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This talk is based on work in progess with A. Shapiro.
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Representations of split real quantum groups

I’ll start by talking about some problems in the representation
theory of non-compact quantum groups: their split real forms.

Let ~ ∈ R>0 \Q>0, and set

q = eπi~, so |q| = 1.

If Uq(g) is a quantum group with Chevalley generators Ei ,Fi ,Ki ,
its split real form is defined by the ∗-involution

∗Ei = Ei , ∗Fi = Fi , ∗Ki = Ki .
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Principal series for Uq(sl2)

Ponsot and Teschner, Faddeev ’99: The split real quantum
group Uq(sl2) has a principal series of ∗-representations

Ps ' L2(R), s ∈ R≥0,

with the following properties:

the Chevalley generators E ,F ,K of the quantum group act on
Ps by positive essentially self-adjoint operators;

Ps is a bimodule for the quantum group Uq(sl2) and its
modular dual Uq∨(sl2), where q, q∨ are related by the
modular S-transformation:

q = eπi~, q∨ = eπi/~.
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Tensor product decomposition

Most importantly, Ponsot and Teschner showed that the class of
principal series of Uq(sl2) is closed under taking tensor products by
constructing an isomorphism of Uq(sl2)–modules

Ps1 ⊗ Ps2 =

∫ ⊕
R≥0

Psdµ(s).

The measure on the Weyl chamber R≥0 is

dµ(s) = 4 sinh (2π~s) sinh
(
2π~−1s

)
ds.
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Higher rank principal series

Frenkel and Ip, ’11 : For g of any finite Dyknin type, the split
real quantum group Uq(g,R) has a family of principal series
representations Pλ labelled by points of a Weyl chamber λ ∈ C+.

As in the rank 1 case:

the Chevalley generators of the quantum group act on Pλ by
positive essentially self-adjoint operators;

Pλ is a bimodule for the quantum group Uq(g) and its
Langlands dual Uq∨(Lg), where q, q∨ are related by the
modular S-transformation:

q∨ = eπi/~.
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Tensor decomposition, branching rules in higher rank?

Some natural representation theoretic questions to ask in higher
rank:

Problem 1 (posed by Frenkel and Ip, ’11) : Show the principal
principal series representations Pλ of Uq(g) are closed under tensor
product, and decompose the tensor product into irreducibles.

Problem 2: Decompose the Uq(sln+1) principal series
representation Pλ into irreducibles as a Uq(sln)–module.
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Two geometric realizations of Uq(sln)

With A. Shapiro, we solved Problem 2, and Problem 1 for g = sln,
by relating each to a different geometric realization of Uq(g).

For the decomposition of tensor products, we used

Theorem (S.-Shapiro ’16)

There is an algebra embedding

Uq(sln)→ X q
G ,S

of Uq(sln) into the quantized algebra of functions X q
PGLn,S

on the
moduli space of framed PGLn-local systems on the punctured
disk S with 2 marked points on its boundary.
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Cluster realization of Uq(sln)

Thanks to the fundamental results of Fock and Goncharov, this
means the quantum group is embedded into a quantum cluster
algebra: a combinatorially defined algebra encoded by a quiver.
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Cluster realization of Uq(sln)
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Another realization of Uq(sln)

In order to solve the branching Problem 2, we need to diagonalize
the action of the center Z (Uq(sln)) ⊂ Uq(sln+1) on the principal
series representation Pλ of Uq(sln+1).

It turns out this problem is related to another geometric realization
of Uq(sln), due to Braverman, Finkelberg and Nakajima.
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Another realization of Uq(sln)

Given the data of a reductive group G and a representation V ,
BFN ’16 construct a space RG ,V equipped with an action of
C∗ n G [[z ]], which fits into a convolution diagram.

The convolution equips

AG ,V := KC∗nG [[z]](RG ,V )

with the structure of an associative algebra, called the K -theoretic
quantized Coulomb branch algebra associated to (G ,V ).
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Coulomb branches of quiver gauge theories

Important special case: Suppose Γ is a quiver with vertices Γ0,
edges Γ1, and that we label each vertex v ∈ Γ0 with an natural
number nv .

If Γ′0 ⊂ Γ0 is a subset of nodes whose complement consists only of
leaves, then we have a reductive group

GΓ =
∏
v∈Γ′0

GL(nv ),

and a representation

VΓ =
⊕
e∈Γ1

Hom(Cns(e) ,Cnt(e))

of GΓ.
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Example

E.g.

1 2 3 4 5

C C2 C3 C4 C5

with Γ0 = {1, 2, 3, 4}, so that

GΓ = GL(1)× GL(2)× GL(3)× GL(4),

and
VΓ = Mat1×2 ⊕Mat2×3 ⊕Mat3×4 ⊕Mat4×5.

