Cluster varieties, supersymmetric gauge theories and spin chains

Andrei Marshakov
Center for Advanced Studies, Skoltech; Dept Math NRU HSE, ITEP, Lebedev

Integrability Combinatorics and Representations
Presqu'île de Giens, Hyères, September 2019

based on

joint work with Kolya Semenyakin, arXiv:1905.09921, to appear in JHEP extension of:

Cluster integrable systems and q-Painlevé equations, JHEP 02 (2018) 077, arXiv:1711.02063

Cluster Toda chains and Nekrasov functions, Faddeev volume in Theor. Math. Phys. 198 (2019) 157-187, arXiv:1804.10145
with M. Bershtein \& P. Gavrylenko;
Loop groups, Clusters, Dimers and Integrable systems, arXiv:1401.1606 with V. Fock, ...

Cluster integrable systems:

- Newton polygons Δ;
- Quivers \mathcal{Q} and (X - and A -) cluster varieties;
- Integrable flows: $\mathcal{G}_{\Delta} \subset \mathcal{G}_{\mathcal{Q}}$ (MCG of cluster variety)

Deautonomization:

- Discrete flows from quiver mutations;
- $q=\prod x \neq 1$: integrability lost!
- q-difference 'RG-equations', bilinear in A-cluster representation.

Examples:

- $g=1$ curves $\equiv S U(2)$ 5d gauge theories \equiv q-Painlevé family;
- Relativistic Toda chains $\equiv 5 \mathrm{~d}$ pure gauge theories $\operatorname{SU}(N)_{k}$;
- $\mathfrak{g l}_{N}$ spin chains on M-sites $\equiv S U(N)^{\otimes(M-1)}$ linear gauge quivers;
- Generic Δ : topological strings on local CY ...

Solutions:

- $q=1$ finite gap case;
- Deautonomization: Θ-functions \Rightarrow (dual) Nekrasov functions;
- Quantization of cluster variety \equiv refinement $q \rightarrow\left(q, p=e^{\hbar}\right)$;
- Topological string amplitudes and tropical limit ...

Newton polygon

Newton Polygon (up to $S A(2, \mathbb{Z})$-tranform):

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=\lambda+\frac{1}{\lambda}+\mu+\frac{z}{\mu}+H=0 \tag{1}
\end{equation*}
$$

5d SW curve, VEV H and coupling z: hamiltonian of relativistic Toda chain.
Remark: renormalizations of λ, μ and f_{Δ} fix 3 of coefficients $\left\{f_{a, b}\right\}$ in the equation.

Poisson quiver

X-cluster Poisson variety with (mutation class of) quiver \mathcal{Q} :

encoding logarithmically constant Poisson bracket

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad i, j=1, \ldots,|\mathcal{Q}| \tag{2}
\end{equation*}
$$

with the skew-symmetric matrix

$$
\begin{equation*}
\epsilon_{i j}=-\epsilon_{j i}=\# \text { arrows }(i \rightarrow j)= \pm 2 \tag{3}
\end{equation*}
$$

Obviously $q=x_{1} x_{2} x_{3} x_{4}$ and $z=x_{1} x_{3}$ are in the center of Poisson algebra.

Cluster integrable system

a la Goncharov+Kenyon and/or Fock+AM:

- Defined by any convex NP $\Delta \subset \mathbb{Z}^{2} \subset \mathbb{R}^{2}$ for a curve $\Sigma \subset \mathbb{C}^{\times} \times \mathbb{C}^{\times}$

$$
\begin{equation*}
f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0 \tag{4}
\end{equation*}
$$

- Realized on a Poisson X-cluster variety $\mathcal{X}, \operatorname{dim} \mathcal{X}=2 \operatorname{Area}(\Delta)$. Poisson structure

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=\epsilon_{i j} x_{i} x_{j}, \quad\left\{x_{i}\right\} \in\left(\mathbb{C}^{\times}\right)^{2 \operatorname{Area}(\Delta)} \tag{5}
\end{equation*}
$$

is encoded in a quiver \mathcal{Q}, with $\epsilon_{i j}=\# \operatorname{arrows}(i \rightarrow j)$.
Straightforward quantization (refinement! - spin chains?).

