Multiplicities from volumes

Colin McSwiggen

Brown University

ICR 2019

Pre-pre-print: http://cosmc.net/mult.pdf

Polyhedral models of multiplicities

Tensor product of irreps of a compact semisimple Lie algebra \mathfrak{g} :

$$
V_{\lambda} \otimes V_{\mu}=\bigoplus_{\nu} C_{\lambda \mu}^{\nu} V_{\nu}
$$

The multiplicity $C_{\lambda \mu}^{\nu}$ equals the number of integer points in a polytope $H_{\lambda \mu}^{\nu} \subset \mathbb{R}^{N}$. See e.g. Berenstein-Zelevinsky '88, Knutson-Tao '98.

Actually computing the multiplicities takes more work!

Polyhedral models of multiplicities

The $\mathfrak{s u}(4)$ hive polytope for $\lambda=(21,13,5), \mu=(7,10,12), \nu=(20,11,9)$. Figure: Coquereaux-Zuber '18.

What this talk is about

Naive question: Given $\operatorname{Vol}\left(H_{\lambda \mu}^{\nu}\right)$, can you compute $C_{\lambda \mu}^{\nu}$?
This amounts to inverting a semiclassical limit.

What this talk is about

Naive question: Given $\operatorname{Vol}\left(H_{\lambda \mu}^{\nu}\right)$, can you compute $C_{\lambda \mu}^{\nu}$?
This amounts to inverting a semiclassical limit.
Unsurprising, anticlimactic answer: Nope.

What this talk is about

More serious question: Given $\operatorname{Vol}\left(H_{\lambda \mu}^{\nu}\right)$ for all (λ, μ, ν), can you compute all $C_{\lambda \mu}^{\nu}$?

What this talk is about

More serious question: Given $\operatorname{Vol}\left(H_{\lambda \mu}^{\nu}\right)$ for all (λ, μ, ν), can you compute all $C_{\lambda \mu}^{\nu}$?

Answer: Yes! In fact there are several ways to do it.

Back to polyhedral models

We think of the weights λ, μ, ν as lying in the dominant chamber \mathcal{C}_{+}of a Cartan subalgebra $\mathfrak{t} \subset \mathfrak{g}$.

Then the polytope $H_{\lambda \mu}^{\nu}$ is cut out by a system of linear inequalities depending on $x \in \mathbb{R}^{N}$ and on (λ, μ, ν) :

$$
H_{\lambda \mu}^{\nu}=\left\{x \in \mathbb{R}^{N} \mid \ell(\lambda, \mu, \nu, x) \geq 0 \forall \ell \in L\right\}
$$

where $L \subset\left(\mathfrak{t}^{3} \times \mathbb{R}^{N}\right)^{*}$. So we can talk about $H_{\alpha \beta}^{\gamma}$ for $\alpha, \beta, \gamma \in \mathfrak{t}$.

The volume function

There is a special function $\mathcal{J}: \mathfrak{t}^{3} \rightarrow \mathbb{R}$ associated to \mathfrak{g}, which computes $\operatorname{Vol}\left(H_{\alpha \beta}^{\gamma}\right)$. First, some notation...

The discriminant of \mathfrak{g} :

$$
\Delta_{\mathfrak{g}}(x)=\prod_{\alpha \in \Phi^{+}}\langle\alpha, x\rangle,
$$

and the Harish-Chandra orbital integral:

$$
\mathcal{H}(x, y):=\int_{G} e^{\left\langle\operatorname{Ad}_{g} y, x\right\rangle} d g, \quad x, y \in \mathfrak{t} \otimes \mathbb{C}
$$

where G is a connected group with Lie algebra \mathfrak{g}, and $d g$ is the normalized Haar measure.

