Integrability Property of Graph Invariants

Sergei Lando

National Research University Higher School of Economics, Skolkovo Institute of Science and Technology, Moscow, Russia

September 3, 2019

Reference

S. Chmutov, M. Kazarian, S. Lando, Integrability property of graph invariants, arXiv:1809.0434

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

The chromatic polynomial $\chi_{G}(c)$ is the number of proper colorings of the vertices of a simple graph G into c colors.

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

$W_{G}\left(q_{1}, q_{2}, \ldots\right)$ is defined for

The chromatic polynomial $\chi_{G}(c)$ is the number of proper colorings of the vertices of a simple graph G into c colors.
graphs with weighted vertices and takes values in the ring of polynomials in infinitely many variables (in the form of [CDL94]).

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

The chromatic polynomial $\chi_{G}(c)$ is the number of proper colorings of the vertices of a simple graph G into c colors.

- $\chi_{\bullet}(c)=c$;
- $\chi_{G_{1} \sqcup G_{2}}(c)=\chi_{G_{1}}(c) \chi_{G_{2}}(c)$;
- $\chi_{G}(c)=\chi_{G_{e}^{\prime}}(c)-\chi_{G_{e}^{\prime \prime}}(c)$.
$W_{G}\left(q_{1}, q_{2}, \ldots\right)$ is defined for graphs with weighted vertices and takes values in the ring of polynomials in infinitely many variables (in the form of [CDL94]).

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

The chromatic polynomial $\chi_{G}(c)$ is the number of proper colorings of the vertices of a simple graph G into c colors.

- $\chi_{\bullet}(c)=c$;
- $\chi_{G_{1} \sqcup G_{2}}(c)=\chi_{G_{1}}(c) \chi_{G_{2}}(c)$;
- $\chi_{G}(c)=\chi_{G_{e}^{\prime}}(c)-\chi_{G_{e}^{\prime \prime}}(c)$.
$W_{G}\left(q_{1}, q_{2}, \ldots\right)$ is defined for graphs with weighted vertices and takes values in the ring of polynomials in infinitely many variables (in the form of [CDL94]).
- $W_{\bullet n}=q_{n}$;
- $W_{G_{1} \sqcup G_{2}}=W_{G_{1}} W_{G_{2}}$;
- $W_{G}(c)=W_{G_{e}^{\prime}}+W_{G_{e}^{\prime \prime}}$.

Stanley's symmetrized chromatic polynomial (1995) (= Weighted chromatic polynomial of [CDL94])

The chromatic polynomial $\chi_{G}(c)$ is the number of proper colorings of the vertices of a simple graph G into c colors.

- $\chi_{\bullet}(c)=c$;
- $\chi_{G_{1} \sqcup G_{2}}(c)=\chi_{G_{1}}(c) \chi_{G_{2}}(c)$;
- $\chi_{G}(c)=\chi_{G_{e}^{\prime}}(c)-\chi_{G_{e}^{\prime \prime}}(c)$.
$W_{G}\left(q_{1}, q_{2}, \ldots\right)$ is defined for graphs with weighted vertices and takes values in the ring of polynomials in infinitely many variables (in the form of [CDL94]).
- $W_{\bullet n}=q_{n}$;
- $W_{G_{1} \sqcup G_{2}}=W_{G_{1}} W_{G_{2}}$;
- $W_{G}(c)=W_{G_{e}^{\prime}}+W_{G_{e}^{\prime \prime}}$.

For ordinary graphs all the weights are taken to be 1 ,

$$
\chi_{G}(c)=(-1)^{|V(G)|} W_{G}(c,-c, c, \ldots)
$$

Example

The weighted chromatic polynomials for the two connected graphs with three vertices are

$$
\begin{aligned}
& W_{P_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+2 q_{1} q_{2}+q_{3} \\
& W_{K_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+3 q_{1} q_{2}+2 q_{3}
\end{aligned}
$$

Example

The weighted chromatic polynomials for the two connected graphs with three vertices are

$$
\begin{aligned}
& W_{P_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+2 q_{1} q_{2}+q_{3} \\
& W_{K_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+3 q_{1} q_{2}+2 q_{3}
\end{aligned}
$$

Starting with graphs on 4 vertices, the weighted chromatic polynomial becomes a finer graph invariant than the ordinary chromatic polynomial.

