{-}(z) Q\left(p^{-1} z\right)
$$

for some $p \in \mathbb{C}^{\times}$and $\alpha_{+}(z), \alpha_{-}(z) \in \mathbb{C}$ (meromorphic in z).
Then one can derive equations for the zeroes of the eigenvalues of $Q(z)$ in terms of their Weierstrass factorization and $\alpha_{ \pm}(z)$.
Baxter (1971) diagonalized the closed XYZ chain Hamiltonian this way.

Q-operator according to Bazhanov, Lukyanov \& Zamolodchikov (1996)

Mimic the construction of $T(z)$, i.e.

$$
Q(z)=\operatorname{Tr}_{W}\left(\text { factorized linear map on } W \otimes V^{\otimes N}\right)
$$

with W an infinite-dimensional vector space.

Open problems

- Compare with [Frassek \& Szécsényi (2015)] for the Q-operator for the open XXX chain (with diagonal boundaries).
- Extend to a pair $(Q(z), \tilde{Q}(z))$ and express $T(z)$ as a polynomial in these (Q-operators are fundamental objects).
- Connect with other representation-theoretic approaches to the Q-operator, in particular "asymptotic algebra" and "prefundamental representations" [Hernandez \& Jimbo (2012); Frenkel \& Hernandez (2015)].
- Generalize to other coideal subalgebras of \mathcal{U}_{q}; in particular the ones with nondiagonal $K(z), \widetilde{K}(z)$.

Today: derivation of the TQ-relation

How do you derive something like

$$
T(z) Q(z)=\alpha_{+}(z) Q(p z)+\alpha_{-}(z) Q\left(p^{-1} z\right) \quad ?
$$

Note: $T(z)=\operatorname{Tr} v$ (operator), $Q(z)=\operatorname{Tr}_{w}$ (operator).

Today: derivation of the TQ-relation

How do you derive something like
$\operatorname{Tr}_{\otimes \otimes W}($ some operator $)=\operatorname{Tr}_{W}$ (another operator $)+\operatorname{Tr}_{W}$ (yet another operator)

Today: derivation of the TQ-relation

How do you derive something like
$\underset{V \otimes W}{\operatorname{Tr}}($ some operator $)=\underset{W}{\operatorname{Tr}}$ (another operator $)+{ }_{W}^{\operatorname{Tr}}$ (yet another operator)

Proposition (Decomposition of a trace using a short exact sequence)

Consider a short exact sequence of vector spaces:

$$
0 \longrightarrow L \xrightarrow{\iota} M \xrightarrow{\tau} L^{\prime} \longrightarrow 0
$$

Let $\phi \in \operatorname{End}(M)$. If all traces are well-defined we have

$$
\operatorname{Tr}_{M} \phi=\operatorname{Tr}_{L} \iota^{-1} \circ \phi \circ \iota+\operatorname{Tr}_{L^{\prime}} \tau \circ \phi \circ \tau^{-1}
$$

where ι^{-1} is a left-inverse of ι and τ^{-1} is a right-inverse of τ. If also
$\exists \psi \in \operatorname{End}(L): \quad \phi \circ \iota=\iota \circ \psi \quad$ and $\quad \exists \psi^{\prime} \in \operatorname{End}\left(L^{\prime}\right): \quad \tau \circ \phi=\psi^{\prime} \circ \tau$
then

$$
\operatorname{Tr}_{M} \phi=\operatorname{Tr}_{L} \psi+\operatorname{Tr}_{L^{\prime}} \psi^{\prime}
$$

(1) Introduction \& Overview

(2) Algebras \& Representations

(3) Intertwiners \& suchlike

(4) Baxter's Q-operator \& the TQ-relation

Definition (Quantum affine $\mathfrak{s l}_{2}$)

Let \mathcal{U}_{q} be the algebra with generators E_{i}, F_{i} and invertible k_{i} ($i \in\{0,1\}$) and relations

$$
\left.\begin{array}{c}
k_{i} E_{i}=q^{2} E_{i} k_{i}, \quad k_{i} F_{i}=q^{-2} F_{i} k_{i}, \quad E_{i} F_{i}-F_{i} E_{i}=\frac{k_{i}-k_{i}^{-1}}{q-q^{-1}} \\
k_{i} k_{j}=k_{j} k_{i} \quad E_{i} F_{j}=F_{j} E_{i} \\
k_{i} E_{j}=q^{-2} E_{j} k_{i} \quad k_{i} F_{j}=q^{2} F_{j} k_{i} \\
q-S e r r e ~ r e l a t i o n s
\end{array}\right\} i f j \neq i .
$$

\mathcal{U}_{q} is a Hopf algebra. In particular we have an algebra homomorphism $\Delta: \mathcal{U}_{q} \rightarrow \mathcal{U}_{q} \otimes \mathcal{U}_{q}$
$\Delta\left(E_{i}\right)=E_{i} \otimes 1+k_{i} \otimes E_{i}, \quad \Delta\left(F_{i}\right)=F_{i} \otimes k_{i}^{-1}+1 \otimes F_{i}, \quad \Delta\left(k_{i}\right)=k_{i} \otimes k_{i}$.

