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Quantum Teichmüller theory

Fock–Goncharov: a quantum higher Teichmüller theory is an
assignment

(S ,G ) 
(
X q
G ,S ,V

λ
G ,S

)
where

S is a 2-dimensional topological surface with boundary ∂S and
possibly marked points on ∂S ;
G is a simple Lie group;

and
ΓS is the mapping class group of the surface S ;
χq
G ,S is an algebra = a quantization of the moduli space of

(decorated) G -local systems on S ;
V λ
G ,S is a ΓS -equivariant Hilbert space representation of χq

G ,S
with the central character λ.
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Quantum Teichmüller theory

By construction, for any closed simple curve c ∈ S there exists a
commutative subalgebra Ac ⊂ χq

G ,S generated by quantized traces
of the monodromy along c . If c contracts to a puncture, i.e. a
component of ∂S without marked points, then Ac is central and
contributes to the central character λ in V λ

G ,S .

Consider a surface S which we cut along a closed simple curve c
into S = S1 tc S2:

S

S1 S2

c

p

By construction, there exists a map

χq
G ,S1
⊗ χq

G ,S2
−→ χq

G ,S .
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Modular functor conjecture

Conjecture (Fock–Goncharov ‘09)
1 As a representation of χq

G ,S1
⊗ χq

G ,S2
one has

V λ
G ,S '

∫ ⊕
C+

V λ,ν
G ,S1
⊗ V λ,−ν

G ,S2
m(ν)dν,

where eν are the eigenvalues of the monodromy along c , m(ν)
is the Sklyanin measure, and C+ ⊂ Rrk(g) is the positive Weyl
chamber.

2 This decomposition is ΓS -equivariant.

Theorem (Teschner ‘07)

A version of this conjecture holds for G = SL2(C).
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Idea of the proof

Theorem (Schrader–S ‘17)

For G = SLn, there exists a family of desired unitary equivalences

V λ
G ,S '

∫ ⊕
C+

V λ,ν
G ,S1
⊗ V λ,−ν

G ,S2
m(ν)dν,

Idea: diagonalize the subalgebra Ac . Quantum cluster structure
gives an infinite family of unitary transformations on VG ,S , which
allows you to bring the generators of Ac to the Hamiltonians of the
(quantum relativistic) Coxeter-Toda system. For general G can still
bring them to the Hamiltonians of the full Toda.
Questions:

How do the decompositions relate to each other?
Are they ΓS -equivariant?
How about closing punctures?
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χG ,S as a cluster variety

Fock–Goncharov: The semi-classical moduli space XG ,S is a
cluster Poisson variety:

1 it has an atlas of toric charts

TQ : (C∗)d −→ XG ,S ,

labelled by quivers Q.
2 The Poisson brackets between toric coordinates are

log-canonical:
{Yj ,Yk} = εkjYjYk

and are determined by the adjacency matrix εjk of Q.
3 Each chart has exactly d “adjacent” charts. The gluing data is

given by certain subtraction-free rational transformations: for
each 1 6 k 6 d there is a cluster mutation µk in direction k .
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Quantization of cluster charts

Promote each cluster chart to a quantum torus algebra

T q
Q =

〈
Ŷ1, . . . , Ŷd

∣∣∣ Ŷj Ŷk = q2εkj Ŷk Ŷj

〉
.

The quantum “gluing data” is realized via quantum cluster
mutations µqk , which are algebra automorphisms of conjugation by
the quantum dilogarithm Γq(Ŷk), where

Γq(X ) =
∞∏
n=1

1
1 + q2n+1X

.

In other words
µqk = AdΓq(Ŷk ) .
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Quantization of cluster varieties

Remark
The quantum dilogarithm is a q-analogue of a Γ-function:

Γq(q2X ) = (1 + qX )Γq(X ).

This remark guarantees that quantum mutations provide
isomorphisms

µqk : Frac(T q
Q ) ' Frac(T q

µk (Q))

Definition

The algebra X q
G ,S = Oq(XG ,S) is the subalgebra of any quantum

chart T q
Q , consisting of those elements that stay Laurent under any

finite sequence of cluster mutations.

Alexander Shapiro Integrable systems in higher Teichmuller theory



Positive representations

Set
q = eπib

2
where b2 ∈ R>0 \Q.

Embed each quantum cluster chart T q
Q into a Heisenberg algebra

H =

〈
ŷ1, . . . , ŷd

∣∣∣∣ [ŷj , ŷk ] =
1
2πi

εkj

〉
,

by the homomorphism

Ŷj 7→ e2πbŷj .

H has irreducible Hilbert space representations in which the
generators Ŷj act by positive self-adjoint operators.
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Non-compact quantum dilogarithm

Problem: the series for Γq does not converge when |q| = 1.

Luckily, there is a non-compact quantum dilogarithm function ϕ(z)
is the unique solution of the pair of difference equations

ϕ(z − ib±1/2) = (1 + e2πb±1z)ϕ(z + ib±1/2).

Now, we get
µqk = Adϕ(−ŷk ) .