- Integrability: Pick's formula

$$
\begin{equation*}
2 \operatorname{Area}(\Delta)-1=(B-3)+2 g \tag{6}
\end{equation*}
$$

Examples: Painlevé Newton polygons Δ

with a single internal point and $3 \leq B \leq 9$ boundary points:

Here $\Sigma: f_{\Delta}(\lambda, \mu)=\sum_{(a, b) \in \Delta} \lambda^{a} \mu^{b} f_{a, b}=0$ is always a torus $g=1$.

Examples: Painlevé quivers \mathcal{Q}

$A_{8}^{(1)}$
$A_{7}^{(1)^{\prime}}$
$A_{7}^{(1)}$

$A_{4}^{(1)}$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows $x_{1}^{\prime}=1 / x_{1}$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

Mutations: Poisson maps

Symmetries are generated by mutations on X-cluster variety:

Mutation μ_{1}

Reverse all incoming and outgoing arrows

$$
x_{1}^{\prime}=1 / x_{1}
$$

Complete cycles through mutation vertex

$$
\begin{aligned}
& x_{4}^{\prime}=x_{4}\left(1+x_{1}\right)^{2} \\
& x_{2}^{\prime}=x_{2}\left(1+1 / x_{1}\right)^{-2}
\end{aligned}
$$

$\mu_{j}: \epsilon_{i k} \mapsto-\epsilon_{i k}, \quad$ if $i=j$ or $k=j, \quad \epsilon_{i k} \mapsto \epsilon_{i k}+\frac{\epsilon_{j j}\left|\epsilon_{j k}\right|+\epsilon_{j k}\left|\epsilon_{i j}\right|}{2} \quad$ otherwise.
Algebraic (bi-rational!) transformations of the variables:
$\mu_{j}: x_{j} \mapsto x_{j}^{-1}, \quad x_{i} \mapsto x_{i}\left(1+x_{j}^{\operatorname{sgn} \epsilon_{i j}}\right)^{\epsilon_{i j}}, \quad i \neq j . \quad\left\{x_{i}^{\prime}, x_{k}^{\prime}\right\}=\epsilon_{i k}^{\prime} x_{i}^{\prime} x_{k}^{\prime}$

Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS).
Example - the flow $T \in \mathcal{G}_{\mathcal{Q}}$ of two-particle Toda chain:

Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS).
Example - the flow $T \in \mathcal{G}_{\mathcal{Q}}$ of two-particle Toda chain:

Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS).
Example - the flow $T \in \mathcal{G}_{\mathcal{Q}}$ of two-particle Toda chain:

$x_{2}\left(1+x_{1}^{-1}\right)^{-2} \quad x_{3}$

$1 / x_{1} \quad x_{4}\left(1+x_{1}\right)^{2}$

Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS).
Example - the flow $T \in \mathcal{G}_{\mathcal{Q}}$ of two-particle Toda chain:

$x_{2}\left(1+x_{1}^{-1}\right)^{-2} \quad x_{3}$

$1 / x_{1} \quad x_{4}\left(1+x_{1}\right)^{2}$

Cluster automorphisms

All combinations of mutations and permutations of vertices, preserving quiver $\mathcal{G}_{\mathcal{Q}} \supset \mathcal{G}_{\Delta}$ (discrete flows of IS).
Example - the flow $T \in \mathcal{G}_{\mathcal{Q}}$ of two-particle Toda chain:

Deautonomization

For $q=1$ the flow T

$$
T:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{2}\left(\frac{1+x_{3}}{1+x_{1}^{-1}}\right)^{2}, x_{1}^{-1}, x_{4}\left(\frac{1+x_{1}}{1+x_{3}^{-1}}\right)^{2}, x_{3}^{-1}\right)
$$

preserves the Hamiltonian $H=\sqrt{x_{1} x_{2}}+\frac{1}{\sqrt{x_{1} x_{2}}}+\sqrt{\frac{x_{1}}{x_{2}}}+z \sqrt{\frac{x_{2}}{x_{1}}}$.
Let $x_{1} x_{2} x_{3} x_{4}=q \neq 1$ (no integrability!)