Let $V=\mathbb{C} v_{0} \oplus \mathbb{C} v_{1} \cong \mathbb{C}^{2}$. For $z \in \mathbb{C}^{\times}$define the evaluation representation w.r.t. "principal grading"

$$
\pi_{z}: \mathcal{U}_{q} \rightarrow \operatorname{End}(V)
$$

by

$$
\begin{array}{lll}
E_{0} \mapsto\left(\begin{array}{ll}
0 & 0 \\
z & 0
\end{array}\right) & F_{0} \mapsto\left(\begin{array}{cc}
0 & z^{-1} \\
0 & 0
\end{array}\right) & k_{0} \mapsto q^{\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)}=\left(\begin{array}{cc}
q^{-1} & 0 \\
0 & q
\end{array}\right) \\
E_{1} \mapsto\left(\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right) & F_{1} \mapsto\left(\begin{array}{cc}
0 & 0 \\
z^{-1} & 0
\end{array}\right) & k_{1} \mapsto q^{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right) .
\end{array}
$$

Note: $\pi_{z}\left(E_{0}\right)=\pi_{z^{-1}}\left(F_{1}\right)$ and $\pi_{z}\left(E_{1}\right)=\pi_{z^{-1}}\left(F_{0}\right)$.
More standard choice ("homogeneous grading")

$$
\begin{array}{lll}
E_{0} \mapsto\left(\begin{array}{ll}
0 & 0 \\
z & 0
\end{array}\right) & F_{0} \mapsto\left(\begin{array}{cc}
0 & z^{-1} \\
0 & 0
\end{array}\right) & k_{0} \mapsto q^{\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)}=\left(\begin{array}{cc}
q^{-1} & 0 \\
0 & q
\end{array}\right) \\
E_{1} \mapsto\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & F_{1} \mapsto\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) & k_{1} \mapsto q^{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right) .
\end{array}
$$

is less suitable here.

The quantum Borel subalgebras

$$
\mathcal{U}_{q}^{+}=\left\langle E_{0}, E_{1}, k_{0}^{ \pm 1}, k_{1}^{ \pm 1}\right\rangle, \quad \mathcal{U}_{q}^{-}:=\left\langle F_{0}, F_{1}, k_{0}^{ \pm 1}, k_{1}^{ \pm 1}\right\rangle
$$

are Hopf subalgebras of \mathcal{U}_{q}.

The quantum Borel subalgebras

$$
\mathcal{U}_{q}^{+}=\left\langle E_{0}, E_{1}, k_{0}^{ \pm 1}, k_{1}^{ \pm 1}\right\rangle, \quad \mathcal{U}_{q}^{-}:=\left\langle F_{0}, F_{1}, k_{0}^{ \pm 1}, k_{1}^{ \pm 1}\right\rangle
$$

are Hopf subalgebras of \mathcal{U}_{q}.
Consider

$$
W=\bigoplus_{j \in \mathbb{Z}_{\geq 0}} \mathbb{C} w_{j}=\mathbb{C} w_{0} \oplus \mathbb{C} w_{1} \oplus \cdots
$$

Define linear maps on W as follows:

$$
a^{\dagger}\left(w_{j}\right)=\left(1-q^{2(j+1)}\right) w_{j+1}, \quad a\left(w_{j}\right)=w_{j-1}, \quad f(D)\left(w_{j}\right)=f(j) w_{j}
$$

for any function $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{C}$ (we have set $w_{-1}=0$). For $r, z \in \mathbb{C}^{\times}$, define the representation $\rho_{z, r}^{+}: \mathcal{U}_{q}^{+} \rightarrow \operatorname{End}(W)$ by

$$
E_{0} \mapsto \frac{z}{q^{2}-1} a^{\dagger}, \quad E_{1} \mapsto \frac{z}{1-q^{-2}} a, \quad k_{0} \mapsto r q^{2 D}, \quad k_{1} \mapsto r^{-1} q^{-2 D} .
$$

Recall that $\pi_{z}\left(E_{0}\right)=\pi_{z^{-1}}\left(F_{1}\right)$ and $\pi_{z}\left(E_{1}\right)=\pi_{z^{-1}}\left(F_{0}\right)$. It would be nice to have an algebra automorphism ψ_{q} of \mathcal{U}_{q} such that

$$
\pi_{z}=\pi_{z^{-1}} \circ \psi_{q}, \quad \psi_{q}\left(\mathcal{U}_{q}^{ \pm}\right)=\mathcal{U}_{q}^{\mp}
$$

Then we could define a "compatible" representation of \mathcal{U}_{q}^{-}on W via

$$
\rho_{z, r}^{-}:=\rho_{z^{-1}, r^{-1}}^{+} \circ \psi_{q} .
$$

There are actually many such ψ_{q}. How do we decide what is the best $\rho_{z, r}^{-}$? We'll want to have some nice intertwiners

(1) Introduction \& Overview

(2) Algebras \& Representations

(3) Intertwiners \& suchlike

(4) Baxter's Q-operator \& the TQ-relation

Intertwiners for \mathcal{U}_{q}^{+}

Lemma

There are \mathcal{U}_{q}^{+}-intertwiners (unique up to a scalar)

$$
\begin{aligned}
\iota^{+}(r): & \left(W, \rho_{q z, q r}^{+}\right) & \rightarrow\left(W \otimes V, \rho_{z, r}^{+} \otimes \pi_{z}\right) \\
\tau^{+}(r): & \left(W \otimes V, \rho_{z, r}^{+} \otimes \pi_{z}\right) & \rightarrow\left(W, \rho_{q^{-1} z, q^{-1} r}^{+}\right)
\end{aligned}
$$

