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The following is about
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I. Coman, P. Longhi and E. Pomoni.

– Typeset by FoilTEX – 1



Isomonodromic deformations

Schlesinger system: Consider connections ∇λ = λ∂x −A(x),

A(x) =

n∑
r=1

Ar
x− zr

, Ar ∈ sl2,

n∑
r=1

Ar = 0.

Poisson-structure (Goldman-Atiyah-Bott)

{
A(x)⊗, A(y)

}
GAB

=
1

x− y
[

P , A(x)⊗ 1 + 1⊗A(y)
]
.

Hamiltonians:

Hr =
∑
s6=r

tr(ArAs)

zr − zs
.

Schlesinger’s equations:

∂

∂zr
As =

{
As , Hr

}
GAB

⇔ Monodromy of ∇λ is constant.

Integrability: {Hr, Hs} = 0.
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Conserved quantities: Monodromy data

Let Ψ(x): solution to,

(λ∂x −A(x))Ψ(x) = 0, Ψ(x0) = 0.

Monodromies Mr, defined by

Ψ(γr.x) = Ψ(x)Mr, Mr ∈ G = SL(2,C),

Ψ(γr.x): analytic continuation of Ψ(x) along contour γr encircling only zr,

generate representations ρ : π1(C)→ G, C = P1 \ {z1, . . . , zn}.

Change of x0 changes matrices Mr by overall conjugation.

 Space of monodromy data: Character variety Mchar(C),

the space of all representations ρ : π1(C)→ G modulo overall conjugation.
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From connections to monodromy data and back

There is a locally biholomorphic map Hol from Mλ
dR(C) to Mλ

B(C), assigning

representations ρ : π1(C)→ SL(2,C) to (E ,∇λ),

defined by computing the holonomy/monodromy of ∇λ.

The inverse of this map: Riemann-Hilbert correspondence. Classical formulation:

Find a matrix function Ψ(x) satisfying the following conditions:
i) Ψ(x) is multivalued, analytic and invertible on C0,n.

ii) The monodromy of Ψ(x) is represented as

Ψ(γ.x) = Ψ(x)ρ(γ), ρ : π1(C)→ SL(2,C).
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The tau-function: Unification of integrable structures I

Isomonodromic tau-function, classical definition (Sato-Miwa-Jimbo):

∂

∂zr
log T (µ, z) = Hr

where µ: monodromy data, z = (z1, . . . , zn), Hr: Schlesinger-Hamiltonians.

Longstanding problems:

A) Calculate series expansions of T (µ, z) around singular points.

B) What are natural ways to fix dependence on monodromy parameters µ?
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Replace conserved quantities by initial values

For some fixed z = (z1, . . . , zn) one may use holonomy map Hol to express the

monodromy data µ as function µ(A, λ) of the data (A(x), λ), representing the initial

values of the isomonodromic deformation problem.

The tau-function T (µ, z) can be used to define a function Θ̂(A, z;λ),

Θ̂(A, λ; z) := T (µ(A, z;λ), z).

The space of initial values is Mflat(C)× C×, with

• Mflat(C): moduli space of flat connections on C,

• λ: coordinate for C×.

Variant of B): Are there natural ways to fix the normalisation of Θ̂(A, λ; z)? Or:

How to extend the (locally defined!) functions Θ̂(A, λ; z) to a

natural globally defined geometric object on Mflat(C)× C×?
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The tau-function: Unification of integrable structures II

Explicit formula: (conjectured by Gamayun-Iorgov-Lisovyy1, proofs by Iorgov-Lisovyy-J.T.2,

Bershtein-Shchechkin3, Gavrylenko-Lisovyy4

T
(
σ, η ; z

)
=

∑
n∈Zn−3

ei(n,η) G(σ + n ; z ),

where G(σ ; z ): instanton partition functions
AGT↔ conformal blocks

have explicit power series expansions:

