Universal formula for Hilbert series of minimal nilpotent orbits

Alexander P. Veselov Loughborough, UK (joint with Atsushi Matsuo, Tokyo)

Integrability + Combinatorics + Representations, Giens, September 5, 2019

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Vogel 1999: "Universal simple Lie algebra". *Motivations:* **Vassiliev** invariants of knots, **Kontsevich** integral, **Deligne**'s study of exceptional Lie algebras

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Vogel 1999: "Universal simple Lie algebra".

Motivations: Vassiliev invariants of knots, Kontsevich integral, Deligne's study of exceptional Lie algebras

Туре	Lie algebra	α	β	γ	$t = h^{\vee}$
An	\mathfrak{sl}_{n+1}	-2	2	n+1	n+1
Bn	\mathfrak{so}_{2n+1}	-2	4	2 <i>n</i> – 3	2 <i>n</i> – 1
Cn	\mathfrak{sp}_{2n}	-2	1	n + 2	n+1
Dn	\$0₂n	-2	4	2 <i>n</i> – 4	2 <i>n</i> – 2
<i>G</i> ₂	\mathfrak{g}_2	-2	10/3	8/3	4
F_4	f4	-2	5	6	9
E ₆	e ₆	-2	6	8	12
E7	e7	-2	8	12	18
E ₈	e ₈	-2	12	20	30

Table: Vogel's parameters for simple Lie algebras

Vogel's map

Vogel's parameters and universal formulae

Consider the decomposition

$$S^2\mathfrak{g}=\mathbb{C}\oplus Y_2(lpha)\oplus Y_2(eta)\oplus Y_2(\gamma)$$

and choose an invariant bilinear form (Casimir). In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4t - 2\alpha$, $4t - 2\beta$, $4t - 2\gamma$, where

$$t = \alpha + \beta + \gamma,$$

- ロ ト - 4 回 ト - 4 □

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha = -2$, then $t = h^{\vee}$ is *dual Coxeter number* and we have Table 1.

Consider the decomposition

$$S^2\mathfrak{g}=\mathbb{C}\oplus Y_2(lpha)\oplus Y_2(eta)\oplus Y_2(\gamma)$$

and choose an invariant bilinear form (Casimir). In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4t - 2\alpha$, $4t - 2\beta$, $4t - 2\gamma$, where

$$t = \alpha + \beta + \gamma,$$

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha = -2$, then $t = h^{\vee}$ is *dual Coxeter number* and we have Table 1.

Vogel, 1999: universal formulae for the dimensions

$$\dim \mathfrak{g} = \frac{(\alpha - 2t)(\beta - 2t)(\gamma - 2t)}{\alpha\beta\gamma},$$
$$\dim Y_2(\alpha) = -\frac{(3\alpha - 2t)(\beta - 2t)(\gamma - 2t)t(\beta + t)(\gamma + t)}{\alpha^2(\alpha - \beta)\beta(\alpha - \gamma)\gamma}$$

- ロ ト - 4 回 ト - 4 □

Consider the decomposition

$$S^2\mathfrak{g}=\mathbb{C}\oplus Y_2(lpha)\oplus Y_2(eta)\oplus Y_2(\gamma)$$

and choose an invariant bilinear form (Casimir). In Vogel's parametrisation the Casimir eigenvalues of the 3 components are $4t - 2\alpha$, $4t - 2\beta$, $4t - 2\gamma$, where

$$t = \alpha + \beta + \gamma,$$

which defines the parameters uniquely up to a common multiple. If we normalise $\alpha = -2$, then $t = h^{\vee}$ is *dual Coxeter number* and we have Table 1.

