Universal formula for Hilbert series of minimal nilpotent orbits

> Alexander P. Veselov
> Loughborough, UK (joint with Atsushi Matsuo, Tokyo)

Integrability + Combinatorics + Representations, Giens, September 5, 2019

Lie geography: Vogel's plane

Vogel 1999: "Universal simple Lie algebra".
Motivations: Vassiliev invariants of knots, Kontsevich integral, Deligne's study of exceptional Lie algebras

Lie geography: Vogel's plane

Vogel 1999: "Universal simple Lie algebra".
Motivations: Vassiliev invariants of knots, Kontsevich integral, Deligne's study of exceptional Lie algebras

Table: Vogel's parameters for simple Lie algebras

Type	Lie algebra	α	β	γ	$t=h^{\vee}$
A_{n}	$\mathfrak{s l}_{n+1}$	-2	2	$n+1$	$n+1$
B_{n}	$\mathfrak{s o}_{2 n+1}$	-2	4	$2 n-3$	$2 n-1$
C_{n}	$\mathfrak{s p}_{2 n}$	-2	1	$n+2$	$n+1$
D_{n}	$\mathfrak{s o}_{2 n}$	-2	4	$2 n-4$	$2 n-2$
G_{2}	\mathfrak{g}_{2}	-2	$10 / 3$	$8 / 3$	4
F_{4}	\mathfrak{f}_{4}	-2	5	6	9
E_{6}	\mathfrak{e}_{6}	-2	6	8	12
E_{7}	\mathfrak{e}_{7}	-2	8	12	18
E_{8}	\mathfrak{e}_{8}	-2	12	20	30

Vogel's map

Vogel's parameters and universal formulae

Consider the decomposition

$$
S^{2} \mathfrak{g}=\mathbb{C} \oplus Y_{2}(\alpha) \oplus Y_{2}(\beta) \oplus Y_{2}(\gamma)
$$

and choose an invariant bilinear form (Casimir).
In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4 t-2 \alpha, 4 t-2 \beta, 4 t-2 \gamma$, where

$$
t=\alpha+\beta+\gamma
$$

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha=-2$, then $t=h^{\vee}$ is dual Coxeter number and we have Table 1.

Vogel's parameters and universal formulae

Consider the decomposition

$$
S^{2} \mathfrak{g}=\mathbb{C} \oplus Y_{2}(\alpha) \oplus Y_{2}(\beta) \oplus Y_{2}(\gamma)
$$

and choose an invariant bilinear form (Casimir).
In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4 t-2 \alpha, 4 t-2 \beta, 4 t-2 \gamma$, where

$$
t=\alpha+\beta+\gamma
$$

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha=-2$, then $t=h^{\vee}$ is dual Coxeter number and we have Table 1.
Vogel, 1999: universal formulae for the dimensions

$$
\begin{gathered}
\operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma} \\
\operatorname{dim} Y_{2}(\alpha)=-\frac{(3 \alpha-2 t)(\beta-2 t)(\gamma-2 t) t(\beta+t)(\gamma+t)}{\alpha^{2}(\alpha-\beta) \beta(\alpha-\gamma) \gamma}
\end{gathered}
$$

Vogel's parameters and universal formulae

Consider the decomposition

$$
S^{2} \mathfrak{g}=\mathbb{C} \oplus Y_{2}(\alpha) \oplus Y_{2}(\beta) \oplus Y_{2}(\gamma)
$$

and choose an invariant bilinear form (Casimir).
In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4 t-2 \alpha, 4 t-2 \beta, 4 t-2 \gamma$, where

$$
t=\alpha+\beta+\gamma
$$

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha=-2$, then $t=h^{\vee}$ is dual Coxeter number and we have Table 1.
Vogel, 1999: universal formulae for the dimensions

$$
\begin{gathered}
\operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma} \\
\operatorname{dim} Y_{2}(\alpha)=-\frac{(3 \alpha-2 t)(\beta-2 t)(\gamma-2 t) t(\beta+t)(\gamma+t)}{\alpha^{2}(\alpha-\beta) \beta(\alpha-\gamma) \gamma}
\end{gathered}
$$

Exceptional (Deligne) line:

$$
\operatorname{dim} Y_{2}(\gamma)=0: \quad 3 \gamma-2 t=0, \quad \gamma=2 \beta-4
$$

containing

$$
\mathfrak{s l}_{3}, \mathfrak{g}_{2}, \mathfrak{s o}_{8}, \mathfrak{f}_{4}, \mathfrak{e}_{6}, \mathfrak{e}_{7}, \mathfrak{e}_{7+\frac{1}{2}}, \mathfrak{e}_{8}
$$

Minimal nilpotent orbits

Let \mathfrak{g} be a complex simple Lie algebra and $\mathcal{O}_{\text {min }}$ be the minimal non-zero nilpotent orbit in $\mathfrak{g} \approx \mathfrak{g}^{*}$.