1Inspired by/using results of Sato-Miwa-Jimbo, Moore, Moore-Nekrasov-Shatashvili, Nekrasov, Alday-Gaiotto-Tachikawa
2CFT: Monodromy of Vir-degenerate fields  construction of solution of Riemann-Hilbert problem
3VOA duality (Bershtein-Feigin-Litvinov)  bilinear equations of Hirota type, related to Nakajima-Yoshioka blow-up
4Combinatorial expansion of Fredholm determinants; Cafasso-Gavrylenko-Lisovyy: Relation with Sato-Segal-Wilson
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G(σ ; z ) have explicit power series expansions (here combinatorics!):

Example n = 4: G(σ , θ ; z ) G(σ , θ ; z ) = M(σ, θ4, θ3)M(σ, θ2, θ1)F(σ , θ ; z ), where

• the functions M(θ3, θ2, θ1) are defined as

M(θ3, θ2, θ1) =

∏
ε=±G(1 + θ3 + ε(θ2 + θ1))G(1 + θ3 + ε(θ2 − θ1))

G(1 + 2θ3)G(1− 2θ2)G(1− 2θ1)
,

where G(p) is the Barnes G-function that satisfies G(p+ 1) = Γ(p)G(p),

• F(σ , θ ; z ) can be represented by the following power series

F(σ , θ ; z ) = z
σ2−θ21−θ

2
2(1− z)2θ2θ3

∑
ξ,ζ∈Y

z
|ξ|+|ζ|Fξ,ζ(σ, θ),

with Y: set of partitions, coefficients Fξ,ζ(σ, θ) explicitly given in

Fξ,ζ(σ, θ) =
∏

(i,j)∈ξ

((θ2 + σ + i− j)2 − θ2
1)((θ3 + σ + i− j)2 − θ2

4)

(ξ′j − i+ ξi − j + 1)2(ξ′j − i+ ζi − j + 1 + 2σ)2

∏
(i,j)∈ζ

((θ2 − σ + i− j)2 − θ2
1)((θ3 − σ + i− j)2 − θ2

4)

(ζ′j − i+ ζi − j + 1)2(ζ′j − i+ ξi − j + 1− 2σ)2
.

ζi / ζ′i arm / leg length of (i, j) ∈ Y.
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The coordinates σ = (σ1, . . . , σd), η = (η1, . . . , ηd), d = n− 3

appearing in magic formula

T
(
σ, η ; z

)
=
∑
n∈Zd

ei(n,η) G(σ + n ; z ),

are very special:

a) reflect integrable structure of Mchar(C)

b) reflect algebraic structure of Mchar(C):
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Some coordinates are better than others....

a) (σ, η) reflect secondary integrable structure (for G = SL(2)):

• Pick pants decomposition (γ1, . . . , γd).

• Write tr(ρ(γr)) = 2 cos(2πσr).

 Commuting flows: If F is a function on Mchar(C), let

∂

∂ηr
F =

{
F , σr

}
GAB

. (1)

(σ, η), σ = (σ1, . . . , σd), η = (η1, . . . , ηd): Darboux coordinates,

ΩGAB =

d∑
r=1

dσr ∧ dηr,

Remark:

(1): Fenchel-Nielsen twist flows on Teichmüller component of real slice in MB(C)

We call such coordinates FN-type coordinates.
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Some coordinates are better than others....

Explicit definition of η for C = C0,4:

Coordinate ring (k ∈ {0, q, 1,∞}):

Generators: L0q = Tr(M0Mq), L01 = Tr(M0M1),

L0∞ = Tr(M0M∞), Lk = TrMk = 2 cos 2πθk,

L0LqL1L∞ + L0qL01L0∞ + L
2
0q + L

2
01 + L

2
0∞ + L

2
0 + L

2
q + L

2
1 + L

2
∞ =

= (L0Lq + L1L∞)L0q + (L0L1 + LqL∞)L01 + (LqL1 + L0L∞)L0∞ + 4.

Pants decomposition  Factorisation of holonomy:

L0∞ = tr(T−1M0TM∞) = tr
(
T−1

(
∗ µ+

0

µ−0 ∗

)
T
(
∗ µ+

∞
µ−∞ ∗

))
= µ−0 µ

+
∞ V

2 +N0 + µ+
0 µ
−
∞ V

−2,

T =
(
V 0
0 V −1

)
V = eπi η,

and µ±0 = µ±0 (σ), µ±∞ = µ±∞(σ) and N0 = N0(σ) do not depend on η.