Vogel, 1999: universal formulae for the dimensions

$$\dim \mathfrak{g} = \frac{(\alpha - 2t)(\beta - 2t)(\gamma - 2t)}{\alpha\beta\gamma},$$
$$\dim Y_2(\alpha) = -\frac{(3\alpha - 2t)(\beta - 2t)(\gamma - 2t)t(\beta + t)(\gamma + t)}{\alpha^2(\alpha - \beta)\beta(\alpha - \gamma)\gamma}.$$

Exceptional (Deligne) line:

$$\dim Y_2(\gamma) = 0: \quad 3\gamma - 2t = 0, \quad \gamma = 2\beta - 4,$$

containing

$$\mathfrak{sl}_3, \mathfrak{g}_2, \mathfrak{so}_8, \mathfrak{f}_4, \mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_{7+\frac{1}{2}}, \mathfrak{e}_8.$$

Its projective version $X = \mathbb{P}(\mathcal{O}_{min}) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

Its projective version $X = \mathbb{P}(\mathcal{O}_{min}) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

These varieties can be characterised as compact, simply connected, contact homogeneous varieties, or, under certain assumptions (Beauville 1998), as Fano contact manifolds. Their quantum versions are related to Joseph ideals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Its projective version $X = \mathbb{P}(\mathcal{O}_{min}) \subset \mathbb{P}(\mathfrak{g})$ is a smooth projective variety, sometimes called adjoint variety, which is the only compact orbit of G on $\mathbb{P}(\mathfrak{g})$.

These varieties can be characterised as compact, simply connected, contact homogeneous varieties, or, under certain assumptions (Beauville 1998), as Fano contact manifolds. Their quantum versions are related to Joseph ideals.

Example. In sl_{n+1} -case $X = P(\mathcal{O}_{min})$ is the hyperplane section of the Segre variety

$$\Sigma_{n,n} = \mathbb{P}^n \times \mathbb{P}^n \subset \mathbb{P}^{(n+1)^2-1}$$

Indeed, \mathcal{O}_{min} consists of the nilpotent rank one matrices, which can be written as $p \otimes q$ with $p, q \in \mathbb{C}^{n+1}$ satisfying

$$(p,q) = p_1q_1 + \cdots + p_{n+1}q_{n+1} = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For a projective variety $X \subset \mathbb{P}^n$ the Hilbert series $H_X(z)$ is defined as the generating function

$$H_X(z) = \sum_{k=0}^{\infty} \dim(S(X)_k) z^k,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $S(X) = \mathbb{C}[x_0, ..., x_n]/I(X)$ is the homogeneous coordinate ring of X and $S(X)_k$ is the component of degree k.

For a projective variety $X \subset \mathbb{P}^n$ the Hilbert series $H_X(z)$ is defined as the generating function

$$H_X(z) = \sum_{k=0}^{\infty} \dim(S(X)_k) z^k,$$

where $S(X) = \mathbb{C}[x_0, ..., x_n]/I(X)$ is the homogeneous coordinate ring of X and $S(X)_k$ is the component of degree k.

The dimension $\dim(S(X)_k)$ for large k is written as

 $\dim(S(X)_k) = h_X(k)$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

with a polynomial $h_X(x)$ called the Hilbert polynomial.

For a projective variety $X \subset \mathbb{P}^n$ the Hilbert series $H_X(z)$ is defined as the generating function

$$H_X(z) = \sum_{k=0}^{\infty} \dim(S(X)_k) z^k,$$

where $S(X) = \mathbb{C}[x_0, ..., x_n]/I(X)$ is the homogeneous coordinate ring of X and $S(X)_k$ is the component of degree k.

The dimension $\dim(S(X)_k)$ for large k is written as

 $\dim(S(X)_k) = h_X(k)$

with a polynomial $h_X(x)$ called the Hilbert polynomial.

It is known that

$$h_X(x) = \deg X \frac{x^d}{d!} + \dots,$$

where $d = \dim X$, so $h_X(x)$ determines both dimension and degree of X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Universal formula

Let α, β, γ be Vogel's parameters and introduce

 $a_1 = 2b_1 + 2b_2 - 3$, $a_2 = b_1 + 2b_2 - 2$, $a_3 = 2b_1 + b_2 - 2$, $a_4 = b_3 + 1$,

$$b_1 = -\frac{\beta}{\alpha}, \ b_2 = -\frac{\gamma}{\alpha}, \ b_3 = -\frac{2t+\alpha}{2\alpha}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Universal formula