Minimal nilpotent orbits

Let \mathfrak{g} be a complex simple Lie algebra and $\mathcal{O}_{\min }$ be the minimal non-zero nilpotent orbit in $\mathfrak{g} \approx \mathfrak{g}^{*}$.

Its projective version $X=\mathbb{P}\left(\mathcal{O}_{\min }\right) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

Minimal nilpotent orbits

Let \mathfrak{g} be a complex simple Lie algebra and $\mathcal{O}_{\min }$ be the minimal non-zero nilpotent orbit in $\mathfrak{g} \approx \mathfrak{g}^{*}$.

Its projective version $X=\mathbb{P}\left(\mathcal{O}_{\min }\right) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

These varieties can be characterised as compact, simply connected, contact homogeneous varieties, or, under certain assumptions (Beauville 1998), as Fano contact manifolds. Their quantum versions are related to Joseph ideals.

Minimal nilpotent orbits

Let \mathfrak{g} be a complex simple Lie algebra and $\mathcal{O}_{\min }$ be the minimal non-zero nilpotent orbit in $\mathfrak{g} \approx \mathfrak{g}^{*}$.

Its projective version $X=\mathbb{P}\left(\mathcal{O}_{\min }\right) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

These varieties can be characterised as compact, simply connected, contact homogeneous varieties, or, under certain assumptions (Beauville 1998), as Fano contact manifolds. Their quantum versions are related to Joseph ideals.

Example. In $s l_{n+1}$-case $X=P\left(\mathcal{O}_{\text {min }}\right)$ is the hyperplane section of the Segre variety

$$
\Sigma_{n, n}=\mathbb{P}^{n} \times \mathbb{P}^{n} \subset \mathbb{P}^{(n+1)^{2}-1}
$$

Indeed, $\mathcal{O}_{\text {min }}$ consists of the nilpotent rank one matrices, which can be written as $p \otimes q$ with $p, q \in \mathbb{C}^{n+1}$ satisfying

$$
(p, q)=p_{1} q_{1}+\cdots+p_{n+1} q_{n+1}=0
$$

Hilbert series and polynomial

For a projective variety $X \subset \mathbb{P}^{n}$ the Hilbert series $H_{X}(z)$ is defined as the generating function

$$
H_{X}(z)=\sum_{k=0}^{\infty} \operatorname{dim}\left(S(X)_{k}\right) z^{k}
$$

where $S(X)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / I(X)$ is the homogeneous coordinate ring of X and $S(X)_{k}$ is the component of degree k.

Hilbert series and polynomial

For a projective variety $X \subset \mathbb{P}^{n}$ the Hilbert series $H_{X}(z)$ is defined as the generating function

$$
H_{X}(z)=\sum_{k=0}^{\infty} \operatorname{dim}\left(S(X)_{k}\right) z^{k}
$$

where $S(X)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / I(X)$ is the homogeneous coordinate ring of X and $S(X)_{k}$ is the component of degree k.

The dimension $\operatorname{dim}\left(S(X)_{k}\right)$ for large k is written as

$$
\operatorname{dim}\left(S(X)_{k}\right)=h_{X}(k)
$$

with a polynomial $h_{X}(x)$ called the Hilbert polynomial.

Hilbert series and polynomial

For a projective variety $X \subset \mathbb{P}^{n}$ the Hilbert series $H_{X}(z)$ is defined as the generating function

$$
H_{X}(z)=\sum_{k=0}^{\infty} \operatorname{dim}\left(S(X)_{k}\right) z^{k}
$$

where $S(X)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / I(X)$ is the homogeneous coordinate ring of X and $S(X)_{k}$ is the component of degree k.

The dimension $\operatorname{dim}\left(S(X)_{k}\right)$ for large k is written as

$$
\operatorname{dim}\left(S(X)_{k}\right)=h_{X}(k)
$$

with a polynomial $h_{X}(x)$ called the Hilbert polynomial.
It is known that

$$
h_{X}(x)=\operatorname{deg} X \frac{x^{d}}{d!}+\ldots
$$

where $d=\operatorname{dim} X$, so $h_{X}(x)$ determines both dimension and degree of X.