Example

The weighted chromatic polynomials for the two connected graphs with three vertices are

$$
\begin{aligned}
& W_{P_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+2 q_{1} q_{2}+q_{3} \\
& W_{K_{3}}\left(q_{1}, q_{2}, \ldots\right)=q_{1}^{3}+3 q_{1} q_{2}+2 q_{3}
\end{aligned}
$$

Starting with graphs on 4 vertices, the weighted chromatic polynomial becomes a finer graph invariant than the ordinary chromatic polynomial.

Conjecture (R. Stanley)

The weighted chromatic polynomial distinguishes trees.

Generating functions for weighted chromatic polynomial

$$
\begin{aligned}
\mathcal{W}^{\circ}\left(q_{1}, q_{2}, \ldots\right)= & \sum_{G} \frac{W_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
= & 1+\frac{1}{1!} q_{1}+\frac{1}{2!}\left(2 q_{1}^{2}+q_{2}\right)+\frac{1}{3!}\left(8 q_{1}^{3}+12 q_{1} q_{2}+5 q_{3}\right) \\
& +\frac{1}{4!}\left(64 q_{1}^{4}+192 q_{1}^{2} q_{2}+48 q_{2}^{2}+160 q_{1} q_{3}+79 q_{4}\right)+\ldots \\
\mathcal{W}\left(q_{1}, q_{2}, \ldots\right)= & \sum_{\substack{G \text { connected } \\
\text { non-empty }}} \frac{W_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
= & \frac{1}{1!} q_{1}+\frac{1}{2!}\left(q_{1}^{2}+q_{2}\right)+\frac{1}{3!}\left(4 q_{1}^{3}+9 q_{1} q_{2}+5 q_{3}\right) \\
& +\frac{1}{4!}\left(38 q_{1}^{4}+144 q_{1}^{2} q_{2}+45 q_{2}^{2}+140 q_{1} q_{3}+79 q_{4}\right)+\ldots
\end{aligned}
$$

Generating functions for weighted chromatic polynomial

$$
\begin{aligned}
\mathcal{W}^{\circ}\left(q_{1}, q_{2}, \ldots\right)= & \sum_{G} \frac{W_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
= & 1+\frac{1}{1!} q_{1}+\frac{1}{2!}\left(2 q_{1}^{2}+q_{2}\right)+\frac{1}{3!}\left(8 q_{1}^{3}+12 q_{1} q_{2}+5 q_{3}\right) \\
& +\frac{1}{4!}\left(64 q_{1}^{4}+192 q_{1}^{2} q_{2}+48 q_{2}^{2}+160 q_{1} q_{3}+79 q_{4}\right)+\ldots \\
\mathcal{W}\left(q_{1}, q_{2}, \ldots\right)= & \sum_{\substack{G \text { connected } \\
\text { non-empty }}} \frac{W_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
= & \frac{1}{1!} q_{1}+\frac{1}{2!}\left(q_{1}^{2}+q_{2}\right)+\frac{1}{3!}\left(4 q_{1}^{3}+9 q_{1} q_{2}+5 q_{3}\right) \\
& +\frac{1}{4!}\left(38 q_{1}^{4}+144 q_{1}^{2} q_{2}+45 q_{2}^{2}+140 q_{1} q_{3}+79 q_{4}\right)+\ldots \\
& \mathcal{W}^{\circ}=\exp (\mathcal{W})
\end{aligned}
$$

Integrability theorem

Integrability theorem

Theorem

After an appropriate rescaling of the variables $q_{i}=c_{i} p_{i}, i=1,2,3, \ldots$, the function \mathcal{W} becomes a solution to the KP (Kadomtsev-Petviashvili) hierarchy of partial differential equations, and \mathcal{W}° a τ-function of the KP hierarchy.

Kadomtsev-Petviashvili hierarchy

The KP hierarchy is an "integrable" infinite system of partial differential equations for a function in infinitely many variables, the first of which is

$$
\frac{\partial^{2} F}{\partial p_{2}^{2}}=\frac{\partial^{2} F}{\partial p_{1} \partial p_{3}}-\frac{1}{2}\left(\frac{\partial^{2} F}{\partial p_{1}^{2}}\right)^{2}-\frac{1}{12} \frac{\partial^{4} F}{\partial p_{1}^{4}}
$$

Kadomtsev-Petviashvili hierarchy

The KP hierarchy is an "integrable" infinite system of partial differential equations for a function in infinitely many variables, the first of which is

$$
\frac{\partial^{2} F}{\partial p_{2}^{2}}=\frac{\partial^{2} F}{\partial p_{1} \partial p_{3}}-\frac{1}{2}\left(\frac{\partial^{2} F}{\partial p_{1}^{2}}\right)^{2}-\frac{1}{12} \frac{\partial^{4} F}{\partial p_{1}^{4}}
$$

For functions independent of variables with even indices, the KP hierarchy degenerates into the KdV hierarchy.