$$
T:\left(x_{1}, x_{2}, z, q\right) \mapsto\left(x_{2}\left(\frac{x_{1}+z}{x_{1}+1}\right)^{2}, x_{1}^{-1}, q z, q\right)
$$

Casimir z as "time" $x_{1}=x(z), x_{2}=x^{-1}\left(q^{-1} z\right), T: x(z) \mapsto x(q z)$, satisfying

$$
x(q z) x\left(q^{-1} z\right)=\left(\frac{x(z)+z}{x(z)+1}\right)^{2}
$$

or q-Painlevé $I I I_{3}$ equation $P\left(A_{7}^{(1)^{\prime}}\right)$.

Tau-functions

For the tau-functions $x(z)=z^{1 / 2} \frac{\tau_{1}(z)^{2}}{\tau_{0}(z)^{2}}$ one gets bilinear (non-autonomous!) Hirota equations

$$
\begin{aligned}
& \tau_{0}(q z) \tau_{0}\left(q^{-1} z\right)=\tau_{0}(z)^{2}+z^{1 / 2} \tau_{1}(z)^{2} \\
& \tau_{1}(q z) \tau_{1}\left(q^{-1} z\right)=\tau_{1}(z)^{2}+z^{1 / 2} \tau_{0}(z)^{2}
\end{aligned}
$$

"Generic phenomenon": for the $S U(N)_{k}$-Toda family ($Y^{N, k}$-geometry)

$$
\begin{gathered}
\tau_{j}(q z) \tau_{j}\left(q^{-1} z\right)=\tau_{j}(z)^{2}+z^{1 / N^{2}} \tau_{j+1}\left(q^{k / N_{z}}\right) \tau_{j-1}\left(q^{-k / N_{z}}\right) \\
j \in \mathbb{Z} / N \mathbb{Z}
\end{gathered}
$$

Spin chains: known only for 'exchange zig-zag' transformations ...

Quiver gauge theories and spin chains

Poisson quivers: examples

- Toda: $2 \times N$ fundamental domain of square lattice;
- XXZ-type spin chain: $N \times M$ 'fence-net' domain of the same square lattice.
'Dual' to the GK bipartite graph ...

Lie-group construction: Poisson submanifolds in (co-extended) affine groups.

- Toda: 'Coxeter' words in double Weyl groups $s_{N} \bar{s}_{N} \ldots s_{1} \bar{s}_{1}$ of $\widehat{s l_{N}}$ or $\left(s_{0} \bar{s}_{0} s_{1} \bar{s}_{1}\right)^{N}$ in double $W\left(\widehat{s} l_{2}\right)$;
- Spin chain:

$$
\left(s_{M} \bar{s}_{M} \ldots s_{1} \bar{s}_{1} \Lambda\right)^{N}
$$

in coextended $W\left(\widehat{s}_{N}\right)\left(\right.$ or $\left.W\left(\widehat{s}_{M}\right)\right)$.

Dirac-Kasteleyn operator of the structure

$$
\mathfrak{D}(\lambda, \mu)=\sum E \otimes A+E \otimes C
$$

gives Lax matrices

$$
L \sim C^{-1} A
$$

Toda chains: cluster versus Darboux variables

- Poisson quiver \mathcal{Q} (fundamental domain with $2 N$ vertices of square lattice):

$$
\left\{y_{i}, x_{j}\right\}=\widehat{C}_{i j} y_{i} x_{j}, \quad i, j \in \mathbb{Z} / N \mathbb{Z}
$$

gives the bracket with affine Cartan matrix;