Universal formula

Let α, β, γ be Vogel's parameters and introduce

$$
\begin{gathered}
a_{1}=2 b_{1}+2 b_{2}-3, a_{2}=b_{1}+2 b_{2}-2, a_{3}=2 b_{1}+b_{2}-2, a_{4}=b_{3}+1, \\
b_{1}=-\frac{\beta}{\alpha}, b_{2}=-\frac{\gamma}{\alpha}, b_{3}=-\frac{2 t+\alpha}{2 \alpha} .
\end{gathered}
$$

Universal formula

Let α, β, γ be Vogel's parameters and introduce

$$
\begin{gathered}
a_{1}=2 b_{1}+2 b_{2}-3, a_{2}=b_{1}+2 b_{2}-2, a_{3}=2 b_{1}+b_{2}-2, a_{4}=b_{3}+1 \\
b_{1}=-\frac{\beta}{\alpha}, b_{2}=-\frac{\gamma}{\alpha}, b_{3}=-\frac{2 t+\alpha}{2 \alpha}
\end{gathered}
$$

Consider the generalized hypergeometric function

$$
{ }_{4} F_{3}\left(a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n}\left(a_{4}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n}\left(b_{3}\right)_{n}} \frac{z^{n}}{n!}
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.

Universal formula

Let α, β, γ be Vogel's parameters and introduce

$$
\begin{gathered}
a_{1}=2 b_{1}+2 b_{2}-3, a_{2}=b_{1}+2 b_{2}-2, a_{3}=2 b_{1}+b_{2}-2, a_{4}=b_{3}+1 \\
b_{1}=-\frac{\beta}{\alpha}, b_{2}=-\frac{\gamma}{\alpha}, b_{3}=-\frac{2 t+\alpha}{2 \alpha}
\end{gathered}
$$

Consider the generalized hypergeometric function

$$
{ }_{4} F_{3}\left(a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n}\left(a_{3}\right)_{n}\left(a_{4}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n}\left(b_{3}\right)_{n}} \frac{z^{n}}{n!}
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.
Matsuo, APV 2017: The Hilbert series of $X=\mathbb{P}\left(\mathcal{O}_{\text {min }}\right)$ has the following universal form

$$
H_{X}(z)={ }_{4} F_{3}\left(a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3} ; z\right)=\left(1+\frac{2}{a_{1}} z \frac{d}{d z}\right){ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3} ; b_{1}, b_{2} ; z\right)
$$

The Hilbert polynomial of $X=\mathbb{P}\left(\mathcal{O}_{\text {min }}\right)$ is

$$
h_{x}(x)=\frac{\Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \Gamma\left(a_{3}\right)}\left(1+\frac{2 x}{a_{1}}\right) \frac{\Gamma\left(a_{1}+x\right) \Gamma\left(a_{2}+x\right) \Gamma\left(a_{3}+x\right)}{\Gamma\left(b_{1}+x\right) \Gamma\left(b_{2}+x\right) \Gamma(1+x)}
$$

with $h_{X}(k)=\operatorname{dim}\left(S(X)_{k}\right)$ for all $k \geq 0$.

Degree and dimension

Proof follows from Borel-Hirzebruch-Kostant formula

$$
S(X)=\bigoplus_{k=0}^{\infty} V(k \theta)
$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ, and from the universal formula for $\operatorname{dim} V(k \theta)$ found by Landsberg and Manivel 2006.

Degree and dimension

Proof follows from Borel-Hirzebruch-Kostant formula

$$
S(X)=\bigoplus_{k=0}^{\infty} V(k \theta)
$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ, and from the universal formula for $\operatorname{dim} V(k \theta)$ found by Landsberg and Manivel 2006.

Corollary The dimension of $X=P\left(\mathcal{O}_{\text {min }}\right)$ is

$$
\operatorname{dim} X=2 a_{1}-1=2 h^{\vee}-3
$$

where h^{\vee} is the dual Coxeter number of \mathfrak{g} (Wang, 1999)

Degree and dimension

Proof follows from Borel-Hirzebruch-Kostant formula

$$
S(X)=\bigoplus_{k=0}^{\infty} V(k \theta)
$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ, and from the universal formula for $\operatorname{dim} V(k \theta)$ found by Landsberg and Manivel 2006.