Let α, β, γ be Vogel's parameters and introduce

 $a_1 = 2b_1 + 2b_2 - 3, \ a_2 = b_1 + 2b_2 - 2, \ a_3 = 2b_1 + b_2 - 2, \ a_4 = b_3 + 1,$ $b_1 = -\frac{\beta}{\alpha}, \ b_2 = -\frac{\gamma}{\alpha}, \ b_3 = -\frac{2t + \alpha}{2\alpha}.$

Consider the generalized hypergeometric function

$${}_{4}F_{3}(a_{1}, a_{2}, a_{3}, a_{4}; b_{1}, b_{2}, b_{3}; z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}(a_{2})_{n}(a_{3})_{n}(a_{4})_{n}}{(b_{1})_{n}(b_{2})_{n}(b_{3})_{n}} \frac{z^{n}}{n!},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $(a)_n = a(a+1) \dots (a+n-1)$ is the Pochhammer symbol.

Universal formula

Let α, β, γ be Vogel's parameters and introduce

 $a_1 = 2b_1 + 2b_2 - 3, \ a_2 = b_1 + 2b_2 - 2, \ a_3 = 2b_1 + b_2 - 2, \ a_4 = b_3 + 1,$ $b_1 = -\frac{\beta}{\alpha}, \ b_2 = -\frac{\gamma}{\alpha}, \ b_3 = -\frac{2t + \alpha}{2\alpha}.$

Consider the generalized hypergeometric function

$${}_{4}F_{3}(a_{1}, a_{2}, a_{3}, a_{4}; b_{1}, b_{2}, b_{3}; z) = \sum_{n=0}^{\infty} \frac{(a_{1})_{n}(a_{2})_{n}(a_{3})_{n}(a_{4})_{n}}{(b_{1})_{n}(b_{2})_{n}(b_{3})_{n}} \frac{z^{n}}{n!},$$

where $(a)_n = a(a+1) \dots (a+n-1)$ is the Pochhammer symbol.

Matsuo, APV 2017: The Hilbert series of $X = \mathbb{P}(\mathcal{O}_{min})$ has the following universal form

 $H_X(z) = {}_4F_3(a_1, a_2, a_3, a_4; b_1, b_2, b_3; z) = \left(1 + \frac{2}{a_1} z \frac{d}{dz}\right) {}_3F_2(a_1, a_2, a_3; b_1, b_2; z).$

The Hilbert polynomial of $X = \mathbb{P}(\mathcal{O}_{min})$ is

$$h_X(x) = \frac{\Gamma(b_1)\Gamma(b_2)}{\Gamma(a_1)\Gamma(a_2)\Gamma(a_3)} \left(1 + \frac{2x}{a_1}\right) \frac{\Gamma(a_1 + x)\Gamma(a_2 + x)\Gamma(a_3 + x)}{\Gamma(b_1 + x)\Gamma(b_2 + x)\Gamma(1 + x)},$$

with $h_X(k) = \dim(S(X)_k)$ for all $k \ge 0$.

Proof follows from Borel-Hirzebruch-Kostant formula

$$S(X) = \bigoplus_{k=0}^{\infty} V(k\theta),$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ , and from the universal formula for dim $V(k\theta)$ found by Landsberg and Manivel 2006.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Proof follows from Borel-Hirzebruch-Kostant formula

$$S(X) = \bigoplus_{k=0}^{\infty} V(k\theta),$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ , and from the universal formula for dim $V(k\theta)$ found by Landsberg and Manivel 2006.

Corollary The dimension of $X = P(\mathcal{O}_{min})$ is

dim $X = 2a_1 - 1 = 2h^{\vee} - 3$,

where h^{\vee} is the dual Coxeter number of \mathfrak{g} (Wang, 1999)

Proof follows from Borel-Hirzebruch-Kostant formula

$$S(X) = \bigoplus_{k=0}^{\infty} V(k\theta),$$

where θ is the maximal root of \mathfrak{g} and $V(\lambda)$ is the irreducible representation with the highest weight λ , and from the universal formula for dim $V(k\theta)$ found by Landsberg and Manivel 2006.

