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Cluster integrable systems:
@ Newton polygons A;
o Quivers Q and (X- and A-) cluster varieties;
o Integrable flows: Ga C Go (MCG of cluster variety)

Deautonomization:
@ Discrete flows from quiver mutations;
@ g =[] x # 1: integrability lost!

e g-difference 'RG-equations’, bilinear in A-cluster representation.
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Examples:
e g =1 curves = SU(2) 5d gauge theories = g-Painlevé family;
o Relativistic Toda chains = 5d pure gauge theories SU(N)y;
o gly spin chains on M-sites = SU(N)®(M=1) linear gauge quivers;

@ Generic A: topological strings on local CY ...

Solutions:
g = 1 finite gap case;
Deautonomization: ©-functions = (dual) Nekrasov functions;

Quantization of cluster variety = refinement q — (g, p = e");

Topological string amplitudes and tropical limit ...
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Newton polygon

Newton Polygon (up to SA(2,Z)-tranform):

1
NCWNESDY Npbfoy=A+~+p+ >+ H=0 (1)
(a,p)eA A H

5d SW curve, VEV H and coupling z: hamiltonian of relativistic Toda chain.

Remark: renormalizations of A, u and fa fix 3 of coefficients {f, p} in the
equation.
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Poisson quiver

X-cluster Poisson variety with (mutation class of) quiver Q:

encoding logarithmically constant Poisson bracket

{xiox} = eijxixg, 0, j=1,...,|Q| 2)
with the skew-symmetric matrix

€j = —€jj = #arrows (i — j) = £2 3)

Obviously g = x1x0x3x4 and z = xyx3 are in the center of Poisson algebra.
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Cluster integrable system

a la Goncharov+Kenyon and/or Fock+AM:

@ Defined by any convex NP A C Z? C R? for a curve ¥ C C* x C*

()= > NpPhy=0. (4)

(a,b)eA

@ Realized on a Poisson X-cluster variety X', dim X = 2Area(A). Poisson

structure
2Area(A)

{X,',Xj} = €jjXiXj, {X,'} S ((CX) . (5)

is encoded in a quiver Q, with € = #arrows(i — j).
Straightforward quantization (refinement! - spin chains?).

@ Integrability: Pick’s formula

2Area(A) —1=(B—3)+2g (6)
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Examples: Painlevé Newton polygons A

with a single internal point and 3 < B < 9 boundary points:

poo OO

8c

Sibo b

Here X2 fa(\, 1) = X (o pyen Aubf, , =0 is always a torus g = 1.
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Examples: Painlevé quivers Q
0@ °° e'\‘e o4§e
N
&, T3 0 S




Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

@==3
i
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Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

@==3
il

Mutation pq
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Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

9«6 —
b — 0
O<=® O==®
Mutation ji; Reverse all incoming
and outgoing arrows
x;=1/x
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Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

9‘.6 —3
i F — 1 —
O<=® O==®
Mutation 41 Reverse all incoming Complete cycles through
and outgoing arrows mutation vertex
X1 =1/x xp = x4(1 + x1)?

x5y =x(1+ 1/x1)72

10/28
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Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

@==0) O=2=0)
-
O==® I¢I

Mutation 41 Reverse all incoming Complete cycles through
and outgoing arrows mutation vertex
X1 =1/x xp = x4(1 + x1)?

x5y =x(1+ 1/x1)72

Wit €ik > —€jk, if i =jor k =Jj, €k €+ M otherwise.
Algebraic (bi-rational!) transformations of the variables:
€jj
-1 . . sgnej \ 7 : . A R N
X X, XX (l—i—xj ) , I A {x,x;} = €l x!x;

10/28
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Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver
Go D Ga (discrete flows of 1S).

Example — the flow T € Gg of two-particle Toda chain:

X2 X3
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Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver
Go D Ga (discrete flows of 1S).

