Partition functions, tau-functions, and wall-crossing

Jörg Teschner

Joint with I. Coman, P. Longhi and E. Pomoni

University of Hamburg, Department of Mathematics and DESY

The following is about some aspects related to **integrable models and cluster algebras** of a project on **topological string partition functions** pursued in collaboration with **I. Coman, P. Longhi and E. Pomoni**.

Isomonodromic deformations

Schlesinger system: Consider connections $\nabla_{\lambda} = \lambda \partial_x - A(x)$,

$$A(x) = \sum_{r=1}^{n} \frac{A_r}{x - z_r}, \qquad A_r \in \mathfrak{sl}_2, \qquad \sum_{r=1}^{n} A_r = 0.$$

Poisson-structure (Goldman-Atiyah-Bott)

$$\left\{ A(x) \stackrel{\otimes}{,} A(y) \right\}_{\text{GAB}} = \frac{1}{x - y} \left[\mathsf{P}, A(x) \otimes 1 + 1 \otimes A(y) \right].$$

Hamiltonians:

$$H_r = \sum_{s \neq r} \frac{\operatorname{tr}(A_r A_s)}{z_r - z_s}.$$

Schlesinger's equations:

$$\frac{\partial}{\partial z_r} A_s = \left\{ A_s \,, \, H_r \, \right\}_{\text{GAB}} \quad \Leftrightarrow \quad \mathbf{M}_r$$

Monodromy of ∇_{λ} is constant.

Integrability: $\{H_r, H_s\} = 0.$

Conserved quantities: Monodromy data

Let $\Psi(x):$ solution to,

$$(\lambda \partial_x - A(x))\Psi(x) = 0, \qquad \Psi(x_0) = 0.$$

Monodromies M_r , defined by

$$\Psi(\gamma_r.x) = \Psi(x)M_r, \qquad M_r \in G = \mathrm{SL}(2,\mathbb{C}),$$

 $\Psi(\gamma_r.x)$: analytic continuation of $\Psi(x)$ along contour γ_r encircling only z_r ,

generate representations $\rho : \pi_1(C) \to G$, $C = \mathbb{P}^1 \setminus \{z_1, \ldots, z_n\}$.

Change of x_0 changes matrices M_r by overall conjugation.

 \rightsquigarrow Space of monodromy data: Character variety $\mathcal{M}_{char}(C)$,

the space of all representations $\rho: \pi_1(C) \to G$ modulo overall conjugation.

From connections to monodromy data and back

There is a locally biholomorphic map Hol from $\mathcal{M}^{\lambda}_{dR}(C)$ to $\mathcal{M}^{\lambda}_{B}(C)$, assigning

representations $\rho: \pi_1(C) \to \operatorname{SL}(2, \mathbb{C})$ to $(\mathcal{E}, \nabla_\lambda)$,

defined by computing the holonomy/monodromy of ∇_{λ} .

The inverse of this map: Riemann-Hilbert correspondence. Classical formulation: Find a matrix function $\Psi(x)$ satisfying the following conditions:

 $\begin{bmatrix} i & \Psi(x) \text{ is multivalued, analytic and invertible on } C_{0,n}.\\ ii & \text{The monodromy of } \Psi(x) \text{ is represented as}\\ \Psi(\gamma.x) &= \Psi(x)\rho(\gamma), \qquad \rho: \pi_1(C) \to \mathrm{SL}(2,\mathbb{C}). \end{bmatrix}$

The tau-function: Unification of integrable structures I

Isomonodromic tau-function, classical definition (Sato-Miwa-Jimbo):

$$\frac{\partial}{\partial z_r} \log \mathcal{T}(\mu, \mathbf{z}) = H_r$$

where μ : monodromy data, $\mathbf{z} = (z_1, \ldots, z_n)$, H_r : Schlesinger-Hamiltonians.