- Cluster versus canonical co-ordinates

$$
x_{i}=\exp \left(-\left(\alpha_{i} \cdot q\right)\right), \quad y_{i}=\exp \left(\alpha_{i} \cdot(P+q)\right), \quad i \in \mathbb{Z} / N \mathbb{Z}
$$

and

$$
P=p+\frac{\partial}{\partial q}\left(\frac{1}{2} \sum_{k=1}^{N} \operatorname{Li}_{2}\left(-\exp \left(\alpha_{k} \cdot q\right)\right)\right)
$$

Cluster versus spin variables

- Poisson quiver $\mathcal{Q}(N \times M$ 'fence-net' domain of square lattice):

$$
\begin{gathered}
\left\{x_{i a}^{\times}, x_{j b}^{+}\right\}=\left(\delta_{i, j+1} \delta_{a b}+\delta_{i j} \delta_{a+1, b}-\delta_{i j} \delta_{a b}-\delta_{i, j+1} \delta_{a+1, b}\right) x_{i a}^{\times} x_{j b}^{+}, \\
\left\{x_{i a}^{\times}, x_{j b}^{\times}\right\}=\left\{x_{i a}^{+}, x_{j b}^{+}\right\}=0, \quad i, j \in \mathbb{Z} / N \mathbb{Z}, \quad a, b \in \mathbb{Z} / M \mathbb{Z}
\end{gathered}
$$

- Relation to spin variables:

$$
x_{i, a}^{\times}=e^{-2\left(S_{a}^{0}\right)_{i}}
$$

but

$$
x_{i, a}^{+}=-\left(S_{a-1}^{+}\right)_{i+1}\left(S_{a}^{-}\right)_{i} \frac{e^{\left(S_{a}^{0}\right)_{i+1}+\left(S_{a-1}^{0}\right)_{i}}}{\cosh \left(S_{a-1}^{0}\right)_{i+1} \cosh \left(S_{a}^{0}\right)_{i}}
$$

- Spin chains: inhomogeneous (casimir functions), yet classical ...

Cluster MCG

- local \mathbb{P}^{2} :

$$
\mathcal{G}_{\mathcal{Q}} \simeq \mathcal{G}_{\Delta} \simeq \mathbb{Z} / 3 \mathbb{Z}
$$

- Toda or pure $S U(2)$ or local $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
\mathcal{G}_{\mathcal{Q}} \simeq \operatorname{Dih}_{4} \ltimes W\left(A_{1}^{(1)}\right) \supset \mathcal{G}_{\Delta} \simeq \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Painlevé quivers and their MCG

$\mathbb{Z} / 3 \mathbb{Z} \quad \operatorname{Dih}_{4} \ltimes W\left(A_{1}^{(1)}\right) \quad W\left(A_{1}^{(1)}\right) \quad \tilde{W}\left(\left(A_{1}+A_{1}\right)^{(1)}\right) \quad \tilde{W}\left(\left(A_{1}+A_{2}\right)^{(1)}\right)$

$\tilde{W}\left(D_{4}^{(1)}\right)$

$\tilde{W}\left(D_{5}^{(1)}\right)$

Cluster MCG for spin chains

- MCG from Newton polygon $\mathcal{G}_{\mathcal{Q}} \supset W\left(A_{N-1}^{(1)} \times A_{N-1}^{(1)} \times A_{M-1}^{(1)} \times A_{M-1}^{(1)}\right)$;
- Spin chains (of XXZ-type), obvious $N \leftrightarrow M$ duality (fiber-base?).

In special cases:

- If $M=2$ (or $N=2$!)

$$
\mathcal{G}_{\mathcal{Q}} \supset W\left(A_{2 N-1}^{(1)} \times A_{1}^{(1)} \times A_{1}^{(1)}\right) \supset W\left(A_{N-1}^{(1)} \times A_{N-1}^{(1)} \times A_{1}^{(1)} \times A_{1}^{(1)}\right)
$$

by the Gaiotto transform.