In this case,
AG ,V ' Uq(sl5).
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From one realization to another via mutations
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From one realization to the other via mutations
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Relativistic Toda space

From Sasha’s talk, we recognize several copies of quivers for
relativistic Toda spaces:

Figure: SL4-Toda subquiver
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So, the quiver for Uq(sln) from Teichmüller theory is mutation
equivalent to one obtained by gluing quivers for gl1, gl2, . . . , gln−1

relativistic Toda spaces: e.g. Uq(sl5)

Gus Schrader Gelfand–Zeitlin modules under Whittaker transform



Gelfand–Zeitlin systems

Back to problem 2:
The chain of embeddings

gl1 ⊂ gl2 ⊂ · · · ⊂ gln−1 ⊂ gln,

where glk is embedded as matrices zero outside of the top-left
k × k square, induces embeddings

Uq(gl1) ⊂ Uq(gl2) ⊂ · · · ⊂ Uq(gln).

Idea: (Gelfand, Zeitlin) If

Zk = center of Uq(glk),

then [Zj ,Zk ] = 0 for all 1 ≤ j , k ≤ n.
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Gelfand–Zeitlin systems

The subalgebra
GZn ⊂ Uq(gln)

generated by Z1, . . . ,Zn is a free commutative subalgebra in

1 + 2 + . . . n =
n(n + 1)

2
variables,

called the Gelfand-Zeitlin subalgebra.
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Cluster structure of the Gelfand–Zeitlin system

The quantum cluster algebra has a natural functional
representation on the Laurent ring in n(n − 1)/2 variables

C[X±1
ij ]1≤j≤i≤n−1.

The Gelfand-Zeitlin Hamiltonians are given by the collection of all
gl1, gl2, . . . , gln−1 open relativistic Toda Hamiltonians

H
gli
k , 1 ≤ k ≤ i ≤ n − 1.
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Toward the branching rule

For |q| = 1, the gln quantum Coxeter-Toda operators

H1, . . . ,Hn

act by positive operators on the Hilbert space L2(Rn).

They have a set of eigendistributions

Ψλ1,...,λn(x1, . . . , xn)

called ~-Whittaker functions. The joint spectrum is
parameterized by

λ = (λ1, . . . , λn) ∈ hR/W .
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The Whittaker transform

The gl(n) Coxeter-Toda Whittaker transform is the integral
transform

W[f (x)] = f̂ (λ) =

∫
f (x)Ψλ(x)dx .

Baby example: when n = 1,

Ψλ(x) = e2πiλx ,

so the Whittaker transform

Wgl1 [f (x)] =

∫
f (x)e−2πiλxdx

is just the Fourier transform. In particular, it is a unitary
automorphism of L2(R).
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Unitarity of the Whittaker transform

For gl(n), consider the Hilbert space

L2(Rn,m(λ)dλ),

where

m(λ) =
∏
i<j

sinh(~(λj − λk)) sinh(~−1(λj − λk))

is the modular Sklyanin measure.

Let us also write

ek(Λ), 1 ≤ k ≤ n

for the k-th elementary symmetric function in variables

Λ1 = e2π~λ1 , . . . ,Λn = e2π~λn
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Unitarity of the Whittaker transform

Theorem (S.–Shapiro ‘17)

The Coxeter-Toda Whittaker transform

W : L2(Rn)→ L2(Rn,m(λ)dλ)

is a unitary equivalence with inverse transform

W∗[f̂ ] =

∫
f̂ (λ)Ψλ(x)m(λ)dλ,

which diagonalizes the Toda operators

W ◦ Hk = ek(Λ) ◦W,
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The branching rule

So we can apply the ‘forward’ sln–Whittaker transform to
diagonalize the center of Z (sln) ⊂ sln+1, to get the branching rule

Psln+1

λ '
∫
ν∈C+

Psln
ν msln(ν)dν

Similarly, diagonalizing the full Gelfand–Zeitlin subalgebra gives an
isomorphism of the principal series representations Pλ with a
corresponding Gelfand-Zeitlin representation of Uq(sln) by
rational q-difference operators introduced by Gerasimov, Kharchev,
Lebedev, Oblezin.
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Cluster realizations of Coulomb branch algebras

Now, when (G ,V ) comes from a quiver Γ the BFN Coulomb
branch algebra AG ,V also has Gelfand-Zeitlin representations in
which it acts by rational q-difference operators.

So we can try to turn the previous logic on its head: associate to
(G ,V ) a quiver built from Coxeter-Toda quivers, and use the
inverse Whittaker transform to try to embed AG ,V into the
corresponding quantum cluster algebra.