Longstanding problems:

- A) Calculate series expansions of $\mathcal{T}(\mu, \mathbf{z})$ around singular points.
- B) What are natural ways to fix dependence on monodromy parameters μ ?

Replace conserved quantities by initial values

For some fixed $\mathbf{z} = (z_1, \ldots, z_n)$ one may use holonomy map Hol to express the monodromy data μ as function $\mu(A, \lambda)$ of the data $(A(x), \lambda)$, representing the initial values of the isomonodromic deformation problem.

The tau-function $\mathcal{T}(\mu, \mathbf{z})$ can be used to define a function $\widehat{\Theta}(A, \mathbf{z}; \lambda)$,

$$\widehat{\Theta}(A,\lambda;\mathbf{z}) := \mathcal{T}(\mu(A,\mathbf{z};\lambda),\mathbf{z}).$$

The space of initial values is $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$, with

- $\mathcal{M}_{\mathrm{flat}}(C)$: moduli space of flat connections on C,
- λ : coordinate for \mathbb{C}^{\times} .

Variant of B): Are there natural ways to fix the normalisation of $\widehat{\Theta}(A, \lambda; \mathbf{z})$? Or:

How to extend the (locally defined!) functions $\widehat{\Theta}(A, \lambda; \mathbf{z})$ to a natural globally defined geometric object on $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$?

The tau-function: Unification of integrable structures II

Explicit formula: (conjectured by Gamayun-Iorgov-Lisovyy¹, proofs by Iorgov-Lisovyy-J.T.², Bershtein-Shchechkin³, Gavrylenko-Lisovyy⁴

$$\mathcal{T}(\sigma,\eta\,;\,\mathbf{z}) = \sum_{\mathbf{n}\in\mathbb{Z}^{n-3}} e^{i(\mathbf{n},\eta)} \mathcal{G}(\,\sigma+\mathbf{n}\,;\,\mathbf{z}\,),$$

where $\mathcal{G}(\sigma; \mathbf{z})$: instanton partition functions $\stackrel{\text{AGT}}{\leftrightarrow}$ conformal blocks have explicit power series expansions:

 ¹Inspired by/using results of Sato-Miwa-Jimbo, Moore, Moore-Nekrasov-Shatashvili, Nekrasov, Alday-Gaiotto-Tachikawa
 ²CFT: Monodromy of 𝔅it-degenerate fields ↔ construction of solution of Riemann-Hilbert problem
 ³VOA duality (Bershtein-Feigin-Litvinov) ↔ bilinear equations of Hirota type, related to Nakajima-Yoshioka blow-up
 ⁴Combinatorial expansion of Fredholm determinants; Cafasso-Gavrylenko-Lisovyy: Relation with Sato-Segal-Wilson

 $\mathcal{G}(\sigma; \mathbf{z})$ have explicit power series expansions (here combinatorics!):

Example n = 4: $\mathcal{G}(\sigma, \underline{\theta}; z) \mathcal{G}(\sigma, \underline{\theta}; z) = M(\sigma, \theta_4, \theta_3) M(\sigma, \theta_2, \theta_1) \mathcal{F}(\sigma, \underline{\theta}; z)$, where • the functions $M(\theta_3, \theta_2, \theta_1)$ are defined as

$$M(\theta_3, \theta_2, \theta_1) = \frac{\prod_{\epsilon=\pm} G(1 + \theta_3 + \epsilon(\theta_2 + \theta_1))G(1 + \theta_3 + \epsilon(\theta_2 - \theta_1))}{G(1 + 2\theta_3)G(1 - 2\theta_2)G(1 - 2\theta_1)},$$

where G(p) is the Barnes G-function that satisfies $G(p+1)=\Gamma(p)G(p)\text{,}$

