# Multiplicities from volumes

Colin McSwiggen

Brown University

ICR 2019

Pre-pre-print: http://cosmc.net/mult.pdf

Colin McSwiggen (Brown University)

Multiplicities from volumes

ICR 2019 1 / 25

→ 3 → 4 3

Tensor product of irreps of a compact semisimple Lie algebra  $\mathfrak{g}$ :

$$V_\lambda \otimes V_\mu = igoplus_
u C^
u_{\lambda\mu} V_
u.$$

The multiplicity  $C_{\lambda\mu}^{\nu}$  equals the number of integer points in a polytope  $H_{\lambda\mu}^{\nu} \subset \mathbb{R}^{N}$ . See e.g. Berenstein–Zelevinsky '88, Knutson–Tao '98.

Actually computing the multiplicities takes more work!

イロト イポト イヨト イヨト 二日

## Polyhedral models of multiplicities



The  $\mathfrak{su}(4)$  hive polytope for  $\lambda = (21, 13, 5), \ \mu = (7, 10, 12), \ \nu = (20, 11, 9).$ *Figure: Coquereaux–Zuber '18.* 

Colin McSwiggen (Brown University)

Multiplicities from volumes

ICR 2019 3 / 25

#### **Naive question:** Given $Vol(H_{\lambda\mu}^{\nu})$ , can you compute $C_{\lambda\mu}^{\nu}$ ?

This amounts to inverting a semiclassical limit.

#### **Naive question:** Given $Vol(H_{\lambda\mu}^{\nu})$ , can you compute $C_{\lambda\mu}^{\nu}$ ?

This amounts to inverting a semiclassical limit.

#### Unsurprising, anticlimactic answer: Nope.

(日) (四) (王) (王) (王)

# More serious question: Given $Vol(H_{\lambda\mu}^{\nu})$ for all $(\lambda, \mu, \nu)$ , can you compute all $C_{\lambda\mu}^{\nu}$ ?

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

More serious question: Given  $Vol(H_{\lambda\mu}^{\nu})$  for all  $(\lambda, \mu, \nu)$ , can you compute all  $C_{\lambda\mu}^{\nu}$ ?

Answer: Yes! In fact there are several ways to do it.

We think of the weights  $\lambda, \mu, \nu$  as lying in the dominant chamber  $C_+$  of a Cartan subalgebra  $\mathfrak{t} \subset \mathfrak{g}$ .

Then the polytope  $H_{\lambda\mu}^{\nu}$  is cut out by a system of linear inequalities depending on  $x \in \mathbb{R}^{N}$  and on  $(\lambda, \mu, \nu)$ :

$$H_{\lambda\mu}^{\nu} = \{ \ x \in \mathbb{R}^{N} \mid \ell(\lambda, \mu, \nu, x) \ge 0 \ \forall \ \ell \in L \ \},\$$

where  $L \subset (\mathfrak{t}^3 \times \mathbb{R}^N)^*$ . So we can talk about  $H^{\gamma}_{\alpha\beta}$  for  $\alpha, \beta, \gamma \in \mathfrak{t}$ .

# The volume function

There is a special function  $\mathcal{J}: \mathfrak{t}^3 \to \mathbb{R}$  associated to  $\mathfrak{g}$ , which computes  $\operatorname{Vol}(H^{\gamma}_{\alpha\beta})$ . First, some notation...

The discriminant of  $\mathfrak{g}$ :

$$\Delta_{\mathfrak{g}}(x) = \prod_{\alpha \in \Phi^+} \langle \alpha, x \rangle,$$

and the Harish-Chandra orbital integral:

$$\mathcal{H}(x,y) := \int_{\mathcal{G}} e^{\langle \operatorname{Ad}_g y, x \rangle} dg, \qquad x,y \in \mathfrak{t} \otimes \mathbb{C},$$

where G is a connected group with Lie algebra  $\mathfrak{g}$ , and dg is the normalized Haar measure.