Since
z ∈ R =⇒ |ϕ(z)| = 1,

and each ŷk is self-adjoint, quantum cluster mutations become
unitary operators.
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Positive representations

Embedding χq
G ,S into quantum cluster charts, and pulling back

their natural representations, we obtain a (family of unitary
equivalent) representations V λ

G ,S .

For each triangulation of S with vertices at punctures or marked
points, there is a quiver Q and the cluster chart TQ . Flips of
diagonals are realized by a specific sequence of ≈ n3/6 mutations.

The quantum dilogarithm satisfies the pentagon identity:

[p̂, x̂ ] =
1
2πi

=⇒ ϕ(p̂)ϕ(x̂) = ϕ(x̂)ϕ(p̂ + x̂)ϕ(p̂).

So we get a unitary representation of the cluster modular
group(oid) (the one generated by flips). It contains ΓS .
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Quantum monodromies

The moduli space of decorated G -local systems implies, in
particular, that there is a trivialization of the system along each
open component of ∂S \ {marked points}. So, each path γ that
starts and ends on such a component defines a quantum
monodromy

Mγ ∈ Matn(C)⊗X q
G ,S .

These monodromies satisfy RLL-relations. Therefore, you get
homomorphisms from RLL-algebras to X q

G ,S . The following two
pictures, in fact, represent injective homomorphisms.

Uq(b) Oq(Gw0,w0)
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Relation to quantum groups

If S is disk with 4 marked points, there is an embedding
Oq(Gw0,w0) ↪→ χq

G ,S ;
If S is a cylinder with 1 marked points on each boundary, there
is an embedding Oq(Gw0,w0/AdH) ↪→ χq

G ,S ;

Theorem (Schrader–S, Ip ‘16)

Let S be a punctured disk with 2 marked points, then there is an
embedding: Uq(gn) ↪→ χq

G ,S .

Theorem in progress: Goncharov–Shen showed that each
puncture gives rise to a natural Weyl group action on χq

G ,S . For S
a punctured disk with 2 marked points:

Uq(g) ' (χq
G ,S)W
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Cutting surfaces

Task: find a unitary equivalence:

V λ
G ,S '

∫ ⊕
C+

V λ,ν
G ,S1
⊗ V λ,−ν

G ,S2
m(ν)dν,

Idea: find a triangulation in which
c is contained in a cylinder. Then
Ac is generated by the Hamiltoni-
ans of the full Toda system.

S

S1 S2

c

There exists a sequence of quantum cluster mutations sending
Hamiltonians of the full Toda system, to the Hamiltonians of the
Coxeter-Toda system.

New task: diagonalize quantum Coxeter-Toda Hamiltonians.
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Quantization of Coxeter–Toda system

Consider the Heisenberg algebra Hn generated by {xj , pj}nj=1

[pj , xk ] =
δjk
2πi

acting on L2(Rn), via

pj 7→
1
2πi

∂

∂xj

The representation of the quantum torus algebra for the
Coxeter–Toda quiver:

x2 − x1

x3 − x2

x4 − x3

p1 − p2 + x1 − x2

p2 − p3 + x2 − x3

p3 − p4 + x3 − x4

−p1 + u

0

6 5

4 3

2 1 e.g. Ŷ2 acts by multi-
plication by e2πb(x2−x1).
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Construction of quantum Hamiltonians

Theorem (Schrader–S)

Consider the Baxter operator Qn(u) obtained by mutating
consecutively at 0, 1, 2, . . . , 2n − 2. Then

1 The unitary operators Qn(u) satisfy

[Qn(u),Qn(v)] = 0,

2 If An(u) = Qn(u − ib/2)Qn(u + ib/2)−1, then one can expand

An(u) =
n∑

k=0

HkU
k , U := e2πbu

and the commuting operators H1, . . . ,Hn quantize the GLn
Coxeter–Toda Hamiltonians.
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The Dehn twist

Additionally, there is a Dehn twist operator realized as mutations
at all even nodes postcomposed by eπi(p

2
1+···+p2

n ):

τn = eπi(p
2
1+···+p2

n )ϕ(x2 − x1) . . . ϕ(xn − xn−1)

which commutes with the Baxter operator

[τn,Qn(u)] = 0

Problem: Construct complete set of joint eigenfunctions, the
b -Whittaker functions, for operators Qn(u), τn.
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Example

For example, for n = 1 we have

Q1(u) = ϕ(p1 + u), τ1 = eπip
2
1

Then the function
Ψλ(x1) = e2πiλx1

satisfies

Q1(u)Ψλ(x1) = ϕ(λ+ u)Ψλ(x1),

τ1Ψλ(x1) = eπiλ
2
Ψλ(x1).