W.r.t. the basis $\left(v_{0}, v_{1}\right)$ of V they are given by

$$
\iota^{+}(r)=\binom{q^{-D} a^{\dagger}}{q^{D+1} r} \quad \tau^{+}(r)=\left(\begin{array}{ll}
q^{D} & -q^{-D} r^{-1} a^{\dagger}
\end{array}\right)
$$

Moreover, we have the short exact sequence

$$
\left(W, \rho_{q z, q r}^{+}\right) \stackrel{\iota^{+}(r)}{\longrightarrow}\left(W \otimes V, \rho_{z, r}^{+} \otimes \pi_{z}\right) \quad \stackrel{\tau^{+}(r)}{\rightarrow} \quad\left(W, \rho_{q^{-1} z_{z, q^{-1} r}}^{+}\right)
$$

for all $r, z \in \mathbb{C}^{\times}$.

Note that \mathcal{U}_{q} is quasitriangular w.r.t. category of level-0 representations. Universal R-matrix \mathcal{R} lying in (completion of) $\mathcal{U}_{q}^{+} \otimes \mathcal{U}_{q}^{-}$[Khoroshkin \& Tolstoy, 1991].

In particular, for $z=z_{1} / z_{2}$, define

$$
\begin{aligned}
R(z) & :=\text { convenient scalar } \times\left(\pi_{z_{1}} \otimes \pi_{z_{2}}\right)(\mathcal{R}) \\
& =\left(\begin{array}{cccc}
1-q^{2} z^{2} & 0 & 0 & 0 \\
0 & q\left(1-z^{2}\right) & \left(1-q^{2}\right) z & 0 \\
0 & \left(1-q^{2}\right) z & q\left(1-z^{2}\right) & 0 \\
0 & 0 & 0 & 1-q^{2} z^{2}
\end{array}\right) \in \operatorname{End}(V \otimes V) \\
L^{+}(z, r) & :=\text { convenient scalar } \times\left(\rho_{z_{1}, r}^{+} \otimes \pi_{z_{2}}\right)(\mathcal{R}) \\
& =\left(\begin{array}{cc}
1 & -q^{-1} z a^{\dagger} \\
-q z a & 1-q^{2(D+1)} z^{2}
\end{array}\right)\left(\begin{array}{cc}
q^{D} r & 0 \\
0 & q^{-D}
\end{array}\right) \in \operatorname{End}(W \otimes V) .
\end{aligned}
$$

For any two vector spaces V_{1}, V_{2} define $P: V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1}$ by $P\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$ for $v_{i} \in V_{i}$. We have a \mathcal{U}_{q}-intertwiner $\check{R}(z)$ and a \mathcal{U}_{q}^{+}-intertwiner $\check{L}^{+}(z, r)$:

$$
\begin{aligned}
& \check{R}\left(\frac{z_{1}}{z_{2}}\right):=P R\left(\frac{z_{1}}{z_{2}}\right) \quad:\left(V \otimes V, \pi_{z_{1}} \otimes \pi_{z_{2}}\right) \rightarrow\left(V \otimes V, \pi_{z_{2}} \otimes \pi_{z_{1}}\right) \\
& \check{L}^{+}\left(\frac{z_{1}}{z_{2}}, r\right):=P L^{+}\left(\frac{z_{1}}{z_{2}}, r\right):\left(W \otimes V, \rho_{z_{1}, r}^{+} \otimes \pi_{z_{2}}\right) \rightarrow\left(V \otimes W, \pi_{z_{2}} \otimes \rho_{z_{1}, r}^{+}\right)
\end{aligned}
$$

Also recall the \mathcal{U}_{q}^{+}-intertwiner

$$
\iota^{+}(r):\left(W, \rho_{q z, q r}^{+}\right) \rightarrow\left(W \otimes V, \rho_{z, r}^{+} \otimes \pi_{z}\right)
$$

For any two vector spaces V_{1}, V_{2} define $P: V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1}$ by $P\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$ for $v_{i} \in V_{i}$. We have a \mathcal{U}_{q}-intertwiner $\check{R}(z)$ and a \mathcal{U}_{q}^{+}-intertwiner $\check{L}^{+}(z, r)$:

$$
\begin{aligned}
\check{R}\left(\frac{z_{1}}{z_{2}}\right):=P R\left(\frac{z_{1}}{z_{2}}\right) & :\left(V \otimes V, \pi_{z_{1}} \otimes \pi_{z_{2}}\right) \rightarrow\left(V \otimes V, \pi_{z_{2}} \otimes \pi_{z_{1}}\right) \\
\check{L}^{+}\left(\frac{z_{1}}{z_{2}}, r\right):=P L^{+}\left(\frac{z_{1}}{z_{2}}, r\right) & :\left(W \otimes V, \rho_{z_{1}, r}^{+} \otimes \pi_{z_{2}}\right) \rightarrow\left(V \otimes W, \pi_{z_{2}} \otimes \rho_{z_{1}, r}^{+}\right)
\end{aligned}
$$

Also recall the \mathcal{U}_{q}^{+}-intertwiner

$$
\iota^{+}(r):\left(W, \rho_{q z, q r}^{+}\right) \rightarrow\left(W \otimes V, \rho_{z, r}^{+} \otimes \pi_{z}\right)
$$