Corollary The dimension of $X=P\left(\mathcal{O}_{\text {min }}\right)$ is

$$
\operatorname{dim} X=2 a_{1}-1=2 h^{\vee}-3
$$

where h^{\vee} is the dual Coxeter number of \mathfrak{g} (Wang, 1999)
The degree of X is

$$
\operatorname{deg}(X)=\frac{2 \Gamma\left(2 a_{1}\right) \Gamma\left(b_{1}\right) \Gamma\left(b_{2}\right)}{\Gamma\left(a_{1}+1\right) \Gamma\left(a_{2}\right) \Gamma\left(a_{3}\right)} .
$$

Table

Type	a_{1}	a_{2}	a_{3}	b_{1}	b_{2}	$\operatorname{dim} X$	$\operatorname{deg} X$
A_{n}	n	n	$\frac{n+1}{2}$	1	$\frac{n+1}{2}$	$2 n-1$	$\binom{2 n}{n}$
B_{n}	$2 n-2$	$2 n-3$	$n+\frac{1}{2}$	2	$n-\frac{3}{2}$	$4 n-5$	$\frac{4}{2 n-1}\binom{4 n-4}{2 n-2}$
C_{n}	n	$n+\frac{1}{2}$	$\frac{n}{2}$	$\frac{1}{2}$	$\frac{n}{2}+1$	$2 n-1$	$2^{2 n-1}$
D_{n}	$2 n-3$	$2 n-4$	n	2	$n-2$	$4 n-7$	$\frac{4}{2 n-2}\binom{4 n-6}{2 n-3}$
E_{6}	11	9	8	3	4	21	151164
E_{7}	17	14	12	4	6	33	141430680
E_{8}	29	24	20	6	10	57	126937516885200
F_{4}	8	$\frac{13}{2}$	6	$\frac{5}{2}$	3	15	4992
G_{2}	3	$\frac{7}{3}$	$\frac{8}{3}$	$\frac{5}{3}$	$\frac{4}{3}$	5	18

Table: Parameters, dimension and degree of $X=P\left(\mathcal{O}_{\text {min }}\right)$.

Example: $s l_{n+1}$-case

In $s s_{n+1}$-case $X=P\left(\mathcal{O}_{\text {min }}\right)$ is the hyperplane section of the Segre variety

$$
\Sigma_{n, n}=\mathbb{P}^{n} \times \mathbb{P}^{n} \subset \mathbb{P}^{(n+1)^{2}-1}
$$

Indeed, $\mathcal{O}_{\text {min }}$ consists of the nilpotent rank one matrices, which can be written as $p \otimes q$ with $p, q \in \mathbb{C}^{n+1}$ satisfying

$$
(p, q)=p_{1} q_{1}+\cdots+p_{n+1} q_{n+1}=0 .
$$

Example: $s l_{n+1}$-case

In $s l_{n+1}$-case $X=P\left(\mathcal{O}_{\text {min }}\right)$ is the hyperplane section of the Segre variety

$$
\Sigma_{n, n}=\mathbb{P}^{n} \times \mathbb{P}^{n} \subset \mathbb{P}^{(n+1)^{2}-1}
$$

Indeed, $\mathcal{O}_{\text {min }}$ consists of the nilpotent rank one matrices, which can be written as $p \otimes q$ with $p, q \in \mathbb{C}^{n+1}$ satisfying

$$
(p, q)=p_{1} q_{1}+\cdots+p_{n+1} q_{n+1}=0
$$

Our universal formula for the degree gives in this case

$$
\operatorname{deg} X=\frac{2 \Gamma(2 n) \Gamma(1) \Gamma\left(\frac{n+1}{2}\right)}{\Gamma(n+1) \Gamma(n) \Gamma\left(\frac{n+1}{2}\right)}=\frac{2 \cdot(2 n-1)!}{n!(n-1)!}=\binom{2 n}{n}
$$

which agrees with the well-known result:

$$
<(\alpha+\beta)^{n},\left[\mathbb{P}^{n} \times \mathbb{P}^{n}\right]>=\binom{2 n}{n}
$$

since $\alpha^{n+1}=\beta^{n+1}=0$.

Comparison with Gross and Wallach

Gross and Wallach 2011 used Weyl's dimension formula to show that

$$
h_{x}(q)=\prod_{\alpha \in R_{+}}\left(1+\frac{\left(\theta, \alpha^{\vee}\right)}{\left(\rho, \alpha^{\vee}\right)} q\right)
$$

where ρ is the half-sum of the positive roots of \mathfrak{g}.