- If $M=N=2$

$$
\mathcal{G}_{\mathcal{Q}}=W\left(D_{5}^{(1)}\right) \supset W\left(A_{3}^{(1)} \times A_{1}^{(1)} \times A_{1}^{(1)}\right) \supset W\left(A_{1}^{(1) \times 4}\right)
$$

Tau-functions: spin chains

For distinguished set of the generators generators $\left\{s_{i, i+1}\right\}$ and $\left\{s_{a, a+1}\right\}$ for the subgroups $W\left(A_{N-1}^{(1)}\right) \subset \mathcal{G}_{\mathcal{Q}}$ and $W\left(A_{M-1}^{(1)}\right) \subset \mathcal{G}_{\mathcal{Q}}$:

- 'Monomial action' on the Casimir functions;
- For the tau-variables: $\left\{\tau_{i a}^{\times}, \tau_{j b}^{+}\right\}, i, j \in \mathbb{Z} / N \mathbb{Z}, a, b \in \mathbb{Z} / M \mathbb{Z}$ generate the set of bilinear relations;
- Solutions to be given in terms of Nekrasov functions for the quiver gauge theories with (fundamental and bifundamental) matter.
'In principle' exist for Dynkin (e.g. linear) gauge quivers ...

Solutions: $q=1$

Cf. with autonomous Hirota equations

$$
\tau_{n, m+1} \tau_{n, m-1}=\tau_{n, m}^{2}+z^{1 / N} \cdot \tau_{n+1, m} \tau_{n-1, m}
$$

with (N, k)-periodicity $\tau_{n+N, m+k}=\tau_{n, m}$.
For $(N, k)=(2,0)$

$$
\tau_{0, m}=\left(\frac{\theta_{3}(0)}{\theta_{3}(U)}\right)^{m^{2}} \theta_{3}(Z+m U), \quad \tau_{1, m}=e^{i \pi / 4}\left(\frac{\theta_{3}(0)}{\theta_{3}(U)}\right)^{m^{2}} \theta_{1}(Z+m U)
$$

where Jacobi's

$$
\theta_{j}(Z)=\sum_{n \in \mathbb{Z}+e_{j}} e^{2 \pi i n z} \mathfrak{q}^{n^{2}}=\sum_{n \in \mathbb{Z}+e_{j}} s^{n} \mathcal{Z}(n)
$$

is just Fourier transform of 'classical' $\mathcal{Z}(\sigma)=\mathcal{Z}_{\mathrm{cl}}(\sigma)=\mathfrak{q}^{\sigma^{2}}$.
Classical factors - from tropical limit?

Solutions: $q=1$

Almost the same for $\operatorname{SU}(N)_{k}$ (hyperelliptic $\Sigma_{N, k}$) polygon

where from the Fay identities

$$
2 U=\mathcal{A}(x)-\mathcal{A}(y)-\mathcal{A}(u)+\mathcal{A}(v), \quad 2 V=\mathcal{A}(x)-\mathcal{A}(y)+\mathcal{A}(u)-\mathcal{A}(v)
$$

with Abel maps $\mathcal{A}(P)=\int^{P} \omega$ on $\Sigma_{N, k} \in \operatorname{Jac}\left(\Sigma_{N, k}\right)$, and Prime forms $E\left(P, P^{\prime}\right)$.

Solutions: $q=1$

Actually the same formula for generic Newton polygon $\Delta, j=1, \ldots, B$

$$
\mathcal{T} \sim \Theta\left(Z+\sum_{j} n_{j} A\left(P_{j}\right)\right) \prod_{i<j} E\left(P_{i}, P_{j}\right)^{n_{i} n_{j}} \times \prod_{i} e^{Q_{i} n_{i}^{2}}
$$

just to satisfy Fay identities.
Easy to write up to 'Casimir factor'

$$
e^{Q_{i}} \sim \prod_{j \neq i} E\left(P_{i}, P_{j}\right)^{-I_{j} / 2 l_{i}} \sim \prod_{j \neq i} E\left(P_{i}, P_{j}\right)^{-m_{j} / 2 m_{i}}
$$

from the divisors $(\lambda)=\sum_{j} l_{j} P_{j}$ and $(\mu)=\sum_{j} m_{j} P_{j}$ of two functions from the equation $f_{\Delta}(\lambda, \mu)=0$.