Cases n > 4 reduced to n = 4 by means of pants decomposition.

Coordinates (σ, η) related to work of Nekrasov, Rosly, Shatashvili.

– Typeset by FoilTEX – 11



Some coordinates are better than others....

a) Reflect integrable structure ofMB(C)!

b) Reflect algebraic structure of MB(C)?

There is still a large freedom in the choice of η, η → η + f(σ).

However, there exists a small family of coordinates η of rational FN-type such that

L0∞ =
p+(U)V 2 + p0(U) + p−(U)V −2

(U − U−1)2
, L01 =

q+(U)V 2 + q0(U) + q−(U)V −2

(U − U−1)2
,

q±(U) = −p±(U)U±1, and pε(U): Laurent-polynomial in U = e2πiσ.

Coordinate ring represented by rational functions of U and V ↔ algebraic structure!

Residual, finite freedom: Note that

p+(U)p−(U) =
∏
s,s′=±

2 sinπ(σ + sσ0 + s
′
σq)

∏
s,s′=±

2 sinπ(σ + sσ1 + s
′
σ∞).

Choices for p±(U) from distributing factors 2 sinπ(. . . ) between p+(U) and p−(U).
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Good coordinates

Good coordinates (p, q) satisfy a), b) and allow us to define

TQ(q + δr, p; z) = TQ(q, p; z),

TQ(q, p+ δr; z) = e−2πiqrTQ(q, p; z).

This is equivalent to existence of an expansion as generalised theta series

TQ(q, p; z) =
∑
n∈Zd

e2πi(n,q)ZQ(p+ n; z).

Note: There are preferred normalisations of TQ caracterised by these conditions.

Example: Coordinates (q, p) = (η, σ) with (η, σ) introduced above are good.

Questions:

a) Can we cover Mchar with good coordinates?

b) How much freedom is there in the choice of good coordinates?
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Changes of coordinates induce change of normalisation

To a Poisson automorphism (q+, p+) = (f(q−, p−), g(q−, p−)) defined by an equation

p+ = g(q−, p−) which can be partially inverted to define functions q− = q−(p+, p−)

we may assign a “difference generating function” F (p+, p−) satisfying (here d = 1)

F (p+ + 1, p−) = e−2πi q+(p+,p−)F (p+, p−),

F (p+, p− + 1) = e+2πi q−(p+,p−)F (p+, p−),
q+(p+, p−) = f(q−(p+, p−), p−).

The functions TQ(q, p; z) associated to two different coordinate systems Q and Q′ can

differ by an overall µ-dependent factor FQQ′(p, p
′),

TQ(q, p; z) = FQQ′(p, p
′)TQ′(q′, p′; z).

Example:

If (q, p) = (η, σ) with (η, σ) introduced above, and (q′, p′) = (η′, σ′) with (η′, σ′)

defined in the same way using another pants decomposition, FQQ′(p, p
′) has been

found by Iorgov, Lisovyy, Tykhyy, and Its, Lisovyy, Prokhorov.
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Perfect coordinates

Let us now switch attention to the coordinates (q̂, p̂) on Mflat(C) × C× defined by

composing (q, p) with Hol. Note that q̂ = q(A, λ), p̂ = p(A, λ).

We call the coordinates (q̂, p̂) perfect if they can be defined by Borel summation of

the asymptotic expansion in powers of λ.

Key observation I (verified in Painlevé VI examples)

Coordinates (σ, η) can be perfect in subsets of Mflat(C)× C×.

Key observation II (work in progress by D. Allegretti, T. Bridgeland)

The Fock-Goncharov coordinates associated to the WKB-triangulation

defined by (A, λ) are perfect.

The analytic continuation of Q̂ = (q̂, p̂) to the domain of Q̂′ = (q̂′, p̂′) defines a

difference generating function.

 Can extend definition of function Θ̂(A, λ; z) from domain of Q̂ to domain of Q̂′!