For  $\alpha, \beta, \gamma \in \mathfrak{t}$ , define:

$$\mathcal{J}(\alpha,\beta;\gamma) := \\ \frac{\Delta_{\mathfrak{g}}(\alpha)\Delta_{\mathfrak{g}}(\beta)\Delta_{\mathfrak{g}}(\gamma)}{(2\pi)^{r}|W|\Delta_{\mathfrak{g}}(\rho)^{3}} \int_{\mathfrak{t}} \Delta_{\mathfrak{g}}(x)^{2} \mathcal{H}(ix,\alpha) \mathcal{H}(ix,\beta) \mathcal{H}(ix,-\gamma) \, dx.$$

Then for  $\alpha, \beta, \gamma$  dominant,  $\mathcal{J}(\alpha, \beta; \gamma) = \operatorname{Vol}(H_{\alpha\beta}^{\gamma})$ .

(See Coquereaux–M.–Zuber '19 for details.)

## The volume function

We usually fix  $\alpha, \beta$  and consider  $\mathcal{J}$  as a W-skew-invariant function of  $\gamma \in \mathfrak{t}$ .



 $\mathcal{J}(\alpha,\beta;\gamma)$  for  $\mathfrak{so}(5)$ , with  $\alpha = (4,7)$ ,  $\beta = (5,3)$ . Coordinates are in the fundamental weight basis.

Colin McSwiggen (Brown University)

Let  $\mathcal{O}_{\alpha}$ ,  $\mathcal{O}_{\beta}$  be the coadjoint orbits of  $\alpha, \beta \in \mathcal{C}_+$ .

Choose  $A \in \mathcal{O}_{\alpha}$ ,  $B \in \mathcal{O}_{\beta}$  uniformly at random. Let  $p(\gamma | \alpha, \beta)$  be the probability density of  $\gamma \in \mathcal{C}_+$  such that  $A + B \in \mathcal{O}_{\gamma}$ .

E.g.: Probability density of eigenvalues of sum of two uniform random Hermitian matrices with prescribed eigenvalues.

Then:

$$\mathcal{J}(\alpha,\beta;\gamma) = \frac{\Delta_{\mathfrak{g}}(\alpha)\Delta_{\mathfrak{g}}(\beta)}{\Delta_{\mathfrak{g}}(\gamma)\Delta_{\mathfrak{g}}(\rho)} \ p(\gamma|\alpha,\beta).$$

The product of orbits  $\mathcal{O}_{\alpha} \times \mathcal{O}_{\beta} \times \mathcal{O}_{-\gamma}$  is also a symplectic *G*-manifold with moment map  $(A, B, C) \mapsto A + B + C$ .

For generic  $(\alpha, \beta, \gamma)$  such that 0 is a regular value of the moment map,

 $\mathcal{J}(\alpha,\beta;\gamma) = (2\pi)^{|\Phi^+|} \Delta_{\mathfrak{g}}(\rho) \operatorname{Vol}[\left(\mathcal{O}_{\alpha} \times \mathcal{O}_{\beta} \times \mathcal{O}_{-\gamma}\right) // G],$ 

where Vol is the Liouville volume.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

# Initial motivation: $\mathcal{J}\text{-LR}$ relations

Write  $\lambda' = \lambda + \rho$ , etc. Let Q be the root lattice.

Theorem (Coquereaux–Zuber '18, C.–M.–Z. '19 + Etingof–Rains '18) Suppose  $\lambda + \mu - \nu \in Q$ . Then  $\mathcal{J}(\lambda', \mu'; \nu') = \sum_{\kappa \in K} \sum_{\substack{\tau \in \lambda + \mu + Q \\ \cap C_{+}}} r_{\kappa} C_{\lambda\mu}^{\tau} C_{\tau\kappa}^{\nu}$ 

where  $K = Q \cap \text{Conv}(W\rho)$  and  $r_{\kappa}$  are some computable coefficients.

This formula recovers the asymptotic relation between  $\mathcal{J}$  and  $C^{\nu}_{\lambda\mu}$  for "large representations," but is more precise. **Can we "invert" it?** 

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Define a measure  $B_c[\Phi^+]$  on t by

$$\int_{\mathfrak{t}} f \ dB_{c}[\Phi^{+}] = \int_{-1/2}^{1/2} \cdots \int_{-1/2}^{1/2} f\left(\sum_{\alpha \in \Phi^{+}} t_{\alpha}\alpha\right) \prod_{\alpha \in \Phi^{+}} dt_{\alpha}, \quad f \in C^{0}(\mathfrak{t}).$$

This is the *centered box spline* associated to the positive roots. It has a piecewise polynomial density b(x).

A B F A B F

#### Four ways to think about the box spline

First way: As a convolution of uniform measures on line segments.



