
Universal formula for Hilbert series of minimal nilpotent orbits

Alexander P. Veselov
Loughborough, UK

(joint with Atsushi Matsuo, Tokyo)

Integrability + Combinatorics + Representations, Giens, September 5, 2019



Lie geography: Vogel’s plane

Vogel 1999: ”Universal simple Lie algebra”.
Motivations: Vassiliev invariants of knots, Kontsevich integral, Deligne’s
study of exceptional Lie algebras

Table: Vogel’s parameters for simple Lie algebras

Type Lie algebra α β γ t = h∨

An sln+1 −2 2 n + 1 n + 1
Bn so2n+1 −2 4 2n − 3 2n − 1
Cn sp2n −2 1 n + 2 n + 1
Dn so2n −2 4 2n − 4 2n − 2
G2 g2 −2 10/3 8/3 4
F4 f4 −2 5 6 9
E6 e6 −2 6 8 12
E7 e7 −2 8 12 18
E8 e8 −2 12 20 30
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Vogel’s parameters and universal formulae

Consider the decomposition

S2g = C⊕ Y2(α)⊕ Y2(β)⊕ Y2(γ)

and choose an invariant bilinear form (Casimir).
In Vogel’s parametrisation the Casimir eigenvalues of the 3 components are
4t − 2α, 4t − 2β, 4t − 2γ, where

t = α + β + γ,

which defines the parameters uniquely up to a common multiple. If we
normalise α = −2, then t = h∨ is dual Coxeter number and we have Table 1.

Vogel, 1999: universal formulae for the dimensions

dim g =
(α− 2t)(β − 2t)(γ − 2t)

αβγ
,

dimY2(α) = − (3α− 2 t) (β − 2 t) (γ − 2 t) t (β + t) (γ + t)

α2 (α− β) β (α− γ) γ
.

Exceptional (Deligne) line:

dimY2(γ) = 0 : 3γ − 2t = 0, γ = 2β − 4,

containing
sl3, g2, so8, f4, e6, e7, e7+ 1

2
, e8.
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Minimal nilpotent orbits

Let g be a complex simple Lie algebra and Omin be the minimal non-zero
nilpotent orbit in g ≈ g∗.

Its projective version X = P(Omin) ⊂ P(g) is a smooth projective variety,
sometimes called adjoint variety, which is the only compact orbit of G on P(g).

These varieties can be characterised as compact, simply connected, contact
homogeneous varieties, or, under certain assumptions (Beauville 1998), as
Fano contact manifolds. Their quantum versions are related to Joseph ideals.

Example. In sln+1-case X = P(Omin) is the hyperplane section of the Segre
variety

Σn,n = Pn × Pn ⊂ P(n+1)2−1.

Indeed, Omin consists of the nilpotent rank one matrices, which can be written
as p ⊗ q with p, q ∈ Cn+1 satisfying

(p, q) = p1q1 + · · ·+ pn+1qn+1 = 0.
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Hilbert series and polynomial

For a projective variety X ⊂ Pn the Hilbert series HX (z) is defined as the
generating function

HX (z) =
∞∑
k=0

dim(S(X )k)zk ,

where S(X ) = C[x0, . . . , xn]/I (X ) is the homogeneous coordinate ring of X
and S(X )k is the component of degree k.

The dimension dim(S(X )k) for large k is written as

dim(S(X )k) = hX (k)

with a polynomial hX (x) called the Hilbert polynomial.

It is known that

hX (x) = deg X
xd

d!
+ . . . ,

where d = dimX , so hX (x) determines both dimension and degree of X .
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Universal formula

Let α, β, γ be Vogel’s parameters and introduce

a1 = 2b1 + 2b2 − 3, a2 = b1 + 2b2 − 2, a3 = 2b1 + b2 − 2, a4 = b3 + 1,

b1 = −β
α
, b2 = − γ

α
, b3 = −2t + α

2α
.

Consider the generalized hypergeometric function

4F3(a1, a2, a3, a4; b1, b2, b3; z) =
∞∑
n=0

(a1)n(a2)n(a3)n(a4)n
(b1)n(b2)n(b3)n

zn

n!
,

where (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol.

Matsuo, APV 2017: The Hilbert series of X = P(Omin) has the following
universal form

HX (z) = 4F3(a1, a2, a3, a4; b1, b2, b3; z) =

(
1 +

2

a1
z
d

dz

)
3F2(a1, a2, a3; b1, b2; z).

The Hilbert polynomial of X = P(Omin) is

hX (x) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

(
1 +

2x

a1

)
Γ(a1 + x)Γ(a2 + x)Γ(a3 + x)

Γ(b1 + x)Γ(b2 + x)Γ(1 + x)
,

with hX (k) = dim(S(X )k) for all k ≥ 0.



Universal formula

Let α, β, γ be Vogel’s parameters and introduce

a1 = 2b1 + 2b2 − 3, a2 = b1 + 2b2 − 2, a3 = 2b1 + b2 − 2, a4 = b3 + 1,

b1 = −β
α
, b2 = − γ

α
, b3 = −2t + α

2α
.

Consider the generalized hypergeometric function

4F3(a1, a2, a3, a4; b1, b2, b3; z) =
∞∑
n=0

(a1)n(a2)n(a3)n(a4)n
(b1)n(b2)n(b3)n

zn

n!
,

where (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol.

Matsuo, APV 2017: The Hilbert series of X = P(Omin) has the following
universal form

HX (z) = 4F3(a1, a2, a3, a4; b1, b2, b3; z) =

(
1 +

2

a1
z
d

dz

)
3F2(a1, a2, a3; b1, b2; z).