Gus Schrader Gelfand–Zeitlin modules under Whittaker transform



Gelfand-Zeitlin representations of AG ,V

Equivariant localization with respect to the maximal torus T ⊂ GΓ

gives an embedding of AG ,V into an algebra of rational
q-difference operators.

For each round node i ∈ Γ0 with dimension ni , we have a variable
group Λi ,•, with ni variables

Λi ,j , 1 ≤ j ≤ ni .

(which we will think of as being on the ‘spectral’ side of the
Whittaker transform for glni .)
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Gelfand-Zeitlin representations of AG ,V

We consider the ring of difference operators

Drat
q (Γ; Λ) =

⊗
i∈Γ′0

Drat
q (ni ),

where

Dq(ni ) =
C〈Dij ,Λij〉nij=1

〈DijΛrs = qδir δjs ΛrsDij〉
,

and the localization is taken with respect to a set of root
hyperplanes.
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Minuscule monopole operators

Weekes ’19 proved that AG ,V is generated by certain explicit
K -classes called minuscule monopole operators, and there is one
(pair of) such generators for each node of the quiver determining
(G ,V ).
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The cluster algebra CG ,V

We now form a cluster algebra quiver Q(G ,V ) by taking for each
round node i ∈ Γ0 a glni Coxeter-Toda quiver, and gluing them
together by the following procedure.
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How to build the quiver QG ,V

If Γ is the quiver of the gauge theory, associate to it a cluster
algebra quiver QG ,V as follows.

To each round node i ∈ Γ with dimension label ni , we
associate a rigged SLni Coxeter–Toda quiver Qi with two
extra frozen variables;

For each directed edge e : i → j in Γ1, we add a new node
(shown in blue) and use it to glue the top of Qi to the
bottom of Qj as shown.
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The cluster algebra CG ,V

The cluster algebra CG ,V corresponding to quiver Q(G ,V ) is
embedded as a subalgebra of q–difference operators on the Laurent
ring

C[X±1
i ,j ]1≤j≤ni .
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Embedding to the cluster algebra

So at this point we have a diagram

Drat
q (Γ,Λ•)

W∗ // Dpol
q (Γ,X•)

AG ,V

OO

? // CG ,V

OO

and we need to show that all minuscule monopole operators are
contained in the cluster algebra CG ,V ⊂ Dpol

q (Γ,X•).
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An easy special case

Suppose that the round node i ∈ Γ0 has no in-pointing arrows:
It’s easy to see in this case that the corresponding monopole
operator is a cluster monomial, so is by definition contained in
the cluster algebra CG ,V .
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Bifundamental Baxter operator

Now imagine we have two gauge theory quivers Γ, Γ′ which differ
only by changing the orientation of a single edge between distinct
vertices i , j with dimension labels (n,m).
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Bifundamental Baxter operator

e.g. for (n,m) = (4, 2) the corresponding piece Qn,m of the
cluster algebra quiver looks like
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Bifundamental Baxter operator

The cluster algebra quiver Qn,m has a nontrivial mapping class
group element βn,m given by a sequence of mutations, which we
call the bifundamental Baxter operator.

This automorphism is a cluster DT-transformation in the sense of
Keller for the quiver Qn,m.
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Bi-fundamental Baxter operator
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Mutate column-by-column, reading left to right. In each column
mutate at circled vertices first bottom to top, and then in the rest
top to bottom.
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Bifundamental Baxter operator

For us, the crucial property of the Baxter operator is that it acts
diagonally in the Whittaker basis:

βn,m ·
(

Ψ
(n)
λ (x) � Ψ(m)

µ (y)
)

=
∏
j ,k

ϕ(λj + µk) ·Ψ(n)
λ � Ψ(m)

µ ,

where ϕ(z) is Faddeev’s quantum dilogarithm.

If {Mi ,Mj}, {M ′i ,M ′j} are the monopole operators for nodes i , j of
Γ, Γ′ respectively, this relation implies

βMiβ
−1 = M ′i , βMjβ

−1 = M ′j .
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Bifundamental Baxter operator

So applying Baxter operators to reverse all incoming edges to a
given vertex, we can mutate the corresponding monopole operator
to a cluster monomial!

=⇒ AQ,V ⊂ CQ,V .
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Cluster realizations of K -theoretic Coulomb branches for
quiver theories

So, we’ve proved

Theorem (A. Shapiro-S.)

For each quiver without loops, its K -theoretic Coulomb branch
algebra can be embedded into a quantum upper cluster algebra,
such that each minuscule monopole operator is a cluster monomial.

In particular, this class of quivers realizes the generalized affine
Grassmannian slices Wλ

µ(g) for g of type ADE .

We conjecture (with M. Shapiro) that this embedding is an
isomorphism.
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Merci de votre attention!

Gus Schrader Gelfand–Zeitlin modules under Whittaker transform