Here we make sense of the operator ϕ(p + u) via the Fourier
transform formula for the quantum dilogarithm:

const · ϕ(w) =

∫
e2πit(w−cb)

ϕ(t − cb)
dt, cb = i

b + b−1

2
.
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Construction of b -Whittaker functions

Set Rn(u) to be the same as the Baxter operator Qn(u) but
without the last mutation. We then define

Ψλ(x) := Rn(cb − λn) . . .R2(cb − λ2) · e2πb(λ·x),

where
λ = (λ1, . . . , λn), x = (x1, . . . , xn).
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Unitarity of the b -Whittaker transform

Theorem (Schrader–S)

The b -Whittaker transform

W : L2(Rn) −→ L2(Rn,m(λ)dλ),

(W[f ])(λ) =

∫
Rn

Ψ
(n)
λ (x)f (x)dx

is a unitary equivalence. Moreover

W ◦ τ = eπi(λ
2
1+···+λ2

n) ◦W,

W ◦ Qn(u) =
n∏

j=1

ϕ(u − λj) ◦W,

W ◦ H(n)
k = ek(Λ−1) ◦W,

where ek is the elementary symmetric function and Λ = e2πbλ.
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Unitarity of the b -Whittaker transform

Writing all the Rn(λ) as integral operators, we get an explicit
Givental-type integral formula for the b -Whittaker functions.

Moreover, using the cluster construction of the b -Whittaker
functions, we prove the following:

Theorem (Schrader–S)

The b -Whittaker transform

(W[f ])(λ) =

∫
Rn

Ψ
(n)
λ (x)f (x)dx

is a unitary equivalence.
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ΓS -equivariance

Question: is our recipe for cutting surfaces ΓS -equivariant?

Turns out that it is enough to check the following case:

3 flips 2 flips
(& a Dehn twist)

cut

cut

For G = SL2 this is equivalent to the eigenproblem for the Baxter
operator: W ◦ Q2(u) = ϕ(u − λ)ϕ(u + λ) ◦W.
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ΓS -equivariance

In general, the equality

W ◦ {3 flips} = {2 flips} ◦W,

can be shown by applying the pentagon relation

ϕ(p)ϕ(x) = ϕ(x)ϕ(p + x)ϕ(p)

together with relation

pnf (x) = 0 =⇒ ϕ(xn + α)ϕ(pn + xn + α + cb)f (x) = f (x).
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Closing punctures

There remains one more problem: what if we cannot include the
cutting cycle into a cylinder? In that case, we need to make an
additional cut, and show in a similar fashion that the result does
not depend on the cut. Alternatively, we can drill a puncture, and
show that nothing depends on that puncture.

How do we drill/close punctures? Let S× be a surface S with
additional puncture.

S S×

Then we have X q
G ,S× ⊂ X q

G ,S ⊗ Uq(g), and we can find a subset
V ' V λ

G ,S of (tempered) distributions in V λ
G ,S× , on which Uq(g)

acts by the counit. Equivalently, we’re setting monodromy around
the puncture to be trivial. This gives us an embedding
X q
G ,S

∣∣
V
↪→ X q

G ,S×

∣∣
V
.
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Monodromies across the cutting cycle

The following question appears to be very instructive: what
happens with monodromies Mγ , γ is transversal to c , when we cut
along c?

S

S1 S2

c
γ

In fact, Mγ = M2CM1, and the Coxeter transport matrix C is the
only one that is affected by cutting.

For G = SLn we have

C = τ j−1
n

(
e−2πbxnH

(n−1)
k−1

)
.
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Coxeter transport matrix

Let µ, ν ⊂ Bk,n−k be a pair of Young diagrams fitting in a box with
n − k rows and k columns. That is

µ = (µ1, . . . , µn−k), ν = (ν1, . . . , νn−k)

µi 6 µi+1, νi 6 νi+1, and µn−k , νn−k 6 k.

Set
ρ = (1, 2, . . . , n − k),

and define C νµ to be the submatrix of C at the intersection of rows
ν + ρ with columns µ+ ρ.

In the next slide, let us for simplicity work classically, i.e. set q = 1,
and consider Poisson algebras instead of algebras of differential
operators.
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Whittaker transformed Coxeter transport matrix

Consider a Poisson algebra:

A(n) = C
[
Dj ,Λj

]n
j=1, {Dj ,Λk} = δjkDjΛk .

Let f , g be a pair of symmetric functions. Set

R
(n)
k [f , g ] =

∑
J⊂[1,...,n]
|J|=k

f (ΛJ)g(Λ \ ΛJ) ·DJ

with
DJ =

∏
r∈J

∏
s 6∈J

(1− Λi ,sΛ−1
i ,r )−1Dr .

Theorem (Schrader–S)

W ◦ det(C νµ ) = τ1−k ◦ R(n)
k [sµ, sν∗ ],

where sµ, sν∗ are Schur functions and µ∗ = (Bk,n−k \ µ)t .
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Macdonald operators

Example: Consider Macdonald operator

Mk =
∑

J⊂[1,...,n]
|J|=k

∏
j∈J
6̀∈J

tΛ` − Λj

Λ` − Λj
DJ .

Rewriting
Mk = τn−k

∑
µ⊂Bk,n−k

(−t)|µ|Rk [sµ, sµ∗ ]

we get
W ◦

∑
µ⊂Bk,n−k

(−t)|µ| det
(
Cµµ∗
)

= Mk ◦W.

Thank you!
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