Figure: Boehm-Prautzsch '02, "Box Splines" (a good intro).

**Second way:** The density b(x) computes the volume of the fibers of a projection of a polytope.

|                                    |                             |          | = 240   |
|------------------------------------|-----------------------------|----------|---------|
| Colin McSwiggen (Brown University) | Multiplicities from volumes | ICR 2019 | 14 / 25 |

#### Four ways to think about the box spline

**Third way:** As the Duistermaat–Heckman measure for the action of the maximal torus on  $\mathcal{O}_{\rho}$ .

Fourth way: Define

$$j_{\mathfrak{g}}^{1/2}(x) = \prod_{\alpha \in \Phi^+} \frac{e^{i\langle \alpha, x \rangle/2} - e^{-i\langle \alpha, x \rangle/2}}{i\langle \alpha, x \rangle}$$

as in the Kirillov character formula. Then  $b = \mathscr{F}^{-1}[j_{\mathfrak{g}}^{1/2}]$ .

In brief, there are many ways to compute b(x).

Colin McSwiggen (Brown University)

$$\mathcal{J}(\lambda',\mu';\gamma) = b(\gamma) * \left(\sum_{\substack{\nu \in (\lambda+\mu)+Q \\ \cap \mathcal{C}_+}} C_{\lambda\mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w(\nu')}\right).$$

In other words, we can think of our question as a deconvolution problem.

(日) (同) (三) (三)

$$\mathcal{J}(\lambda',\mu';\gamma) = b(\gamma) * \left(\sum_{\substack{\nu \in (\lambda+\mu)+Q \\ \cap \mathcal{C}_+}} C_{\lambda\mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w(\nu')}\right).$$

In other words, we can think of our question as a deconvolution problem.

$$\begin{split} \mathcal{J}(\alpha,\beta;\gamma) &:= \\ \frac{\Delta_{\mathfrak{g}}(\alpha)\Delta_{\mathfrak{g}}(\beta)\Delta_{\mathfrak{g}}(\gamma)}{(2\pi)^{r} |W| \, \Delta_{\mathfrak{g}}(\rho)^{3}} \int_{\mathfrak{t}} \Delta_{\mathfrak{g}}(x)^{2} \mathcal{H}(ix,\alpha) \mathcal{H}(ix,\beta) \mathcal{H}(ix,-\gamma) \, dx. \end{split}$$

Colin McSwiggen (Brown University)

$$\mathcal{J}(\lambda',\mu';\gamma) = b(\gamma) * \left(\sum_{\substack{\nu \in (\lambda+\mu)+Q \\ \cap \mathcal{C}_+}} C_{\lambda\mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w(\nu')}\right).$$

In other words, we can think of our question as a deconvolution problem.

(日) (同) (三) (三)

$$\mathcal{J}(\lambda',\mu';\gamma) = b(\gamma) * \left(\sum_{\substack{\nu \in (\lambda+\mu)+Q \\ \cap \mathcal{C}_+}} C_{\lambda\mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w(\nu')}\right).$$

In other words, we can think of our question as a deconvolution problem.

Dahmen-Micchelli, Vergne, etc. have studied box spline deconvolution in a general setting, but we'll do something simpler.

## Restricting to the lattice

**Idea:** Consider only  $\gamma = \nu'$  for  $\nu \in \lambda + \mu + Q$ . Then the convolution formula gives an equality of measures, or of functions on the weight lattice:

$$\sum_{\nu \in \lambda + \mu + Q} \mathcal{J}(\lambda', \mu'; \nu') \, \delta_{\nu'} = \left( \sum_{\tau \in Q} b(\tau) \, \delta_{\tau} \right) * \sum_{\substack{\tau \in \lambda + \mu + Q \\ \cap C_{+}}} C_{\lambda\mu}^{\tau} \sum_{w \in W} \epsilon(w) \, \delta_{w(\tau')}.$$

We have reduced a hard deconvolution problem (measures on t) to an easier deconvolution problem (finitely supported functions on a lattice).