The volume function

For $\alpha, \beta, \gamma \in \mathfrak{t}$, define:

$$
\begin{gathered}
\mathcal{J}(\alpha, \beta ; \gamma):= \\
\frac{\Delta_{\mathfrak{g}}(\alpha) \Delta_{\mathfrak{g}}(\beta) \Delta_{\mathfrak{g}}(\gamma)}{(2 \pi)^{r}|W| \Delta_{\mathfrak{g}}(\rho)^{3}} \int_{\mathfrak{t}} \Delta_{\mathfrak{g}}(x)^{2} \mathcal{H}(i x, \alpha) \mathcal{H}(i x, \beta) \mathcal{H}(i x,-\gamma) d x .
\end{gathered}
$$

Then for α, β, γ dominant, $\mathcal{J}(\alpha, \beta ; \gamma)=\operatorname{Vol}\left(H_{\alpha \beta}^{\gamma}\right)$.
(See Coquereaux-M.-Zuber '19 for details.)

The volume function

We usually fix α, β and consider \mathcal{J} as a W-skew-invariant function of $\gamma \in \mathfrak{t}$.

$\mathcal{J}(\alpha, \beta ; \gamma)$ for $\mathfrak{s o}(5)$, with $\alpha=(4,7), \beta=(5,3)$. Coordinates are in the fundamental weight basis.

The volume function and random matrices

Let $\mathcal{O}_{\alpha}, \mathcal{O}_{\beta}$ be the coadjoint orbits of $\alpha, \beta \in \mathcal{C}_{+}$.
Choose $A \in \mathcal{O}_{\alpha}, B \in \mathcal{O}_{\beta}$ uniformly at random. Let $p(\gamma \mid \alpha, \beta)$ be the probability density of $\gamma \in \mathcal{C}_{+}$such that $A+B \in \mathcal{O}_{\gamma}$.
E.g.: Probability density of eigenvalues of sum of two uniform random Hermitian matrices with prescribed eigenvalues.

Then:

$$
\mathcal{J}(\alpha, \beta ; \gamma)=\frac{\Delta_{\mathfrak{g}}(\alpha) \Delta_{\mathfrak{g}}(\beta)}{\Delta_{\mathfrak{g}}(\gamma) \Delta_{\mathfrak{g}}(\rho)} p(\gamma \mid \alpha, \beta) \text {. }
$$

The volume function and symplectic geometry

The product of orbits $\mathcal{O}_{\alpha} \times \mathcal{O}_{\beta} \times \mathcal{O}_{-\gamma}$ is also a symplectic G-manifold with moment map $(A, B, C) \mapsto A+B+C$.

For generic (α, β, γ) such that 0 is a regular value of the moment map,

$$
\mathcal{J}(\alpha, \beta ; \gamma)=(2 \pi)^{\left|\Phi^{+}\right|} \Delta_{\mathfrak{g}}(\rho) \operatorname{Vol}\left[\left(\mathcal{O}_{\alpha} \times \mathcal{O}_{\beta} \times \mathcal{O}_{-\gamma}\right) / / G\right]
$$

where Vol is the Liouville volume.

Initial motivation: \mathcal{J}-LR relations

Write $\lambda^{\prime}=\lambda+\rho$, etc. Let Q be the root lattice.
Theorem (Coquereaux-Zuber '18, C.-M.-Z. '19 + Etingof-Rains '18)
Suppose $\lambda+\mu-\nu \in Q$. Then

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \nu^{\prime}\right)=\sum_{\kappa \in K} \sum_{\substack{\tau \in \lambda+\mu+Q \\ \cap \mathcal{C}_{+}}} r_{\kappa} C_{\lambda \mu}^{\tau} C_{\tau \kappa}^{\nu}
$$

where $K=Q \cap \operatorname{Conv}(W \rho)$ and r_{κ} are some computable coefficients.

This formula recovers the asymptotic relation between \mathcal{J} and $C_{\lambda \mu}^{\nu}$ for "large representations," but is more precise. Can we "invert" it?

The box spline

Define a measure $B_{c}\left[\Phi^{+}\right]$on \mathfrak{t} by

$$
\int_{\mathfrak{t}} f d B_{c}\left[\Phi^{+}\right]=\int_{-1 / 2}^{1 / 2} \cdots \int_{-1 / 2}^{1 / 2} f\left(\sum_{\alpha \in \Phi^{+}} t_{\alpha} \alpha\right) \prod_{\alpha \in \Phi^{+}} d t_{\alpha}, \quad f \in C^{0}(\mathfrak{t})
$$

This is the centered box spline associated to the positive roots. It has a piecewise polynomial density $b(x)$.