The Hilbert polynomial of X = P(Omin) is

hX (x) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

(
1 +

2x

a1

)
Γ(a1 + x)Γ(a2 + x)Γ(a3 + x)

Γ(b1 + x)Γ(b2 + x)Γ(1 + x)
,

with hX (k) = dim(S(X )k) for all k ≥ 0.



Universal formula

Let α, β, γ be Vogel’s parameters and introduce

a1 = 2b1 + 2b2 − 3, a2 = b1 + 2b2 − 2, a3 = 2b1 + b2 − 2, a4 = b3 + 1,

b1 = −β
α
, b2 = − γ

α
, b3 = −2t + α

2α
.

Consider the generalized hypergeometric function

4F3(a1, a2, a3, a4; b1, b2, b3; z) =
∞∑
n=0

(a1)n(a2)n(a3)n(a4)n
(b1)n(b2)n(b3)n

zn

n!
,

where (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol.

Matsuo, APV 2017: The Hilbert series of X = P(Omin) has the following
universal form

HX (z) = 4F3(a1, a2, a3, a4; b1, b2, b3; z) =

(
1 +

2

a1
z
d

dz

)
3F2(a1, a2, a3; b1, b2; z).

The Hilbert polynomial of X = P(Omin) is

hX (x) =
Γ(b1)Γ(b2)

Γ(a1)Γ(a2)Γ(a3)

(
1 +

2x

a1

)
Γ(a1 + x)Γ(a2 + x)Γ(a3 + x)

Γ(b1 + x)Γ(b2 + x)Γ(1 + x)
,

with hX (k) = dim(S(X )k) for all k ≥ 0.



Degree and dimension

Proof follows from Borel-Hirzebruch-Kostant formula

S(X ) =
∞⊕
k=0

V (kθ),

where θ is the maximal root of g and V (λ) is the irreducible representation
with the highest weight λ, and from the universal formula for dimV (kθ) found
by Landsberg and Manivel 2006.

Corollary The dimension of X = P(Omin) is

dimX = 2a1 − 1 = 2h∨ − 3,

where h∨ is the dual Coxeter number of g (Wang, 1999)

The degree of X is

deg(X ) =
2 Γ(2a1) Γ(b1)Γ(b2)

Γ(a1 + 1) Γ(a2)Γ(a3)
.
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Table

Type a1 a2 a3 b1 b2 dimX degX

An n n n+1
2

1 n+1
2

2n − 1
(
2n
n

)
Bn 2n − 2 2n − 3 n + 1

2
2 n − 3

2
4n − 5 4

2n−1

(
4n−4
2n−2

)
Cn n n + 1

2
n
2

1
2

n
2

+ 1 2n − 1 22n−1

Dn 2n − 3 2n − 4 n 2 n − 2 4n − 7 4
2n−2

(
4n−6
2n−3

)
E6 11 9 8 3 4 21 151164

E7 17 14 12 4 6 33 141430680

E8 29 24 20 6 10 57 126937516885200

F4 8 13
2

6 5
2

3 15 4992

G2 3 7
3

8
3

5
3

4
3

5 18

Table: Parameters, dimension and degree of X = P(Omin).



Example: sln+1-case

In sln+1-case X = P(Omin) is the hyperplane section of the Segre variety

Σn,n = Pn × Pn ⊂ P(n+1)2−1.

Indeed, Omin consists of the nilpotent rank one matrices, which can be written
as p ⊗ q with p, q ∈ Cn+1 satisfying

(p, q) = p1q1 + · · ·+ pn+1qn+1 = 0.

Our universal formula for the degree gives in this case

degX =
2 Γ(2n)Γ(1)Γ( n+1

2
)

Γ(n + 1)Γ(n)Γ( n+1
2

)
=

2 · (2n − 1)!

n!(n − 1)!
=

(
2n

n

)
,

which agrees with the well-known result:

< (α + β)n, [Pn × Pn] >=

(
2n

n

)
,

since αn+1 = βn+1 = 0.
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Comparison with Gross and Wallach

Gross and Wallach 2011 used Weyl’s dimension formula to show that

hX (q) =
∏
α∈R+

(
1 +

(θ, α∨)

(ρ, α∨)
q

)
,

where ρ is the half-sum of the positive roots of g.

The Hilbert series of X can be written then as

HX (z) = hX

(
z
d

dz

)
1

1− z
,

which implies Borel-Hirzebruch 1959 formula

deg(X ) = d!
∏
α

(θ, α∨)

(ρ, α∨)
,

where the product is taken over positive roots such that (θ, α∨) 6= 0.

It would be interesting to deduce from here our universal formula for deg(X ).
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Numerology

Our formulae are symmetric in β and γ, but not in α. It is natural to ask for
possible meaning of the corresponding Hilbert series when we permute α with
β or γ (cf. Landsberg, Manivel 2006).

Our formulae predict that the corresponding “virtual varieties” Y and Z must
have degree 0 and negative dimensions:

dimY = −4t

β
− 3, dimZ = −4t

γ
− 3.

In particular, for An type

dimY = −2n − 5, dimZ = −7,

and for E8

dimY = −13, dimZ = −9.

Is there any geometry behind this?
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Vogel’s parameters for Lie superalgebras

Vogel’s approach for the basic classical classical Lie superalgebras and leads to
the following table:

Table: Vogel’s parameters for basic classical Lie superalgebras

Lie superalgebra α β γ t
slm,n −2 2 m − n m − n
ospp,q −2 4 p − q − 4 p − q − 2
f4 −2 2 3 3
g3 −2 2 2 2

D2,1,λ λ1 λ2 λ3 0

Note that in Vogel’s approach exceptional Lie superalgebras f4 and g3 are
equivalent to sl3 and sl2 respectively and in the (potentially most interesting)
case of D2,1,λ the parameter t = λ1 + λ2 + λ3 = 0 (red line on Vogel’s map).

Is there a superanalogue of our results?
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