Pictures

$$
\check{R}\left(\frac{z_{1}}{z_{2}}\right)=\underbrace{z_{1}}_{z}\left(\begin{array}{l}
\text { since } \check{R}\left(\frac{z_{2}}{z_{1}}\right)^{-1} \propto \check{R}\left(\frac{z_{1}}{z_{2}}\right), \\
\text { you may think of it as }
\end{array} \check{L}^{z^{+}\left(\frac{z_{1}}{z_{2}}, r\right)=}{ }_{z}^{z_{1}}\right.
$$

From the coproduct property of the universal R-matrix we obtain
$\left(\check{L}^{+}(z, r) \otimes \mathrm{Id}\right)(\mathrm{Id} \otimes \check{R}(z))\left(\iota^{+}(r) \otimes \mathrm{Id}\right)=\left(z^{2}-1\right)\left(\mathrm{Id} \otimes \iota^{+}(r)\right) \check{L}^{+}(q z, q r)$ $\left(\operatorname{ld} \otimes \tau^{+}(r)\right)\left(\check{L}^{+}(z, r) \otimes \operatorname{ld}\right)(\operatorname{ld} \otimes \check{R}(z))=q\left(q^{2} z^{2}-1\right) \check{L}^{+}(q z, q r)\left(\tau^{+}(r) \otimes \operatorname{ld}\right)$ where $z=z_{1} / z_{2}$. The former in pictures:

Intertwiners for \mathcal{U}_{q}^{-}.

We define an algebra automorphism ψ_{q} of \mathcal{U}_{q} via the assignments

$$
\begin{array}{lll}
E_{0} \mapsto q^{-1} k_{1}^{-1} F_{1} & F_{0} \mapsto q E_{1} k_{1} & \\
k_{0} \mapsto k_{1}^{-1} \\
E_{1} \mapsto q^{-1} k_{0}^{-1} F_{0} & F_{1} \mapsto q E_{0} k_{0} & \\
k_{1} \mapsto k_{0}^{-1} .
\end{array}
$$

It satisfies $\pi_{z^{-1}}=\pi_{z} \circ \psi_{q}$. Note that $\psi_{q}\left(\mathcal{U}_{q}^{ \pm}\right)=\mathcal{U}_{q}^{\mp}$ so can construct a representation of \mathcal{U}_{q}^{-}on W by $\rho_{z^{-1}, r^{-1}}^{-}:=\rho_{z, r}^{+} \circ \psi_{q}$. We have:

Lemma

There are \mathcal{U}_{q}^{-}-intertwiners (unique up to a scalar)

$$
\begin{aligned}
\iota^{-}: & \left(W, \rho_{q^{-1} z, q^{-1} r}^{-}\right. & \rightarrow\left(V \otimes W, \pi_{z} \otimes \rho_{z, r}^{-}\right) \\
\tau^{-}: & \left(V \otimes W, \pi_{z} \otimes \rho_{z, r}^{-}\right) & \rightarrow\left(W, \rho_{q z, q r}^{-}\right) .
\end{aligned}
$$

They are given by

$$
\iota^{-}=\binom{a^{\dagger}}{q} \quad \tau^{-}=\left(1 \quad-q^{-1} a^{\dagger}\right)
$$

Recall that $\mathcal{R} \in$ completion of $\mathcal{U}_{q}^{+} \otimes \mathcal{U}_{q}^{-}$. Define, for $z=z_{1} / z_{2}$,

$$
\begin{aligned}
L^{-}(z, r) & :=\text { convenient scalar } \times\left(\pi_{z_{1}} \otimes \rho_{z_{2}, r^{-1}}^{-}\right)(\mathcal{R}) \\
& =\left(\begin{array}{cc}
q^{D} r & 0 \\
0 & q^{-D}
\end{array}\right)\left(\begin{array}{cc}
1 & -q^{-1} z a^{\dagger} \\
-q z a & 1-q^{2(D+1)} z^{2}
\end{array}\right) \in \operatorname{End}(V \otimes W) .
\end{aligned}
$$

Note $L^{-}(z, r) \neq P L^{+}\left(z^{\prime}, r^{\prime}\right) P$. We define the \mathcal{U}_{q}^{-}-intertwiner

$$
\check{L}^{-}(z, r)=P L(z, r):\left(V \otimes W, \pi_{z_{1}} \otimes \rho_{z_{2}, r^{-1}}^{-}\right) \rightarrow\left(W \otimes V, \rho_{z_{2}, r^{-1}}^{-} \otimes \pi_{z_{1}}\right) .
$$

We have, for $z=z_{1} / z_{2}$,

$$
\begin{aligned}
\left(\mathrm{Id} \otimes \check{L}^{-}(z, r)\right)(\check{R}(z) \otimes \mathrm{Id})\left(\mathrm{Id} \otimes \iota^{-}\right) & =\left(z^{2}-1\right)\left(\iota^{-} \otimes \mathrm{Id}\right) \check{L}^{-}(q z, q r) \\
\left(\tau^{-} \otimes \mathrm{Id}\right)\left(\mathrm{Id} \otimes \check{L}^{-}(z, r)\right)(\check{R}(z) \otimes \mathrm{Id}) & =q\left(q^{2} z^{2}-1\right) \check{L}^{-}(q z, q r)\left(\tau^{-} \otimes \mathrm{Id}\right)
\end{aligned}
$$