Four ways to think about the box spline

First way: As a convolution of uniform measures on line segments.

Figure: Boehm-Prautzsch '02, "Box Splines" (a good intro).
Second way: The density $b(x)$ computes the volume of the fibers of a projection of a polytope.

Four ways to think about the box spline

Third way: As the Duistermaat-Heckman measure for the action of the maximal torus on \mathcal{O}_{ρ}.

Fourth way: Define

$$
j_{\mathfrak{g}}^{1 / 2}(x)=\prod_{\alpha \in \Phi^{+}} \frac{e^{i\langle\alpha, x\rangle / 2}-e^{-i\langle\alpha, x\rangle / 2}}{i\langle\alpha, x\rangle}
$$

as in the Kirillov character formula. Then $b=\mathscr{F}^{-1}\left[j_{\mathfrak{g}}^{1 / 2}\right]$.

In brief, there are many ways to compute $b(x)$.

A convolution formula

An index-theoretic identity of De Concini-Procesi-Vergne '13 implies:

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)=b(\gamma) *\left(\sum_{\substack{\nu \in(\lambda+\mu)+Q \\ \cap \mathcal{C}_{+}}} C_{\lambda \mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w\left(\nu^{\prime}\right)}\right)
$$

In other words, we can think of our question as a deconvolution problem.

A convolution formula

An index-theoretic identity of De Concini-Procesi-Vergne '13 implies:

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)=b(\gamma) *\left(\sum_{\substack{\nu \in(\lambda+\mu)+Q \\ \cap \mathcal{C}_{+}}} C_{\lambda \mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w\left(\nu^{\prime}\right)}\right)
$$

In other words, we can think of our question as a deconvolution problem.

$$
\begin{gathered}
\mathcal{J}(\alpha, \beta ; \gamma):= \\
\frac{\Delta_{\mathfrak{g}}(\alpha) \Delta_{\mathfrak{g}}(\beta) \Delta_{\mathfrak{g}}(\gamma)}{(2 \pi)^{r}|W| \Delta_{\mathfrak{g}}(\rho)^{3}} \int_{\mathfrak{t}} \Delta_{\mathfrak{g}}(x)^{2} \mathcal{H}(i x, \alpha) \mathcal{H}(i x, \beta) \mathcal{H}(i x,-\gamma) d x .
\end{gathered}
$$

A convolution formula

An index-theoretic identity of De Concini-Procesi-Vergne '13 implies:

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)=b(\gamma) *\left(\sum_{\substack{\nu \in(\lambda+\mu)+Q \\ \cap \mathcal{C}_{+}}} C_{\lambda \mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w\left(\nu^{\prime}\right)}\right)
$$

In other words, we can think of our question as a deconvolution problem.

A convolution formula

An index-theoretic identity of De Concini-Procesi-Vergne '13 implies:

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)=b(\gamma) *\left(\sum_{\substack{\nu \in(\lambda+\mu)+Q \\ \cap \mathcal{C}_{+}}} C_{\lambda \mu}^{\nu} \sum_{w \in W} \epsilon(w) \delta_{w\left(\nu^{\prime}\right)}\right)
$$

In other words, we can think of our question as a deconvolution problem.
Dahmen-Micchelli, Vergne, etc. have studied box spline deconvolution in a general setting, but we'll do something simpler.

Restricting to the lattice

Idea: Consider only $\gamma=\nu^{\prime}$ for $\nu \in \lambda+\mu+\boldsymbol{Q}$. Then the convolution formula gives an equality of measures, or of functions on the weight lattice:

$$
\begin{aligned}
\sum_{\nu \in \lambda+\mu+Q} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \nu^{\prime}\right) & \delta_{\nu^{\prime}} \\
& =\left(\sum_{\tau \in Q} b(\tau) \delta_{\tau}\right) * \sum_{\substack{\tau \in \lambda+\mu+Q \\
\cap \mathcal{C}_{+}}} C_{\lambda \mu}^{\tau} \sum_{w \in W} \epsilon(w) \delta_{w\left(\tau^{\prime}\right)}
\end{aligned}
$$

We have reduced a hard deconvolution problem (measures on \mathfrak{t}) to an easier deconvolution problem (finitely supported functions on a lattice).