Solutions: deautonomization $q \neq 1$

Again just Fourier transform, e.g. instead of Jacobi's theta

$$
\tau_{j}(u, s ; q \mid z)=\sum_{n \in \mathbb{Z}+j / 2} s^{n} \mathcal{Z}\left(u q^{n} ; q^{-1}, q \mid z\right), \quad j \in \mathbb{Z} / 2 \mathbb{Z}
$$

where $\mathcal{Z}\left(u ; q_{1}, q_{2} \mid z\right)$ is pure $S U(2) 5 d$ Nekrasov function (Kiev formula).

Generally for the (N, k)-theory

$$
\begin{equation*}
\tau_{j}^{N, k}(\vec{u}, \vec{s} ; q \mid z)=\sum_{\vec{\Lambda} \in Q_{N-1}+\omega_{j}} s^{\wedge} \mathcal{Z}_{N, k}\left(\vec{u} q^{\vec{\wedge}} ; q^{-1}, q \mid z\right) \tag{7}
\end{equation*}
$$

where sum is over A_{N-1} root lattice, $\left\{\omega_{j}\right\}$ are fundamental weights, and $\mathcal{Z}_{N, k}=\mathcal{Z}_{\mathrm{cl}}^{N, k} \cdot \mathcal{Z}_{1 \text {-loop }}^{N} \cdot \mathcal{Z}_{\text {inst }}^{N, k}$ are 5 d Nekrasov functions.

Nekrasov functions

Here:

$$
\begin{gathered}
\mathcal{Z}_{\mathrm{cl}}^{N, k}=\exp \left(\log z \frac{\sum\left(\log u_{i}\right)^{2}}{-2 \log q_{1} \log q_{2}}+k \frac{\sum\left(\log u_{i}\right)^{3}}{-6 \log q_{1} \log q_{2}}\right) \\
\mathcal{Z}_{1-\text { loop }}^{N}=\prod_{1 \leq i \neq j \leq N}\left(u_{i} / u_{j} ; q_{1}, q_{2}\right)_{\infty} \\
\mathcal{Z}_{\text {inst }}^{N, k}=\sum_{\vec{\lambda}} \frac{z^{|\vec{\lambda}|} \prod_{i=1}^{N} T_{\lambda^{(i)}}\left(u ; q_{1}, q_{2}\right)^{k}}{\prod_{i, j=1}^{N} N_{\lambda(i), \lambda^{(j)}}\left(u_{i} / u_{j} ; q_{1}, q_{2}\right)}
\end{gathered}
$$

with

$$
\begin{gathered}
\mathrm{N}_{\lambda, \mu}\left(u, q_{1}, q_{2}\right)=\prod_{s \in \lambda}\left(1-u q_{2}^{-a_{\mu}(s)-1} q_{1}^{\ell_{\lambda}(s)}\right) \prod_{s \in \mu}\left(1-u q_{2}^{a_{\lambda}(s)} q_{1}^{-\ell_{\mu}(s)-1}\right) \\
\mathrm{T}_{\lambda}\left(u ; q_{1}, q_{2}\right)=u^{|\lambda|} q_{1}^{\frac{1}{2}\left(\left\|\lambda^{t}\right\|-\left|\lambda^{t}\right|\right)} q_{2}^{\frac{1}{2}(\|\lambda\|-|\lambda|)}=\prod_{(i, j) \in \lambda} u q_{1}^{i-1} q_{2}^{j-1}
\end{gathered}
$$

$$
\text { and } \vec{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(N)}\right),|\vec{\lambda}|=\sum\left|\lambda^{(i)}\right|,|\lambda|=\sum \lambda_{j},\|\lambda\|=\sum_{\vec{a}} \lambda_{j}^{2} \text {. }
$$

Conclusion

- Cluster varieties and integrable systems;
- Deautonomization: solutions from Nekrasov functions of 5d SYM;
- Many open questions ...

Merci beaucoup!