Example — the flow T € Gg of two-particle Toda chain:

1/X1 X4(1+X1)2

1/X1 ( 1{:;)(1 )2

R
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Deautonomization

For g =1 the flow T

1+ x3 )2 ) (1—|—x1 )2 )
T:(x,x,x3,%) = | x| ——= | ,x; ,x , X
(22,03, %) <2<1+x11 o1t/ 0

preserves the Hamiltonian H = \/x1x; + ﬁ + i—; + z, /%-

Let x1x0x3x5 = g # 1 (no integrability!)

2
X1+ z 1
T : —
(X1,X2,Z,C]) <X2 <X1—|—1> y X1 ,qzaq>

Casimir z as “time” x; = x(2), x2 = x " }(q7'z), T : x(z) — x(qz), satisfying

x(qz)x(q"'z) = (igiif

or g-Painlevé IlI3 equation P(Agl)/).
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2
For the tau-functions x(z) = z2/2 242k one gets bilinear (non-autonomous!)

. . ()
Hirota equations

To(qz)To(q_lz) = To(z)2 + 21/271(2)2
m1(q2)71(q712) = 71(2)? + 2+ *70(2)?

“Generic phenomenon”: for the SU(N),-Toda family (Y"N:k-geometry)

7 (62)7 (0712) = (2 + 2V (102) 70 (a7H002)

jE€Z/NZ

Spin chains: known only for 'exchange zig-zag' transformations ...
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Quiver gauge theories and spin chains

(O.N) (M.N)
L [ ]
(0,0) (M,0)
SU(N), SU(N),_, SU(N), SU(N)iJrl SUN),,_y
Mpjif e =~
me Maf
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Poisson quivers: examples

@ Toda: 2 x N fundamental domain of square lattice;

@ XXZ-type spin chain: N x M 'fence-net’ domain of the same square lattice.

'Dual’ to the GK bipartite graph ...

A.Marshakov Cluster integrable systems and spin chains September 2, 2019 15/28



Lie-group construction: Poisson submanifolds in (co-extended) affine groups.

@ Toda: 'Coxeter’ words in dAoubIe Weyl groups sySy ... 5151 of ;/N or
(50§0$1§1)N in double W(S/z);

@ Spin chain:
(SMgM 51§1/\)N

in coextended W(;/N) (or W(sA/M))

Dirac-Kasteleyn operator of the structure
D\pu)=> E®RA+E®C

gives Lax matrices
L~C'A
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Toda chains: cluster versus Darboux variables

@ Poisson quiver Q (fundamental domain with 2/ vertices of square lattice):
{yivxi} = Gyyix;, i,j € Z/NZ

gives the bracket with affine Cartan matrix;

@ Cluster versus canonical co-ordinates
xi =exp(—(ai-q)), yi=-exp(a;-(P+4q)), i€Z/NZ

and

P= ( Zle —exp(ay - q)))
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Cluster versus spin variables

@ Poisson quiver Q (N x M 'fence-net’ domain of square lattice):
{x5 %5} = (07 j+10ab + 0j0a11,6 — 0jj0ab — 0 j110a+1,6)X53 X

{xé,)gﬁ}:{xg,)fg =0, i,jeZ/NZ, abeZ/MZ
@ Relation to spin variables:
0
Xi>,<a = e—2(53);
but
(591 H(S2_y)i

cosh (S9_;)it1 cosh (S0);

X = —(S51)i(S5 )i

@ Spin chains: inhomogeneous (casimir functions), yet classical ...
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Cluster MCG

o local P2:
Go ~Ga ~Z/3Z

e Toda or pure SU(2) or local P! x P!

Go ~ Dihy x W(AY) 5 Ga ~Z & 7,/2Z
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Painlevé quivers and their MCG

Z)3Z  Dihy x W(AD)  w(AY) W (A + A)D)

()
5
@ e 6o e"‘e
W(D{Y) w(DV) i




Cluster MCG for spin chains

o MCG from Newton polygon Go > W (A, x A, x A | x Al ,);
@ Spin chains (of XXZ-type), obvious N <+ M duality (fiber-base?).