A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

Part 2:

A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

$$
C_{\lambda \mu}^{\nu}=\frac{1}{(2 \pi)^{r}\left|Q^{\vee}\right|} \int_{\mathrm{t} / 2 \pi Q^{\vee}} \frac{\sum_{\tau \in \lambda+\mu+Q} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \tau^{\prime}\right) e^{i\langle\tau-\nu, x\rangle}}{\sum_{\tau \in Q} b(\tau) \cos (\langle\tau, x\rangle)} d x .
$$

Part 2:

A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

$$
C_{\lambda \mu}^{\nu}=\frac{1}{(2 \pi)^{r}\left|Q^{\vee}\right|} \int_{\mathfrak{t} / 2 \pi Q^{\vee}} \frac{\sum_{\tau \in \lambda+\mu+Q} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \tau^{\prime}\right) e^{i\langle\tau-\nu, x\rangle}}{\sum_{\tau \in Q} b(\tau) \cos (\langle\tau, x\rangle)} d x .
$$

Part 2: Moreover, one can compute $C_{\lambda \mu}^{\nu}$ algebraically from finitely many values of $\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)$ via an explicit algorithm.

A first deconvolution formula

Moving to the discrete setting eliminates technical obstacles to "naive" deconvolution by Fourier analysis. We can also compute algebraically.

Theorem (M. '19)

Part 1:

$$
C_{\lambda \mu}^{\nu}=\frac{1}{(2 \pi)^{r}\left|Q^{\vee}\right|} \int_{\mathfrak{t} / 2 \pi Q^{\vee}} \frac{\sum_{\tau \in \lambda+\mu+Q} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \tau^{\prime}\right) e^{i\langle\tau-\nu, x\rangle}}{\sum_{\tau \in Q} b(\tau) \cos (\langle\tau, x\rangle)} d x .
$$

Part 2: Moreover, one can compute $C_{\lambda \mu}^{\nu}$ algebraically from finitely many values of $\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)$ via an explicit algorithm.

For $\mathfrak{s u}(n)$, we can do better.

Shielded triples

Take $\mathfrak{g}=\mathfrak{s u}(n)$ and let $d:=\left|\Phi^{+}\right|-r=\frac{1}{2}(n-1)(n-2)$.

Definition

We will say that a triple (λ, μ, ν) of dominant weights of $\mathfrak{s u}(n)$ is shielded if $\lambda+\mu-\nu \in Q$ and if the points $\nu^{\prime}+\lfloor d / 2\rfloor w(\rho), w \in W$ are dominant and all lie in the interior of a single polynomial domain of $\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)$.

Shielded triples are "typical"

The non-analyticities of \mathcal{J} are contained in a finite hyperplane arrangement in \mathfrak{t}^{3} (see e.g. C.-M.-Z. '19).

Any triple (λ, μ, ν) with $\lambda+\mu-\nu \in Q$ such that $\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)$ lies further than a distance $\lfloor d / 2\rfloor|\rho|$ from each of these hyperplanes is shielded.

In particular, as λ and μ both grow large, the ratio

$$
\frac{\#\left\{\nu \mid C_{\lambda \mu}^{\nu} \neq 0,(\lambda, \mu, \nu) \text { shielded }\right\}}{\#\left\{\nu \mid C_{\lambda \mu}^{\nu} \neq 0\right\}}
$$

goes to 1 .

The box spline Laplacian

For $\tau \in Q$, let Δ_{τ} and ∇_{τ} denote respectively the forwards and backwards finite difference operators in the direction of τ :

$$
\begin{aligned}
\Delta_{\tau} f(x) & =f(x+\tau)-f(x), \\
\nabla_{\tau} f(x) & =f(x)-f(x-\tau), \quad f: \mathfrak{t} \rightarrow \mathbb{C}
\end{aligned}
$$

Define the box spline Laplacian \mathcal{D} by

$$
\mathcal{D}:=\sum_{\tau \in Q} b(\tau) \nabla_{\tau} \Delta_{\tau} .
$$

An explicit algebraic formula for $\mathfrak{s u}(n)$

Theorem (M. '19)

For (λ, μ, ν) a shielded triple of dominant weights of $\mathfrak{s u}(n)$,

$$
C_{\lambda \mu}^{\nu}=\sum_{k=0}^{\lfloor d / 2\rfloor}\left(-\frac{1}{2} \mathcal{D}\right)^{k} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \nu^{\prime}\right)
$$

(Here \mathcal{D} acts in the third argument of \mathcal{J}.)