Recall that $\mathcal{R} \in$ completion of $\mathcal{U}_{q}^{+} \otimes \mathcal{U}_{q}^{-}$. Define, for $z=z_{1} / z_{2}$,

$$
\begin{aligned}
L^{-}(z, r) & :=\text { convenient scalar } \times\left(\pi_{z_{1}} \otimes \rho_{z_{2}, r^{-1}}^{-}\right)(\mathcal{R}) \\
& =\left(\begin{array}{cc}
q^{D} r & 0 \\
0 & q^{-D}
\end{array}\right)\left(\begin{array}{cc}
1 & -q^{-1} z a^{\dagger} \\
-q z a & 1-q^{2(D+1)} z^{2}
\end{array}\right) \in \operatorname{End}(V \otimes W) .
\end{aligned}
$$

Note $L^{-}(z, r) \neq P L^{+}\left(z^{\prime}, r^{\prime}\right) P$. We define the \mathcal{U}_{q}^{-}-intertwiner

$$
\check{L}^{-}(z, r)=P L(z, r):\left(V \otimes W, \pi_{z_{1}} \otimes \rho_{z_{2}, r^{-1}}^{-}\right) \rightarrow\left(W \otimes V, \rho_{z_{2}, r^{-1}}^{-} \otimes \pi_{z_{1}}\right) .
$$

We have, for $z=z_{1} / z_{2}$,

$$
\begin{aligned}
\left(\mathrm{Id} \otimes \check{L}^{-}(z, r)\right)(\check{R}(z) \otimes \mathrm{Id})\left(\mathrm{Id} \otimes \iota^{-}\right) & =\left(z^{2}-1\right)\left(\iota^{-} \otimes \mathrm{Id}\right) \check{L}^{-}(q z, q r) \\
\left(\tau^{-} \otimes \mathrm{Id}\right)\left(\mathrm{Id} \otimes \check{L}^{-}(z, r)\right)(\check{R}(z) \otimes \mathrm{Id}) & =q\left(q^{2} z^{2}-1\right) \check{L}^{-}(q z, q r)\left(\tau^{-} \otimes \mathrm{Id}\right)
\end{aligned}
$$

More pictures

$$
\iota^{-}=\underbrace{\frac{z}{q}, \frac{r}{q}}_{z, r}
$$

$$
\check{L}^{-}\left(\frac{z_{1}}{z_{2}}, r\right)=\overbrace{-}^{z_{1}}
$$

Reflection equations for the right boundary

Let $\xi \in \mathbb{C}$. Consider

$$
\begin{aligned}
K^{V}(z) & =\left(\begin{array}{cc}
\xi z^{2}-1 & 0 \\
0 & \xi-z^{2}
\end{array}\right) \in \operatorname{End}(V) \\
K^{W}(z) & =\prod_{i=1}^{D}\left(q^{2 i} z^{2}-\xi\right) \in \operatorname{End}(W) .
\end{aligned}
$$

$K^{V}(z)$ is the K-matrix used in [Sklyanin (1988)].

Reflection equations for the right boundary

Let $\xi \in \mathbb{C}$. Consider

$$
\begin{aligned}
K^{V}(z) & =\left(\begin{array}{cc}
\xi z^{2}-1 & 0 \\
0 & \xi-z^{2}
\end{array}\right) \in \operatorname{End}(V) \\
K^{W}(z) & =\prod_{i=1}^{D}\left(q^{2 i} z^{2}-\xi\right) \in \operatorname{End}(W) .
\end{aligned}
$$

$K^{V}(z)$ is the K-matrix used in [Sklyanin (1988)].

$$
K^{v}(z)={ }_{\frac{1}{z}}^{z}\left(\begin{array}{l}
\text { since } K^{v}\left(z^{-1}\right)^{-1} \propto K^{v}(z), \\
\text { you may think of it as }
\end{array} K^{z}\right.
$$

They satisfy

$$
\begin{aligned}
& \check{R}\left(\frac{y}{z}\right)\left(\operatorname{Id} \otimes K^{V}(y)\right) \check{R}(y z)\left(\operatorname{Id} \otimes K^{V}(z)\right)= \\
& =\left(\operatorname{Id} \otimes K^{V}(z)\right) \check{R}(y z)\left(\operatorname{Id} \otimes K^{V}(y)\right) \check{R}\left(\frac{y}{z}\right) \in \operatorname{End}(V \otimes V) \\
& \check{L}^{-}\left(\frac{y}{z}, r\right)\left(\operatorname{Id} \otimes K^{W}(y)\right) \check{L}^{+}(y z, r)\left(\operatorname{Id} \otimes K^{V}(z)\right)= \\
& =\left(\operatorname{Id} \otimes K^{V}(z)\right) \check{L}^{-}(y z, r)\left(\operatorname{Id} \otimes K^{W}(y)\right) \check{L}^{+}\left(\frac{y}{z}, r\right) \in \operatorname{End}(W \otimes V)
\end{aligned}
$$

See [Cherednik, 1992] for the first appearance of such "generalized reflection equations".