• $\mathcal{F}(\sigma, \underline{\theta}; z)$ can be represented by the following power series

$$\mathcal{F}(\sigma\,,\, \underline{ heta}\,;\, z\,) = z^{\sigma^2- heta_1^2- heta_2^2}(1-z)^{2 heta_2 heta_3}\sum_{\xi,\zeta\in\mathbb{Y}} z^{|\xi|+|\zeta|}\mathcal{F}_{\xi,\zeta}(\sigma,\underline{ heta}),$$

with \mathbb{Y} : set of partitions, coefficients $\mathcal{F}_{\xi,\zeta}(\sigma,\underline{\theta})$ explicitly given in

$$\mathcal{F}_{\xi,\zeta}(\sigma,\underline{\theta}) = \prod_{(i,j)\in\xi} \frac{((\theta_2 + \sigma + i - j)^2 - \theta_1^2)((\theta_3 + \sigma + i - j)^2 - \theta_4^2)}{(\xi'_j - i + \xi_i - j + 1)^2(\xi'_j - i + \zeta_i - j + 1 + 2\sigma)^2}$$
$$\prod_{(i,j)\in\zeta} \frac{((\theta_2 - \sigma + i - j)^2 - \theta_1^2)((\theta_3 - \sigma + i - j)^2 - \theta_4^2)}{(\zeta'_j - i + \zeta_i - j + 1)^2(\zeta'_j - i + \xi_i - j + 1 - 2\sigma)^2}$$

 ζ_i / ζ'_i arm / leg length of $(i, j) \in \mathbb{Y}$.

The coordinates $\sigma = (\sigma_1, \ldots, \sigma_d)$, $\eta = (\eta_1, \ldots, \eta_d)$, d = n - 3appearing in magic formula

$$\mathcal{T}(\sigma,\eta\,;\,\mathbf{z}) = \sum_{\mathbf{n}\in\mathbb{Z}^d} e^{i(\mathbf{n},\eta)} \,\mathcal{G}(\,\sigma+\mathbf{n}\,;\,\mathbf{z}\,),$$

are **very** special:

a) reflect integrable structure of $\mathcal{M}_{char}(C)$

b) reflect algebraic structure of $\mathcal{M}_{char}(C)$:

Some coordinates are better than others....

a) (σ, η) reflect secondary integrable structure (for G = SL(2)):

• Pick pants decomposition $(\gamma_1, \ldots, \gamma_d)$.

• Write
$$\operatorname{tr}(\rho(\gamma_r)) = 2\cos(2\pi\sigma_r)$$
.

 \rightsquigarrow Commuting flows: If F is a function on $\mathcal{M}_{char}(C)$, let

$$\frac{\partial}{\partial \eta_r} F = \left\{ F, \, \sigma_r \right\}_{\text{GAB}}.$$
(1)

 (σ,η) , $\sigma = (\sigma_1, \ldots, \sigma_d)$, $\eta = (\eta_1, \ldots, \eta_d)$: Darboux coordinates,

$$\Omega_{\rm GAB} = \sum_{r=1}^d d\sigma_r \wedge d\eta_r,$$

Remark:

(1): Fenchel-Nielsen twist flows on Teichmüller component of real slice in $\mathcal{M}_{B}(C)$ We call such coordinates **FN-type coordinates**.

Some coordinates are better than others....

Explicit definition of η for $C = C_{0,4}$: Coordinate ring $(k \in \{0, q, 1, \infty\})$: Generators: $L_{0q} = \operatorname{Tr}(M_0 M_q), \ L_{01} = \operatorname{Tr}(M_0 M_1),$ $L_{0\infty} = \operatorname{Tr}(M_0 M_\infty), \ L_k = \operatorname{Tr} M_k = 2\cos 2\pi\theta_k,$ $L_0 L_q L_1 L_\infty + L_{0q} L_{01} L_{0\infty} + L_{0q}^2 + L_{01}^2 + L_{0\infty}^2 + L_0^2 + L_q^2 + L_1^2 + L_\infty^2 =$

 $= (L_0L_q + L_1L_\infty) L_{0q} + (L_0L_1 + L_qL_\infty) L_{01} + (L_qL_1 + L_0L_\infty) L_{0\infty} + 4.$