In special cases:
o If M=2(or N=2I)
Go > W (A x A x AV) 5w (AL x AR, x A x AD)

by the Gaiotto transform.
olfM=N=2

Go = WD) > W (AL x AL x AD) 5 w (A1)

A.Marshakov Cluster integrable systems and spin chains September 2, 2019 21/28



Tau-functions: spin chains

For distinguished set of the generators generators {s; j11} and {s, 11} for the
subgroups W(ASV 1) € Go and W(A(l) 1) C Go:

@ 'Monomial action’ on the Casimir functions;

@ For the tau-variables: {7% . 1,j €EZ/NZ, a, b € 7/ MZ generate the set

ia jb
of bilinear relations;

@ Solutions to be given in terms of Nekrasov functions for the quiver gauge
theories with (fundamental and bifundamental) matter.

'In principle’ exist for Dynkin (e.g. linear) gauge quivers ...
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Solutions: g =1

Cf. with autonomous Hirota equations

2 1/N
Tn,m+1Tn,m—1 = Tn,m +z /

: 7-n—}—l,an—l,m
with (N, k)-periodicity Tnen,mtk = Tn,m-
For (N, k) = (2,0)

(93(0)
03(U)

2 2

) 03(Z + mU), Tim=e"/* (03(0)

To,m =

s

where Jacobi's

QJ(Z): Z e27riann2: Z an(n)

n€Z+e; nEZ+e;

is just Fourier transform of 'classical’ Z(o) = Z4(0) = Q.
Classical factors — from tropical limit?
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Solutions: g =1

Almost the same for SU(N), (hyperelliptic Xy «) polygon

(kD)

(0,0) (N,0)

o

E E (nk—mN)? J2N?
Tom = ©(Z + nV + mU) <(X’y) (v V))

where from the Fay identities
2U = A(x) — A(y) — A(u) + A(v), 2V =A(x)— A(y) + A(u) — A(v)

with Abel maps A(P) = fpw on Xy« € Jac(Xn ), and Prime forms E(P, P").
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Solutions: g =1

Actually the same formula for generic Newton polygon A, j=1,...,B
T ~O(Z+ 3 mAP) [[EP: BY™ < T] e
J i<j i

just to satisfy Fay identities.

Easy to write up to 'Casimir factor’
eQ ~ H E(P;, Pj)*/j/Zl,* N H E(P;, I)j)*mj/sz
J#i J#i

from the divisors (A) = > [;P; and (1) = >, m;P; of two functions from the
equation fa(A, ) = 0.
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Solutions: deautonomization g # 1

Again just Fourier transform, e.g. instead of Jacobi's theta
T(usiqlz)= Y s"Z(uq" q ', qlz), jEZ/2L
nE€Z+j/2

where Z(u; g1, g2|z) is pure SU(2) 5d Nekrasov function (Kiev formula).

Generally for the (N, k)-theory

N,k; - = R
@, 5q2) = Y " Znk(dd a7 ql2) ()
REQu_1+wj

where sum is over Ay_1 root lattice, {w;} are fundamental weights, and

— zNk ZN N,k ;
ZNk = Zq" 21 1oop " Zins are bd Nekrasov functions.
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Nekrasov functions

Here: ) s
log u; log u;
Zé\{’kzexp log z > (log uj) iy > (log ui)
—2logqilogg,  —6loggilog g
Z{V—loop = H (ui/uj; 91, G2)oc
1<i#£j<N
X TN
zZN.k _ Z zI [T Tho(u; qu, q2)"
inst — N
R [ =1 Noo o (ui/uji a1, q2)
with

N, (u, g1, q2) = H(l _ uq;au(s)—qux(s)) H(l . uqax(s)q—éu(s)—l)

SEX sEp
Al A A Al)
To(u; ql,qz)*u‘)‘qu(H I=12"1) 2 (IMI=IAD H qu 1q£ ’
(i.J)eX

and X = (X, M) (X = SO A = A, A= 22
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Conclusion

o Cluster varieties and integrable systems;
@ Deautonomization: solutions from Nekrasov functions of 5d SYM;
@ Many open questions ...

Merci beaucoup!
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