イロト イポト イヨト イヨト 二日

# A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.



(B)

# A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19) Part 1:  $C_{\lambda\mu}^{\nu} = \frac{1}{(2\pi)^{r}|Q^{\vee}|} \int_{\mathfrak{t}/2\pi Q^{\vee}} \frac{\sum_{\tau \in \lambda + \mu + Q} \mathcal{J}(\lambda', \mu'; \tau') e^{i\langle \tau - \nu, x \rangle}}{\sum_{\tau \in Q} b(\tau) \cos(\langle \tau, x \rangle)} dx.$ Part 2:

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

$$C_{\lambda\mu}^{\nu} = \frac{1}{(2\pi)^{r}|Q^{\vee}|} \int_{\mathfrak{t}/2\pi Q^{\vee}} \frac{\sum_{\tau \in \lambda + \mu + Q} \mathcal{J}(\lambda', \mu'; \tau') e^{i\langle \tau - \nu, x \rangle}}{\sum_{\tau \in Q} b(\tau) \cos(\langle \tau, x \rangle)} dx.$$

**Part 2:** Moreover, one can compute  $C_{\lambda\mu}^{\nu}$  algebraically from finitely many values of  $\mathcal{J}(\lambda', \mu'; \gamma)$  via an explicit algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

$$C_{\lambda\mu}^{\nu} = \frac{1}{(2\pi)^{r}|Q^{\vee}|} \int_{\mathfrak{t}/2\pi Q^{\vee}} \frac{\sum_{\tau \in \lambda + \mu + Q} \mathcal{J}(\lambda', \mu'; \tau') e^{i\langle \tau - \nu, x \rangle}}{\sum_{\tau \in Q} b(\tau) \cos(\langle \tau, x \rangle)} dx.$$

**Part 2:** Moreover, one can compute  $C_{\lambda\mu}^{\nu}$  algebraically from finitely many values of  $\mathcal{J}(\lambda', \mu'; \gamma)$  via an explicit algorithm.

#### For $\mathfrak{su}(n)$ , we can do better.

★掃▶ ★注▶ ★注▶ → 注

Take 
$$\mathfrak{g} = \mathfrak{su}(n)$$
 and let  $d := |\Phi^+| - r = \frac{1}{2}(n-1)(n-2)$ .

#### Definition

We will say that a triple  $(\lambda, \mu, \nu)$  of dominant weights of  $\mathfrak{su}(n)$  is *shielded* if  $\lambda + \mu - \nu \in Q$  and if the points  $\nu' + \lfloor d/2 \rfloor w(\rho)$ ,  $w \in W$  are dominant and all lie in the interior of a single polynomial domain of  $\mathcal{J}(\lambda', \mu'; \gamma)$ .

< 回 > < 三 > < 三 >

The non-analyticities of  $\mathcal{J}$  are contained in a finite hyperplane arrangement in  $\mathfrak{t}^3$  (see e.g. C.–M.–Z. '19).

Any triple  $(\lambda, \mu, \nu)$  with  $\lambda + \mu - \nu \in Q$  such that  $(\lambda', \mu', \nu')$  lies further than a distance  $\lfloor d/2 \rfloor |\rho|$  from each of these hyperplanes is shielded.

In particular, as  $\lambda$  and  $\mu$  both grow large, the ratio

$$\frac{\#\{\nu \mid C_{\lambda\mu}^{\nu} \neq 0, \ (\lambda, \mu, \nu) \text{ shielded }\}}{\#\{\nu \mid C_{\lambda\mu}^{\nu} \neq 0\}}$$

goes to 1.

- 本間 と えき と えき とうき

For  $\tau \in Q$ , let  $\Delta_{\tau}$  and  $\nabla_{\tau}$  denote respectively the forwards and backwards finite difference operators in the direction of  $\tau$ :

$$egin{array}{rll} \Delta_ au f(x)&=&f(x+ au)-f(x),\ 
abla_ au f(x)&=&f(x)-f(x- au), & f:\mathfrak{t}
ightarrow \mathbb{C}. \end{array}$$

Define the box spline Laplacian  ${\mathcal D}$  by

$$\mathcal{D} := \sum_{\tau \in Q} b(\tau) \nabla_{\tau} \Delta_{\tau}.$$

# An explicit algebraic formula for $\mathfrak{su}(n)$

#### Theorem (M. '19)

For  $(\lambda, \mu, \nu)$  a shielded triple of dominant weights of  $\mathfrak{su}(n)$ ,

$$C_{\lambda\mu}^{\nu} = \sum_{k=0}^{\lfloor d/2 \rfloor} \left( -\frac{1}{2} \mathcal{D} 
ight)^{k} \mathcal{J}(\lambda',\mu';\nu').$$

(Here  $\mathcal{D}$  acts in the third argument of  $\mathcal{J}$ .)