You should think of $K^{W}(z)$ as turning \mathcal{U}_{q}^{+}-modules into \mathcal{U}_{q}^{-}-modules in the following sense:

$$
\left(\operatorname{Id} \otimes K^{W}(z)\right) \check{L}^{+}\left(z^{2}, r\right)\left(\operatorname{Id} \otimes K^{V}(z)\right) \iota^{+}(r)=r\left(z^{4}-1\right)\left(q^{2} z^{2}-\xi\right) \iota^{-} K^{W}(q z)
$$

$$
\tau^{-}\left(\operatorname{ld} \otimes K^{W}(z)\right) \check{L}^{+}\left(z^{2}, r\right)\left(\operatorname{Id} \otimes K^{V}(z)\right)=r\left(\xi z^{2}-1\right) K^{W}\left(q^{-1} z\right) \tau^{+}(r)
$$

The left boundary

There are also solutions $\widetilde{K}^{V}(z) \in \operatorname{End}(V)$ and $\widetilde{K}^{W}(z) \in \operatorname{End}(W)$ of "dual" reflection equations turning \mathcal{U}_{q}^{-}-reps back into \mathcal{U}_{q}^{+}-reps. They satisfy

$$
\begin{aligned}
& \left(\operatorname{ld} \otimes \widetilde{K}^{V}(z)\right) \widetilde{L}^{+}\left(z^{2}, r\right) P\left(\operatorname{ld} \otimes \widetilde{K}^{W}(z)\right) \iota^{-}=r^{-1} \frac{1-\widetilde{\xi} q^{2} z^{2}}{1-q^{2} z^{4}} \iota^{+}(r) \widetilde{K}^{W}(q z) \\
& \tau^{+}\left(\operatorname{ld} \otimes \widetilde{K}^{V}(z)\right) \widetilde{L}^{+}\left(z^{2}, r\right) P\left(\operatorname{ld} \otimes \widetilde{K}^{W}(z)\right)=r^{-1} \frac{1-q^{4} z^{2}}{1-q^{2} z^{4}}\left(z^{2}-\widetilde{\xi}\right) \widetilde{K}^{W}\left(q^{-1} z\right) \tau^{-}
\end{aligned}
$$

where $\tilde{L}^{+}\left(z^{2}, r\right)=\left(\left(L^{+}(z, r)^{t v}\right)^{-1}\right)^{t v}$.

More on $K^{V}(z)$ and $K^{W}(z)$

Consider derived Kac-Moody algebra $\widehat{\mathfrak{s l}}_{2}$ and its involutive automorphism
$\theta=($ Chevalley involution) \circ (nontrivial diag. automorphism).
Let $c_{0}, c_{1} \in \mathbb{C}^{\times}$. The subalgebra

$$
\mathcal{B}_{c_{0}, c_{1}}=\left\langle E_{0}-c_{0} F_{1} k_{0}, \quad E_{1}-c_{1} F_{0} k_{1}, \quad k_{0}^{ \pm 2}\right\rangle \subset \mathcal{U}_{q}
$$

is a left coideal, i.e. $\Delta\left(\mathcal{B}_{c_{0}, c_{1}}\right) \subset \mathcal{U}_{q} \otimes \mathcal{B}_{c_{0}, c_{1}}$, and satisfies
$\mathcal{B}_{c_{0}, c_{1}} \xrightarrow{q \rightarrow 1} \mathcal{U}\left(\widehat{\mathfrak{s l}}_{2}^{\theta}\right)$ if $c_{0}, c_{1} \in q^{\mathbb{Z}}$, see [Kolb, 2014].
Note: $\lim _{q \rightarrow 1} \psi_{q}=\operatorname{Ad}(\chi) \theta$ where $\chi\left(\alpha_{0}\right)=\chi\left(\alpha_{1}\right)=-1$.

More on $K^{V}(z)$ and $K^{W}(z)$

Consider derived Kac-Moody algebra $\widehat{\mathfrak{s l}}_{2}$ and its involutive automorphism $\theta=($ Chevalley involution $) \circ($ nontrivial diag. automorphism $)$.
Let $c_{0}, c_{1} \in \mathbb{C}^{\times}$. The subalgebra

$$
\mathcal{B}_{c_{0}, c_{1}}=\left\langle E_{0}-c_{0} F_{1} k_{0}, \quad E_{1}-c_{1} F_{0} k_{1}, \quad k_{0}^{ \pm 2}\right\rangle \subset \mathcal{U}_{q}
$$

is a left coideal, i.e. $\Delta\left(\mathcal{B}_{c_{0}, c_{1}}\right) \subset \mathcal{U}_{q} \otimes \mathcal{B}_{c_{0}, c_{1}}$, and satisfies $\mathcal{B}_{c_{0}, c_{1}} \xrightarrow{q \rightarrow 1} \mathcal{U}\left(\widehat{\mathfrak{s}}_{2}^{\theta}\right)$ if $c_{0}, c_{1} \in q^{\mathbb{Z}}$, see [Kolb, 2014].
Note: $\lim _{q \rightarrow 1} \psi_{q}=\operatorname{Ad}(\chi) \theta$ where $\chi\left(\alpha_{0}\right)=\chi\left(\alpha_{1}\right)=-1$.
If $q / c_{0}=c_{1} / q=: \xi$ then $K^{V}(z)$ is the unique-up-to-a-scalar intertwiner for the $\mathcal{B}_{c_{0}, c_{1}}$-modules $\left(V, \pi_{z}\right)$ and $\left(V, \pi_{1 / z}\right)$:

$$
K^{V}(z) \pi_{z}(X)=\pi_{1 / z}(X) K^{V}(z) \quad \text { for all } X \in \mathcal{B}_{c_{0}, c_{1}}
$$