Comparison with Gross and Wallach

Gross and Wallach 2011 used Weyl's dimension formula to show that

$$
h_{X}(q)=\prod_{\alpha \in R_{+}}\left(1+\frac{\left(\theta, \alpha^{\vee}\right)}{\left(\rho, \alpha^{\vee}\right)} q\right)
$$

where ρ is the half-sum of the positive roots of \mathfrak{g}.
The Hilbert series of X can be written then as

$$
H_{x}(z)=h_{x}\left(z \frac{d}{d z}\right) \frac{1}{1-z},
$$

which implies Borel-Hirzebruch 1959 formula

$$
\operatorname{deg}(X)=d!\prod_{\alpha} \frac{\left(\theta, \alpha^{\vee}\right)}{\left(\rho, \alpha^{\vee}\right)}
$$

where the product is taken over positive roots such that $\left(\theta, \alpha^{\vee}\right) \neq 0$.
It would be interesting to deduce from here our universal formula for $\operatorname{deg}(X)$.

Numerology

Our formulae are symmetric in β and γ, but not in α. It is natural to ask for possible meaning of the corresponding Hilbert series when we permute α with β or γ (cf. Landsberg, Manivel 2006).

Numerology

Our formulae are symmetric in β and γ, but not in α. It is natural to ask for possible meaning of the corresponding Hilbert series when we permute α with β or γ (cf. Landsberg, Manivel 2006).
Our formulae predict that the corresponding "virtual varieties" Y and Z must have degree 0 and negative dimensions:

$$
\operatorname{dim} Y=-\frac{4 t}{\beta}-3, \quad \operatorname{dim} Z=-\frac{4 t}{\gamma}-3
$$

In particular, for A_{n} type

$$
\operatorname{dim} Y=-2 n-5, \operatorname{dim} Z=-7
$$

and for E_{8}

$$
\operatorname{dim} Y=-13, \operatorname{dim} Z=-9
$$

Is there any geometry behind this?

Vogel's parameters for Lie superalgebras

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Table: Vogel's parameters for basic classical Lie superalgebras

Lie superalgebra	α	β	γ	t
$\mathfrak{s l}_{m, n}$	-2	2	$m-n$	$m-n$
$\mathfrak{o s p}_{p, q}$	-2	4	$p-q-4$	$p-q-2$
\mathfrak{f}_{4}	-2	2	3	3
\mathfrak{g}_{3}	-2	2	2	2
$\mathfrak{D}_{2,1, \lambda}$	λ_{1}	λ_{2}	λ_{3}	0

Vogel's parameters for Lie superalgebras

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Table: Vogel's parameters for basic classical Lie superalgebras

Lie superalgebra	α	β	γ	t
$\mathfrak{s l}_{m, n}$	-2	2	$m-n$	$m-n$
$\mathfrak{o s p}_{p, q}$	-2	4	$p-q-4$	$p-q-2$
\mathfrak{f}_{4}	-2	2	3	3
\mathfrak{g}_{3}	-2	2	2	2
$\mathfrak{D}_{2,1, \lambda}$	λ_{1}	λ_{2}	λ_{3}	0

Note that in Vogel's approach exceptional Lie superalgebras \mathfrak{f}_{4} and \mathfrak{g}_{3} are equivalent to $\mathfrak{s l}_{3}$ and $\mathfrak{s l}_{2}$ respectively and in the (potentially most interesting) case of $\mathfrak{D}_{2,1, \lambda}$ the parameter $t=\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ (red line on Vogel's map).

Vogel's parameters for Lie superalgebras

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Table: Vogel's parameters for basic classical Lie superalgebras

Lie superalgebra	α	β	γ	t
$\mathfrak{s l}_{m, n}$	-2	2	$m-n$	$m-n$
$\mathfrak{o s p}_{p, q}$	-2	4	$p-q-4$	$p-q-2$
\mathfrak{f}_{4}	-2	2	3	3
\mathfrak{g}_{3}	-2	2	2	2
$\mathfrak{D}_{2,1, \lambda}$	λ_{1}	λ_{2}	λ_{3}	0

Note that in Vogel's approach exceptional Lie superalgebras \mathfrak{f}_{4} and \mathfrak{g}_{3} are equivalent to $\mathfrak{s l}_{3}$ and $\mathfrak{s l}_{2}$ respectively and in the (potentially most interesting) case of $\mathfrak{D}_{2,1, \lambda}$ the parameter $t=\lambda_{1}+\lambda_{2}+\lambda_{3}=0$ (red line on Vogel's map).

Is there a superanalogue of our results?

Vogel's map