Goal: Use this to define Θ̂(A, λ; z) globally.
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An interesting discrete dynamics

It is interesting to consider dependence on λ for fixed A. Domains of FG-type

coordinates: Wedges in λ-plane. Stokes graph and WKB triangulation change when

crossing certain rays in λ-plane. Such rays are called “active”.

Coordinates on two sides of a ray related by cluster trsf.  Discrete evolution

described by cluster mutations, “time” step: number of crossings of active rays.

Link to the programs initiated by Gaiotto, Moore and Neitzke, and the one of

Bridgeland.
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Simplify life by confluence Painlevé VI → Painlevé III

Isomonodromic deformations of ∂x −A(x),

A(x) = −ir2

16
σ3 −

iv

4x
σ1 +

i

x2
e−

i
2uσ1σ3e

i
2uσ1,

∂u

∂r
=
∂H

∂v
,

∂v

∂r
= −∂H

∂u
,

H =
v2

2r
− r cos(u).

Definition tau-function:
∂

∂r
ln T

(
2−12r4

)
= −H

8
+

1

4

∂

∂r
ln r eiu.

∃ pair of solutions Y (0)(x), Y (∞)(x) of (∂x −A(x))Y (x) = 0 having monodromy

Y (0)(e2πix) = Y (0)(x)M0,

Y (∞)(e2πix) = Y (∞)(x)M∞
M0 = σxM∞σx =

(
0 i

i −2 cos 2πσ

)
,

with σx =
(

0 1
1 0

)
. The two solutions are related by

Y (∞)(x) = Y (0)(x)E, E =
1

sin 2πσ

(
sin 2πη −i sin 2π(η + σ)

i sin 2π(η − σ) sin 2πη

)
.

(η, σ): analogs of the coordinates used for Painlevé VI above.
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Other good coordinates on Mchar

Let us change coordinates from (σ, η) to (X,Y ),

X =
U − U−1

UV + (UV )−1
, Y =

V + V −1

U − U−1
,

U = e2πiσ,

V = e2πi η.

It can be shown that

• logX and log Y are good coordinates (Its, Lisovyy, Tykhyy)

• U2, V 2 are Fock-Goncharov (cluster) coordinates for Mflat(C) for a certain

triangulation of the annulus with one puncture on each boundary.

Question:

(σ, η) analogous to Gelfand-Zeitlin coordinates? (A represented by rational functions).
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Discrete dynamics in FG versus FN coordinates

Poisson-automorphism of Â

τFG(X) = Y −1, τFG(Y ) = X(1 + Y 2).

Let us then perform the change of variables:

X =
U − U−1

UV + (UV )−1
, Y =

V + V −1

U − U−1
.

Defining τFN(U) = U , τFN(V ) = V U−1 we have

τFN(X(U, V )) = τFN

(
U − U−1

UV + (UV )−1

)
=
U − U−1

V + V −1
=

1

Y (U, V )
= (τFG(Y ))(U, V ),

τFN(Y (U, V )) = τFN

(
V + V −1

U − U−1

)
=
UV −1 + U−1V

U − U−1

=
U − U−1

UV + (UV )−1

(
1 +

(V + V −1)2

(U − U−1)2

)
= (τFG(Y ))(U, V ).

The converse is also true  dynamics becomes “free” in FN-type coordinates.
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The resulting conjectural picture:

• FG type coordinates can be used to cover Mflat(C)× C×.

• FN type coordinates not everywhere defined. When they are defined, they give

equivalent descriptions of the dynamics generated by variation of arg(λ).

• Define a line bundle LΘ on Mflat(C) × C×, transition functions: Difference

generating functions of changes of variables between FG-type coordinates.

• There exist difference generating functions describing changes of coordinates from

FN to FG-type.

• Choices of pants decomposition  preferred sections of LΘ : Partition functions

Θ̂(A, λ; z).

The relevance of the resulting “beast” for topological string theory has been confirmed

by explicit calculations using the topological vertex (Coman, Pomoni, J.T.).

– Typeset by FoilTEX – 20