More on $K^{V}(z)$ and $K^{W}(z)$

Consider derived Kac-Moody algebra $\widehat{\mathfrak{s l}}_{2}$ and its involutive automorphism $\theta=($ Chevalley involution $) \circ($ nontrivial diag. automorphism $)$.
Let $c_{0}, c_{1} \in \mathbb{C}^{\times}$. The subalgebra

$$
\mathcal{B}_{c_{0}, c_{1}}=\left\langle E_{0}-c_{0} F_{1} k_{0}, \quad E_{1}-c_{1} F_{0} k_{1}, \quad k_{0}^{ \pm 2}\right\rangle \subset \mathcal{U}_{q}
$$

is a left coideal, i.e. $\Delta\left(\mathcal{B}_{c_{0}, c_{1}}\right) \subset \mathcal{U}_{q} \otimes \mathcal{B}_{c_{0}, c_{1}}$, and satisfies $\mathcal{B}_{c_{0}, c_{1}} \xrightarrow{q \rightarrow 1} \mathcal{U}\left(\widehat{\mathfrak{s l}}_{2}^{\theta}\right)$ if $c_{0}, c_{1} \in q^{\mathbb{Z}}$, see [Kolb, 2014].
Note: $\lim _{q \rightarrow 1} \psi_{q}=\operatorname{Ad}(\chi) \theta$ where $\chi\left(\alpha_{0}\right)=\chi\left(\alpha_{1}\right)=-1$.
If $q / c_{0}=c_{1} / q=: \xi$ then $K^{V}(z)$ is the unique-up-to-a-scalar intertwiner for the $\mathcal{B}_{c_{0}, c_{1}}$-modules $\left(V, \pi_{z}\right)$ and $\left(V, \pi_{1 / z}\right)$:

$$
K^{V}(z) \pi_{z}(X)=\pi_{1 / z}(X) K^{V}(z) \quad \text { for all } X \in \mathcal{B}_{c_{0}, c_{1}}
$$

Since $\mathcal{B}_{c_{0}, c_{1}} \nsubseteq \mathcal{U}_{q}^{ \pm}$, we cannot evaluate $\rho_{z, r}^{ \pm}(X)$ for all $X \in \mathcal{B}_{c_{0}, c_{1}}$ so the following does not make sense:

$$
K^{W}(z) \rho_{z, r}^{ \pm}(X)=\rho_{1 / z, 1 / r}^{ \pm}(X) K^{W}(z) \quad \text { for all } X \in \mathcal{B}_{c_{0}, c_{1}}
$$

(1) Introduction \& Overview

(2) Algebras \& Representations

(3) Intertwiners \& suchlike

(4) Baxter's Q-operator \& the TQ-relation

Transfer matrix and Q-operator

Let $\boldsymbol{t}=\left(t_{1}, \ldots, t_{N}\right) \in\left(\mathbb{C}^{\times}\right)^{N}$. The Q-operator and transfer matrix are given by

$$
\begin{aligned}
& Q(z ; \boldsymbol{t}):=\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right)^{\otimes N} \operatorname{Tr}_{W} \widetilde{K}_{a}^{W}(z) \mathcal{M}_{a}^{W}(z ; \boldsymbol{t}), \\
& T(z ; \boldsymbol{t}):=\operatorname{Tr}_{V} \widetilde{K}_{b}^{V}(z) \mathcal{M}_{b}^{V}(z ; \boldsymbol{t})
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{M}_{a}^{W}(z ; \boldsymbol{t}):=L_{1 a}^{-}\left(t_{1} z, 1\right) L_{2 a}^{-}\left(t_{2} z, 1\right) \cdots L_{N a}^{-}\left(t_{N} z, 1\right) \\
& \quad \cdot \\
& \quad K_{a}^{W}(z) L_{a N}^{+}\left(\frac{z}{t_{N}}, 1\right) \cdots L_{a 2}^{+}\left(\frac{z}{t_{2}}, 1\right) L_{a 1}^{+}\left(\frac{z}{t_{1}}, 1\right) \\
& \mathcal{M}_{b}^{V}(z ; \boldsymbol{t}):=R_{1 b}\left(t_{1} z\right) R_{2 b}\left(t_{2} z\right) \cdots R_{N b}\left(t_{N} z\right) K_{b}^{V}(z) R_{b N}\left(\frac{z}{t_{N}}\right) \cdots R_{b 2}\left(\frac{z}{t_{2}}\right) R_{b 1}\left(\frac{z}{t_{1}}\right) .
\end{aligned}
$$

- Here a labels the auxiliary space W, b labels the auxiliary space V.
- If $|\xi / \widetilde{\xi}|<|q|^{2 N}$ then $Q(z ; \boldsymbol{t})$ is well-defined for generic z.

Generalizing arguments from [Sklyanin (1988)], we have

$$
\begin{aligned}
& Q(z ; \boldsymbol{t}) T(z ; \boldsymbol{t})=\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right) \otimes N \operatorname{Tr}_{W \otimes V} \widetilde{K}_{b}^{V}(z) \widetilde{L}_{a b}^{+}\left(z^{2}, 1\right) \widetilde{K}_{a}^{W}(z) \times \\
& \times \mathcal{M}_{a}^{W}(z, 1 ; \boldsymbol{t}) L_{a b}^{+}\left(z^{2}, 1\right) \mathcal{M}_{b}^{V}(z ; \boldsymbol{t}) .
\end{aligned}
$$