Pants decomposition ~>> Factorisation of holonomy:

$$L_{0\infty} = \operatorname{tr}(T^{-1}M_0TM_{\infty}) = \operatorname{tr}\left(T^{-1}\begin{pmatrix} * & \mu_0^+ \\ \mu_0^- & * \end{pmatrix} T\begin{pmatrix} * & \mu_{\infty}^+ \\ \mu_{\infty}^- & * \end{pmatrix}\right) \qquad T = \begin{pmatrix} V & 0 \\ 0 & V^{-1} \end{pmatrix}$$
$$= \mu_0^- \mu_{\infty}^+ V^2 + N_0 + \mu_0^+ \mu_{\infty}^- V^{-2}, \qquad \qquad V = e^{\pi \operatorname{i} \eta},$$

and $\mu_0^{\pm} = \mu_0^{\pm}(\sigma)$, $\mu_{\infty}^{\pm} = \mu_{\infty}^{\pm}(\sigma)$ and $N_0 = N_0(\sigma)$ do not depend on η . Cases n > 4 reduced to n = 4 by means of pants decomposition. Coordinates (σ, η) related to work of Nekrasov, Rosly, Shatashvili.

Some coordinates are better than others....

a) Reflect integrable structure of $\mathcal{M}_{\mathrm{B}}(C)$!

b) Reflect algebraic structure of $\mathcal{M}_B(C)$?

There is still a large freedom in the choice of η , $\eta \to \eta + f(\sigma)$.

However, there exists a small family of coordinates η of rational FN-type such that

$$L_{0\infty} = \frac{p_+(U) V^2 + p_0(U) + p_-(U) V^{-2}}{(U - U^{-1})^2}, \quad L_{01} = \frac{q_+(U) V^2 + q_0(U) + q_-(U) V^{-2}}{(U - U^{-1})^2},$$

 $q_{\pm}(U) = -p_{\pm}(U)U^{\pm 1}$, and $p_{\epsilon}(U)$: Laurent-polynomial in $U = e^{2\pi i \sigma}$.

Coordinate ring represented by **rational** functions of U and $V \leftrightarrow$ algebraic structure!

Residual, finite freedom: Note that

$$p_+(U)p_-(U) = \prod_{s,s'=\pm} 2\sin\pi(\sigma + s\sigma_0 + s'\sigma_q) \prod_{s,s'=\pm} 2\sin\pi(\sigma + s\sigma_1 + s'\sigma_\infty).$$

Choices for $p_{\pm}(U)$ from distributing factors $2 \sin \pi(...)$ between $p_{+}(U)$ and $p_{-}(U)$.

Good coordinates

Good coordinates (p,q) satisfy a), b) and allow us to define

$$\mathcal{T}_Q(q+\delta_r,p;z) = \mathcal{T}_Q(q,p;z),$$
$$\mathcal{T}_Q(q,p+\delta_r;z) = e^{-2\pi i q_r} \mathcal{T}_Q(q,p;z)$$

This is equivalent to existence of an expansion as generalised theta series

$$\mathcal{T}_Q(q, p; z) = \sum_{n \in \mathbb{Z}^d} e^{2\pi i(n,q)} \mathcal{Z}_Q(p+n; z).$$

Note: There are preferred normalisations of \mathcal{T}_Q caracterised by these conditions.

Example: Coordinates $(q, p) = (\eta, \sigma)$ with (η, σ) introduced above are good.

Questions:

a) Can we cover \mathcal{M}_{char} with good coordinates?

b) How much freedom is there in the choice of good coordinates?