Corollary The dimension of $X = P(\mathcal{O}_{min})$ is

dim $X = 2a_1 - 1 = 2h^{\vee} - 3$,

where h^{\vee} is the dual Coxeter number of \mathfrak{g} (Wang, 1999)

The degree of X is

$$\deg(X) = \frac{2 \,\Gamma(2a_1) \,\Gamma(b_1) \Gamma(b_2)}{\Gamma(a_1+1) \,\Gamma(a_2) \Gamma(a_3)}$$

Туре	a_1	a 2	a 3	b_1	<i>b</i> ₂	dim X	$\deg X$
An	n	n	$\frac{n+1}{2}$	1	$\frac{n+1}{2}$	2n - 1	$\binom{2n}{n}$
Bn	2 <i>n</i> – 2	2 <i>n</i> – 3	$n + \frac{1}{2}$	2	$n - \frac{3}{2}$	4 <i>n</i> – 5	$\frac{4}{2n-1} \begin{pmatrix} 4n-4\\ 2n-2 \end{pmatrix}$
Cn	п	$n + \frac{1}{2}$	<u>n</u> 2	$\frac{1}{2}$	$\frac{n}{2} + 1$	2 <i>n</i> – 1	2^{2n-1}
Dn	2n - 3	2 <i>n</i> – 4	n	2	<i>n</i> – 2	4 <i>n</i> – 7	$\frac{4}{2n-2}\binom{4n-6}{2n-3}$
E_6	11	9	8	3	4	21	151164
<i>E</i> ₇	17	14	12	4	6	33	141430680
E_8	29	24	20	6	10	57	126937516885200
F_4	8	$\frac{13}{2}$	6	$\frac{5}{2}$	3	15	4992
G ₂	3	$\frac{7}{3}$	$\frac{8}{3}$	$\frac{5}{3}$	$\frac{4}{3}$	5	18

Table: Parameters, dimension and degree of $X = P(\mathcal{O}_{min})$.

・ロト・(四)・(日)・(日)・(日)・(日)

In sl_{n+1} -case $X = P(\mathcal{O}_{min})$ is the hyperplane section of the Segre variety

$$\Sigma_{n,n} = \mathbb{P}^n \times \mathbb{P}^n \subset \mathbb{P}^{(n+1)^2 - 1}$$

Indeed, \mathcal{O}_{min} consists of the nilpotent rank one matrices, which can be written as $p\otimes q$ with $p,q\in\mathbb{C}^{n+1}$ satisfying

 $(p,q) = p_1q_1 + \cdots + p_{n+1}q_{n+1} = 0.$

In sl_{n+1} -case $X = P(\mathcal{O}_{min})$ is the hyperplane section of the Segre variety

$$\Sigma_{n,n} = \mathbb{P}^n \times \mathbb{P}^n \subset \mathbb{P}^{(n+1)^2 - 1}$$

Indeed, \mathcal{O}_{min} consists of the nilpotent rank one matrices, which can be written as $p \otimes q$ with $p, q \in \mathbb{C}^{n+1}$ satisfying

$$(p,q) = p_1q_1 + \cdots + p_{n+1}q_{n+1} = 0.$$

Our universal formula for the degree gives in this case

$$\deg X = \frac{2\Gamma(2n)\Gamma(1)\Gamma(\frac{n+1}{2})}{\Gamma(n+1)\Gamma(n)\Gamma(\frac{n+1}{2})} = \frac{2\cdot(2n-1)!}{n!(n-1)!} = \binom{2n}{n},$$

which agrees with the well-known result:

$$<(lpha+eta)^n, [\mathbb{P}^n imes\mathbb{P}^n]>=egin{pmatrix} 2n\n\end{pmatrix},$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

since $\alpha^{n+1} = \beta^{n+1} = 0$.