Generalizing arguments from [Sklyanin (1988)], we have

$$
\begin{aligned}
& Q(z ; \boldsymbol{t}) T(z ; \boldsymbol{t})=\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right) \otimes N \operatorname{Tr}_{W \otimes V} \widetilde{K}_{b}^{V}(z) \widetilde{L}_{a b}^{+}\left(z^{2}, 1\right) \widetilde{K}_{a}^{W}(z) \times \\
& \times \mathcal{M}_{a}^{W}(z, 1 ; \boldsymbol{t}) L_{a b}^{+}\left(z^{2}, 1\right) \mathcal{M}_{b}^{V}(z ; \boldsymbol{t}) .
\end{aligned}
$$

Combining the results in "Intertwiners and suchlike" we have

$$
\begin{aligned}
& \widetilde{K}_{b}^{V}(z) \widetilde{L}_{a b}^{+}\left(z^{2}, r\right) \widetilde{K}_{a}^{W}(z) \mathcal{M}_{a}^{W}(z, r ; \boldsymbol{t}) L_{a b}^{+}\left(z^{2}, r\right) \mathcal{M}_{b}^{V}(z ; \boldsymbol{t})\left(\iota^{+}(r) \otimes \mathrm{Id}\right)= \\
& \quad=\alpha_{+}(z ; \boldsymbol{t})\left(\iota^{+}(r) \otimes \mathrm{Id}\right) \widetilde{K}_{a}^{W}(q z) \mathcal{M}_{a}^{W}(q z, q r ; \boldsymbol{t}) \\
& \left(\tau^{+}(r) \otimes \mathrm{Id}\right) \widetilde{K}_{b}^{V}(z) \widetilde{L}_{a b}^{+}\left(z^{2}, r\right) \widetilde{K}_{a}^{W}(z) \mathcal{M}_{a}^{W}(z, r ; \boldsymbol{t}) L_{a b}^{+}\left(z^{2}, r\right) \mathcal{M}_{b}^{V}(z ; \boldsymbol{t})= \\
& \quad=\alpha_{-}(z ; \boldsymbol{t}) \widetilde{K}_{a}^{W}\left(q^{-1} z\right) \mathcal{M}_{a}^{W}\left(q^{-1} z, q^{-1} r ; \boldsymbol{t}\right)\left(\tau^{+}(r) \otimes \mathrm{Id}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{+}(z ; \boldsymbol{t})=\frac{z^{4}-1}{q^{2} z^{4}-1}\left(q^{2} \widetilde{\xi} z^{2}-1\right)\left(q^{2} z^{2}-\xi\right) \prod_{n=1}^{N}\left(\left(z t_{n}\right)^{2}-1\right)\left(\left(\frac{z}{t_{n}}\right)^{2}-1\right) \\
& \alpha_{-}(z ; \boldsymbol{t})=q^{2 N} \frac{q^{4} z^{4}-1}{q^{2} z^{4}-1}\left(z^{2}-\widetilde{\xi}\right)\left(\xi z^{2}-1\right) \prod_{n=1}^{N}\left(\left(q z t_{n}\right)^{2}-1\right)\left(\left(\frac{q z}{t_{n}}\right)^{2}-1\right) .
\end{aligned}
$$

We invoke the Proposition to decompose the trace over $W \otimes V$:

$$
\begin{aligned}
Q(z ; \boldsymbol{t}) T(z ; \boldsymbol{t})= & \alpha_{+}(z ; \boldsymbol{t})\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right) \stackrel{\otimes N}{\underset{W}{\operatorname{Tr}}} \widetilde{K}_{0}^{W}(q z) \mathcal{M}_{0}^{W}(q z, q ; \boldsymbol{t})+ \\
& +\alpha_{-}(z ; \boldsymbol{t})\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right)^{\otimes N} \underset{W}{\operatorname{Tr}} \widetilde{K}_{0}^{W}\left(q^{-1} z\right) \mathcal{M}_{0}^{W}\left(q^{-1} z, q^{-1} ; \boldsymbol{t}\right) .
\end{aligned}
$$

Since the r-dependence factors out of $L^{+}(z, r)$ and $L^{-}(z, r)$ and $Q(z ; \boldsymbol{t})$ commutes with $\left(\begin{array}{cc}y^{2} & 0 \\ 0 & 1\end{array}\right)^{\otimes N}$, we obtain

$$
\begin{aligned}
Q(z ; \boldsymbol{t}) T(z ; \boldsymbol{t})= & \alpha_{+}(z ; \boldsymbol{t})\left(\begin{array}{cc}
(q z)^{2} & 0 \\
0 & 1
\end{array}\right)^{\otimes N} \underset{W}{\operatorname{Tr}} \widetilde{K}_{0}^{W}(q z) \mathcal{M}_{0}^{W}(q z, 1 ; \boldsymbol{t})+ \\
& +\alpha_{-}(z ; \boldsymbol{t})\left(\begin{array}{cc}
\left(q^{-1} z\right)^{2} & 0 \\
0 & 1
\end{array}\right)^{\otimes N} \underset{W}{\operatorname{Tr}} \widetilde{K}_{0}^{W}\left(q^{-1} z\right) \mathcal{M}_{0}^{W}\left(q^{-1} z, 1 ; \boldsymbol{t}\right) \\
= & \alpha_{+}(z ; \boldsymbol{t}) Q(q z ; \boldsymbol{t})+\alpha_{-}(z ; \boldsymbol{t}) Q\left(q^{-1} z ; \boldsymbol{t}\right) .
\end{aligned}
$$

One can now proceed to re-obtain the Bethe ansatz equations found by [Sklyanin (1988)].