Another solution to KP: Generating function for the numbers of rooted maps (I. Goulden, D. Jackson, 2008)

Define exponential generating functions in a variable w (recording the number of faces), a variable z (recording the number of edges), and infinitely many variables p_{1}, p_{2}, \ldots (recording the verticies' valencies):

$$
R^{\circ}\left(w, z ; p_{1}, p_{2}, \ldots\right)=\sum_{m, n, \mu} \frac{r_{m, n ; \mu}^{\circ}}{2 n} p_{\mu_{1}} p_{\mu_{2}} \ldots \frac{w^{m}}{m!} \frac{z^{n}}{n!}
$$

Another solution to KP: Generating function for the

 numbers of rooted maps (I. Goulden, D. Jackson, 2008)Define exponential generating functions in a variable w (recording the number of faces), a variable z (recording the number of edges), and infinitely many variables p_{1}, p_{2}, \ldots (recording the verticies' valencies):

$$
R^{\circ}\left(w, z ; p_{1}, p_{2}, \ldots\right)=\sum_{m, n, \mu} \frac{r_{m, n ; \mu}^{\circ}}{2 n} p_{\mu_{1}} p_{\mu_{2}} \ldots \frac{w^{m}}{m!} \frac{z^{n}}{n!}
$$

and

$$
R\left(w, z ; p_{1}, p_{2}, \ldots\right)=\sum_{m, n, \mu} \frac{r_{m, n ; \mu}}{2 n} p_{\mu_{1}} p_{\mu_{2}} \ldots \frac{w^{m}}{m!} \frac{z^{n}}{n!}
$$

Here $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \mu_{1} \geq \mu_{2} \geq \ldots$ runs over all partitions $\mu \vdash 2 n$, $r_{m, n ; \mu}^{\circ}$ is the number of rooted maps, and $r_{m, n ; \mu}$ is the number of connected rooted maps with m faces, n edges and partition of valencies of the vertices μ.

Another solution to KP: Generating function for the

 numbers of rooted maps (I. Goulden, D. Jackson, 2008)Define exponential generating functions in a variable w (recording the number of faces), a variable z (recording the number of edges), and infinitely many variables p_{1}, p_{2}, \ldots (recording the verticies' valencies):

$$
R^{\circ}\left(w, z ; p_{1}, p_{2}, \ldots\right)=\sum_{m, n, \mu} \frac{r_{m, n ; \mu}^{\circ}}{2 n} p_{\mu_{1}} p_{\mu_{2}} \ldots \frac{w^{m}}{m!} \frac{z^{n}}{n!}
$$

and

$$
R\left(w, z ; p_{1}, p_{2}, \ldots\right)=\sum_{m, n, \mu} \frac{r_{m, n ; \mu}}{2 n} p_{\mu_{1}} p_{\mu_{2}} \ldots \frac{w^{m}}{m!} \frac{z^{n}}{n!}
$$

Here $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right), \mu_{1} \geq \mu_{2} \geq \ldots$ runs over all partitions $\mu \vdash 2 n$, $r_{m, n ; \mu}^{\circ}$ is the number of rooted maps, and $r_{m, n ; \mu}$ is the number of connected rooted maps with m faces, n edges and partition of valencies of the vertices μ.
The two are related by

$$
R^{\circ}=\exp (R)
$$

Hopf algebra of graphs (Rota, around 1970)

$\mathcal{G}_{k}, k=0,1,2, \ldots$, the vector space (say, over \mathbb{C}) spanned by simple graphs with k vertices. The vector space of graphs

$$
\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \ldots
$$

Hopf algebra of graphs (Rota, around 1970)

$\mathcal{G}_{k}, k=0,1,2, \ldots$, the vector space (say, over \mathbb{C}) spanned by simple graphs with k vertices. The vector space of graphs

$$
\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \ldots
$$

Multiplication $\mathcal{G} \otimes \mathcal{G} \rightarrow \mathcal{G}$ - induced by the disjoint union of graphs

Hopf algebra of graphs (Rota, around 1970)

$\mathcal{G}_{k}, k=0,1,2, \ldots$, the vector space (say, over \mathbb{C}) spanned by simple graphs with k vertices. The vector space of graphs

$$
\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \ldots
$$

Multiplication $\mathcal{G} \otimes \mathcal{G} \rightarrow \mathcal{G}$ - induced by the disjoint union of graphs