- 4 同 6 4 日 6 4 日 6

# Sketch of the proof

• Define  $\psi(\nu) := C^{\nu}_{\lambda\mu}$ . Show that

$$\mathcal{J}(\lambda',\mu';
u')=\Big(1+rac{1}{2}\mathcal{D}\Big)\psi(
u).$$

• Introduce a space of degree *d* polynomials  $D(\Phi^+)$ , on which  $(1 + \frac{1}{2}D)$  is invertible by the Neumann series, which truncates:

$$\left(1+rac{1}{2}\mathcal{D}
ight)^{-1} p = \sum_{k=0}^{\lfloor d/2 
ight]} \left(-rac{1}{2}\mathcal{D}
ight)^k p, \qquad p \in D(\Phi^+).$$

Show that for (λ, μ, ν) shielded, ψ is locally equal to some p ∈ D(Φ<sup>+</sup>) on a sufficiently large neighborhood of ν.

イロト イポト イヨト イヨト 二日

#### Formulae for low *n*

For  $\mathfrak{su}(2)$  and  $\mathfrak{su}(3)$ ,  $\mathcal{D} = 0$ . In these cases it is known (see C.–Z. '18) that whenever  $\lambda + \mu - \nu \in Q$ ,  $C_{\lambda\mu}^{\nu} = \mathcal{J}(\lambda', \mu'; \nu')$ .

For  $(\lambda, \mu, \nu)$  a shielded triple of  $\mathfrak{su}(4)$ ,

$$\mathcal{C}^{
u}_{\lambda\mu} = \left(1 - rac{1}{24}\sum_{lpha \in \Phi^+} 
abla_{lpha} \Delta_{lpha}
ight) \mathcal{J}(\lambda',\mu',
u').$$

For  $(\lambda, \mu, 
u)$  a shielded triple of  $\mathfrak{su}(5)$ ,  $C^{
u}_{\lambda\mu} =$ 

$$\sum_{k=0}^{3} \left[ -\frac{1}{30} \sum_{\alpha \in \Phi^{+}} \left( \nabla_{\alpha} \Delta_{\alpha} + \frac{1}{12} \sum_{\substack{\beta \in \Phi^{+} \\ \langle \beta, \alpha \rangle = 0}} \left( \nabla_{\alpha+\beta} \Delta_{\alpha+\beta} + \nabla_{\alpha-\beta} \Delta_{\alpha-\beta} \right) \right) \right]^{k} \mathcal{J}(\lambda', \mu', \nu').$$

イロト イポト イヨト イヨト 二日

#### In conclusion...

- We can always compute  $C^{\nu}_{\lambda\mu}$  from finitely many values of  $\mathcal{J}(\lambda',\mu';\gamma)$ .
- We obtain more or less explicit expressions depending on  $\mathfrak{g}$  and on  $(\lambda, \mu, \nu)$ . The nicest formulae are for shielded triples of  $\mathfrak{su}(n)$ .
- Many questions remain: Exact algebraic formulae for unshielded triples or for g ≠ su(n)? Combinatorial identities for b(x)? Full semiclassical expansion for C<sup>ν</sup><sub>λμ</sub> from J? Applications to other multiplicity problems? Etc...
- You can read the full details at: http://cosmc.net/mult.pdf More on the volume function: arXiv:1904.00752

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

#### In conclusion...

- We can always compute  $C^{\nu}_{\lambda\mu}$  from finitely many values of  $\mathcal{J}(\lambda',\mu';\gamma)$ .
- We obtain more or less explicit expressions depending on  $\mathfrak{g}$  and on  $(\lambda, \mu, \nu)$ . The nicest formulae are for shielded triples of  $\mathfrak{su}(n)$ .
- Many questions remain: Exact algebraic formulae for unshielded triples or for g ≠ su(n)? Combinatorial identities for b(x)? Full semiclassical expansion for C<sup>ν</sup><sub>λμ</sub> from J? Applications to other multiplicity problems? Etc...
- You can read the full details at: http://cosmc.net/mult.pdf More on the volume function: arXiv:1904.00752

# Thanks!

Colin McSwiggen (Brown University)