Changes of coordinates induce change of normalisation

To a Poisson automorphism $(q_+, p_+) = (f(q_-, p_-), g(q_-, p_-))$ defined by an equation $p_+ = g(q_-, p_-)$ which can be partially inverted to define functions $q_- = q_-(p_+, p_-)$ we may assign a "difference generating function" $F(p_+, p_-)$ satisfying (here d = 1)

$$F(p_{+}+1,p_{-}) = e^{-2\pi i q_{+}(p_{+},p_{-})}F(p_{+},p_{-}),$$

$$F(p_{+},p_{-}+1) = e^{+2\pi i q_{-}(p_{+},p_{-})}F(p_{+},p_{-}),$$

$$q_{+}(p_{+},p_{-}) = f(q_{-}(p_{+},p_{-}),p_{-}).$$

The functions $\mathcal{T}_Q(q, p; z)$ associated to two different coordinate systems Q and Q' can differ by an overall μ -dependent factor $F_{QQ'}(p, p')$,

$$\mathcal{T}_Q(q, p; z) = F_{QQ'}(p, p') \mathcal{T}_{Q'}(q', p'; z).$$

Example:

If $(q, p) = (\eta, \sigma)$ with (η, σ) introduced above, and $(q', p') = (\eta', \sigma')$ with (η', σ') defined in the same way using another pants decomposition, $F_{QQ'}(p, p')$ has been found by lorgov, Lisovyy, Tykhyy, and Its, Lisovyy, Prokhorov.

Perfect coordinates

Let us now switch attention to the coordinates (\hat{q}, \hat{p}) on $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$ defined by composing (q, p) with Hol. Note that $\hat{q} = q(A, \lambda)$, $\hat{p} = p(A, \lambda)$.

We call the coordinates (\hat{q}, \hat{p}) **perfect** if they can be defined by Borel summation of the asymptotic expansion in powers of λ .

Key observation I (verified in Painlevé VI examples)

Coordinates (σ, η) can be perfect in subsets of $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$.

Key observation II (work in progress by D. Allegretti, T. Bridgeland)

The Fock-Goncharov coordinates associated to the WKB-triangulation defined by (A,λ) are perfect.

The analytic continuation of $\hat{Q} = (\hat{q}, \hat{p})$ to the domain of $\hat{Q}' = (\hat{q}', \hat{p}')$ defines a difference generating function.

 \rightsquigarrow Can extend definition of function $\widehat{\Theta}(A, \lambda; \mathbf{z})$ from domain of \hat{Q} to domain of \hat{Q}' !

Goal: Use this to define $\widehat{\Theta}(A, \lambda; \mathbf{z})$ globally.

An interesting discrete dynamics

It is interesting to consider dependence on λ for fixed A. Domains of FG-type coordinates: Wedges in λ -plane. Stokes graph and WKB triangulation change when crossing certain rays in λ -plane. Such rays are called "active".

Coordinates on two sides of a ray related by cluster trsf. \rightsquigarrow Discrete evolution described by cluster mutations, "time" step: number of crossings of active rays.

Link to the programs initiated by Gaiotto, Moore and Neitzke, and the one of Bridgeland.

Simplify life by confluence Painlevé VI \rightarrow Painlevé III

Isomonodromic deformations of $\partial_x - A(x)$,

$$A(x) = -\frac{\mathrm{i}r^2}{16}\sigma_3 - \frac{\mathrm{i}v}{4x}\sigma_1 + \frac{\mathrm{i}}{x^2}e^{-\frac{\mathrm{i}}{2}u\sigma_1}\sigma_3 e^{\frac{\mathrm{i}}{2}u\sigma_1}, \quad \frac{\partial u}{\partial r} = \frac{\partial H}{\partial v}, \quad H = \frac{v^2}{2r} - r\cos(u).$$
$$\frac{\partial v}{\partial r} = -\frac{\partial H}{\partial u},$$