Sketch of the proof

(1) Define $\psi(\nu):=C_{\lambda \mu}^{\nu}$. Show that

$$
\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \nu^{\prime}\right)=\left(1+\frac{1}{2} \mathcal{D}\right) \psi(\nu)
$$

(2) Introduce a space of degree d polynomials $D\left(\Phi^{+}\right)$, on which $\left(1+\frac{1}{2} \mathcal{D}\right)$ is invertible by the Neumann series, which truncates:

$$
\left(1+\frac{1}{2} \mathcal{D}\right)^{-1} p=\sum_{k=0}^{\lfloor d / 2\rfloor}\left(-\frac{1}{2} \mathcal{D}\right)^{k} p, \quad p \in D\left(\Phi^{+}\right)
$$

(3) Show that for (λ, μ, ν) shielded, ψ is locally equal to some $p \in D\left(\Phi^{+}\right)$on a sufficiently large neighborhood of ν.

Formulae for low n

For $\mathfrak{s u}(2)$ and $\mathfrak{s u}(3), \mathcal{D}=0$. In these cases it is known (see C.-Z. '18) that whenever $\lambda+\mu-\nu \in Q, C_{\lambda \mu}^{\nu}=\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \nu^{\prime}\right)$.

For (λ, μ, ν) a shielded triple of $\mathfrak{s u}(4)$,

$$
C_{\lambda \mu}^{\nu}=\left(1-\frac{1}{24} \sum_{\alpha \in \Phi^{+}} \nabla_{\alpha} \Delta_{\alpha}\right) \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)
$$

For (λ, μ, ν) a shielded triple of $\mathfrak{s u}(5), C_{\lambda \mu}^{\nu}=$

$$
\sum_{k=0}^{3}\left[-\frac{1}{30} \sum_{\alpha \in \Phi^{+}}\left(\nabla_{\alpha} \Delta_{\alpha}+\frac{1}{12} \sum_{\substack{\beta \in \Phi^{+} \\\langle\beta, \alpha\rangle=0}}\left(\nabla_{\alpha+\beta} \Delta_{\alpha+\beta}+\nabla_{\alpha-\beta} \Delta_{\alpha-\beta}\right)\right)\right]^{k} \mathcal{J}\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right) .
$$

In conclusion...

- We can always compute $C_{\lambda \mu}^{\nu}$ from finitely many values of $\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)$.
- We obtain more or less explicit expressions depending on \mathfrak{g} and on (λ, μ, ν). The nicest formulae are for shielded triples of $\mathfrak{s u}(n)$.
- Many questions remain: Exact algebraic formulae for unshielded triples or for $\mathfrak{g} \neq \mathfrak{s u}(n)$? Combinatorial identities for $b(x)$? Full semiclassical expansion for $C_{\lambda \mu}^{\nu}$ from \mathcal{J} ? Applications to other multiplicity problems? Etc...
- You can read the full details at: http://cosmc.net/mult.pdf More on the volume function: arXiv:1904.00752

In conclusion...

- We can always compute $C_{\lambda \mu}^{\nu}$ from finitely many values of $\mathcal{J}\left(\lambda^{\prime}, \mu^{\prime} ; \gamma\right)$.
- We obtain more or less explicit expressions depending on \mathfrak{g} and on (λ, μ, ν). The nicest formulae are for shielded triples of $\mathfrak{s u}(n)$.
- Many questions remain: Exact algebraic formulae for unshielded triples or for $\mathfrak{g} \neq \mathfrak{s u}(n)$? Combinatorial identities for $b(x)$? Full semiclassical expansion for $C_{\lambda \mu}^{\nu}$ from \mathcal{J} ? Applications to other multiplicity problems? Etc...
- You can read the full details at: http://cosmc.net/mult.pdf More on the volume function: arXiv:1904.00752

Thanks!