Gross and Wallach 2011 used Weyl's dimension formula to show that

$$h_X(q) = \prod_{lpha \in R_+} \left(1 + rac{(heta, lpha^{ee})}{(
ho, lpha^{ee})} q
ight),$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

where ρ is the half-sum of the positive roots of $\mathfrak{g}.$

Gross and Wallach 2011 used Weyl's dimension formula to show that

$$h_X(q) = \prod_{lpha \in R_+} \left(1 + rac{(heta, lpha^{ee})}{(
ho, lpha^{ee})} q
ight),$$

where ρ is the half-sum of the positive roots of \mathfrak{g} .

The Hilbert series of X can be written then as

$$H_X(z) = h_X\left(z\frac{d}{dz}\right)\frac{1}{1-z},$$

which implies Borel-Hirzebruch 1959 formula

$$\deg(X) = d! \prod_{\alpha} \frac{(heta, lpha^{ee})}{(
ho, lpha^{ee})}$$

where the product is taken over positive roots such that $(\theta, \alpha^{\vee}) \neq 0$.

It would be interesting to deduce from here our universal formula for deg(X).

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Our formulae are symmetric in β and γ , but not in α . It is natural to ask for possible meaning of the corresponding Hilbert series when we permute α with β or γ (cf. Landsberg, Manivel 2006).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Our formulae are symmetric in β and γ , but not in α . It is natural to ask for possible meaning of the corresponding Hilbert series when we permute α with β or γ (cf. Landsberg, Manivel 2006).

Our formulae predict that the corresponding "virtual varieties" Y and Z must have degree 0 and negative dimensions:

dim
$$Y = -\frac{4t}{\beta} - 3$$
, dim $Z = -\frac{4t}{\gamma} - 3$.

In particular, for A_n type

dim
$$Y = -2n - 5$$
, dim $Z = -7$,

and for E_8

dim
$$Y = -13$$
, dim $Z = -9$.

Is there any geometry behind this?

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Lie superalgebra	α	β	γ	t
$\mathfrak{sl}_{m,n}$	-2	2	<i>m</i> – <i>n</i>	<i>m</i> – <i>n</i>
osp _{p.a}	-2	4	p - q - 4	p - q - 2
f4	-2	2	3	3
g 3	-2	2	2	2
$\mathfrak{D}_{2,1,\lambda}$	λ_1	λ_2	λ_3	0

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Table: Vogel's parameters for basic classical Lie superalgebras

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Lie superalgebra	α	β	γ	t
$\mathfrak{sl}_{m,n}$	-2	2	<i>m</i> – <i>n</i>	m - n
osp _{p,q}	-2	4	p-q-4	p-q-2
f4	-2	2	3	3
g 3	-2	2	2	2
$\mathfrak{D}_{2,1,\lambda}$	λ_1	λ_2	λ_3	0

Table: Vogel's parameters for basic classical Lie superalgebras

Note that in Vogel's approach exceptional Lie superalgebras \mathfrak{f}_4 and \mathfrak{g}_3 are equivalent to \mathfrak{sl}_3 and \mathfrak{sl}_2 respectively and in the (potentially most interesting) case of $\mathfrak{D}_{2,1,\lambda}$ the parameter $t = \lambda_1 + \lambda_2 + \lambda_3 = 0$ (red line on Vogel's map).

Vogel's approach for the basic classical classical Lie superalgebras and leads to the following table:

Lie superalgebra	α	β	γ	t
$\mathfrak{sl}_{m,n}$	-2	2	m - n	m - n
osp _{p,q}	-2	4	p-q-4	p-q-2
f4	-2	2	3	3
g 3	-2	2	2	2
$\mathfrak{D}_{2,1,\lambda}$	λ_1	λ_2	λ_3	0

Table: Vogel's parameters for basic classical Lie superalgebras

Note that in Vogel's approach exceptional Lie superalgebras f_4 and g_3 are equivalent to \mathfrak{sl}_3 and \mathfrak{sl}_2 respectively and in the (potentially most interesting) case of $\mathfrak{D}_{2,1,\lambda}$ the parameter $t = \lambda_1 + \lambda_2 + \lambda_3 = 0$ (red line on Vogel's map).

Is there a superanalogue of our results?

Vogel's map