Definition tau-function: $\frac{\partial}{\partial r} \ln \mathcal{T}(2^{-12}r^4) = -\frac{H}{8} + \frac{1}{4}\frac{\partial}{\partial r} \ln r e^{iu}$. \exists pair of solutions $Y^{(0)}(x)$, $Y^{(\infty)}(x)$ of $(\partial_x - A(x))Y(x) = 0$ having monodromy

$$Y^{(0)}(e^{2\pi i}x) = Y^{(0)}(x)M_0, \qquad M_0 = \sigma_x M_\infty \sigma_x = \begin{pmatrix} 0 & i \\ i & -2\cos 2\pi\sigma \end{pmatrix},$$
$$Y^{(\infty)}(e^{2\pi i}x) = Y^{(\infty)}(x)M_\infty$$

with $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. The two solutions are related by

$$Y^{(\infty)}(x) = Y^{(0)}(x)E, \qquad E = \frac{1}{\sin 2\pi\sigma} \begin{pmatrix} \sin 2\pi\eta & -i\sin 2\pi(\eta+\sigma) \\ i\sin 2\pi(\eta-\sigma) & \sin 2\pi\eta \end{pmatrix}$$

 (η, σ) : analogs of the coordinates used for Painlevé VI above.

Other good coordinates on $\mathcal{M}_{\rm char}$

Let us change coordinates from (σ,η) to (X,Y),

$$X = \frac{U - U^{-1}}{UV + (UV)^{-1}}, \qquad Y = \frac{V + V^{-1}}{U - U^{-1}}, \qquad U = e^{2\pi i \sigma},$$
$$V = e^{2\pi i \eta}.$$

It can be shown that

- $\log X$ and $\log Y$ are good coordinates (Its, Lisovyy, Tykhyy)
- U^2 , V^2 are Fock-Goncharov (cluster) coordinates for $\mathcal{M}_{\mathrm{flat}}(C)$ for a certain triangulation of the annulus with one puncture on each boundary.

Question:

 (σ, η) analogous to Gelfand-Zeitlin coordinates? (\mathcal{A} represented by rational functions).

Discrete dynamics in FG versus FN coordinates

Poisson-automorphism of $\hat{\mathcal{A}}$

$$\tau_{\rm FG}(X) = Y^{-1}, \qquad \tau_{\rm FG}(Y) = X(1+Y^2).$$

Let us then perform the change of variables:

$$X = \frac{U - U^{-1}}{UV + (UV)^{-1}}, \qquad Y = \frac{V + V^{-1}}{U - U^{-1}}.$$

Defining $\tau_{\rm FN}(U)=U$, $\tau_{\rm FN}(V)=VU^{-1}$ we have

$$\begin{split} \tau_{\rm FN}(X(U,V)) &= \tau_{\rm FN} \left(\frac{U - U^{-1}}{UV + (UV)^{-1}} \right) = \frac{U - U^{-1}}{V + V^{-1}} = \frac{1}{Y(U,V)} = (\tau_{\rm FG}(Y))(U,V), \\ \tau_{\rm FN}(Y(U,V)) &= \tau_{\rm FN} \left(\frac{V + V^{-1}}{U - U^{-1}} \right) = \frac{UV^{-1} + U^{-1}V}{U - U^{-1}} \\ &= \frac{U - U^{-1}}{UV + (UV)^{-1}} \left(1 + \frac{(V + V^{-1})^2}{(U - U^{-1})^2} \right) = (\tau_{\rm FG}(Y))(U,V). \end{split}$$

The converse is also true ~> dynamics becomes "free" in FN-type coordinates.

The resulting conjectural picture:

- FG type coordinates can be used to cover $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$.
- FN type coordinates not everywhere defined. When they are defined, they give equivalent descriptions of the dynamics generated by variation of $\arg(\lambda)$.
- Define a line bundle \mathcal{L}_{Θ} on $\mathcal{M}_{\text{flat}}(C) \times \mathbb{C}^{\times}$, transition functions: Difference generating functions of changes of variables between FG-type coordinates.
- There exist difference generating functions describing changes of coordinates from FN to FG-type.

The relevance of the resulting "beast" for topological string theory has been confirmed by explicit calculations using the topological vertex (Coman, Pomoni, J.T.).