Comultiplication $\mathcal{G} \rightarrow \mathcal{G} \otimes \mathcal{G}$ - is defined on a graph as the sum over all splittings of the set of its vertices into two disjoint subset,

$$
\left.\left.G \mapsto \sum_{V(G)=I \sqcup J} G\right|_{\iota} \otimes G\right|_{J} .
$$

Hopf algebra of graphs (Rota, around 1970)

$\mathcal{G}_{k}, k=0,1,2, \ldots$, the vector space (say, over \mathbb{C}) spanned by simple graphs with k vertices. The vector space of graphs

$$
\mathcal{G}=\mathcal{G}_{0} \oplus \mathcal{G}_{1} \oplus \mathcal{G}_{2} \oplus \ldots
$$

Multiplication $\mathcal{G} \otimes \mathcal{G} \rightarrow \mathcal{G}$ - induced by the disjoint union of graphs

Comultiplication $\mathcal{G} \rightarrow \mathcal{G} \otimes \mathcal{G}$ - is defined on a graph as the sum over all splittings of the set of its vertices into two disjoint subset,

$$
\left.\left.G \mapsto \sum_{V(G)=I \sqcup J} G\right|_{\iota} \otimes G\right|_{J} .
$$

Both operations are graded and together they make \mathcal{G} into a connected commutative cocommutative Hopf algebra.

Umbral graph invariants

Definition

An umbral graph invariant is a graded Hopf algebra homomorphism $\mathcal{G} \rightarrow \mathbb{C}\left[q_{1}, q_{2}, \ldots\right]$.

Comultiplication: $q_{i} \mapsto 1 \otimes q_{i}+q_{i} \otimes 1, i=1,2, \ldots$.

Umbral graph invariants

Definition

An umbral graph invariant is a graded Hopf algebra homomorphism $\mathcal{G} \rightarrow \mathbb{C}\left[q_{1}, q_{2}, \ldots\right]$.

Comultiplication: $q_{i} \mapsto 1 \otimes q_{i}+q_{i} \otimes 1, i=1,2, \ldots$.
One more example: the $A b e l$ polynomial A_{G} of a graph G is defined as

$$
A_{G}\left(q_{1}, q_{2}, \ldots\right)=\sum_{\text {forests } F \subset E(G) \text { trees } T \text { in } F} \prod|V(T)| q_{|V(T)|}
$$

The coefficient of $q_{1}^{m_{1}} q_{2}^{m_{2}} \ldots$ in A_{G} is the number of rooted forests in G having m_{1} trees with 1 vertex, m_{2} trees with 2 vertices,

Umbral graph invariants

Definition

An umbral graph invariant is a graded Hopf algebra homomorphism $\mathcal{G} \rightarrow \mathbb{C}\left[q_{1}, q_{2}, \ldots\right]$.

Comultiplication: $q_{i} \mapsto 1 \otimes q_{i}+q_{i} \otimes 1, i=1,2, \ldots$.

One more example: the $A b e l$ polynomial A_{G} of a graph G is defined as

$$
A_{G}\left(q_{1}, q_{2}, \ldots\right)=\sum_{\text {forests } F \subset E(G) \text { trees } T \text { in } F}|V(T)| q_{|V(T)|}
$$

The coefficient of $q_{1}^{m_{1}} q_{2}^{m_{2}} \ldots$ in A_{G} is the number of rooted forests in G having m_{1} trees with 1 vertex, m_{2} trees with 2 vertices, The Abel polynomial of complete graphs:

$$
A_{K_{n}}(x, x, x, \ldots)=x(x+n)^{n-1}=A_{n}(x)
$$

Generating function for umbral invariant

Let / be an umbral graph polynomial invariant. Define two generating functions by

$$
\begin{aligned}
\mathcal{I}^{\circ}\left(q_{1}, q_{2}, \ldots\right) & =\sum_{G} \frac{I_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
\mathcal{I}\left(q_{1}, q_{2}, \ldots\right) & =\sum_{\substack{G \text { connected } \\
\text { non-empty }}} \frac{I_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
\mathcal{I}^{\circ} & =\exp (\mathcal{I})
\end{aligned}
$$

Define constants $i_{n}, n=1,2, \ldots$, by

$$
i_{n}=\left[q_{n}\right] \sum_{G,|V(G)|=n} \frac{I_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|}
$$

Main theorem

Theorem

Suppose all the constants $i_{n}, n=1,2,3, \ldots$, are nonzero. Then after an appropriate rescaling of the variables $q_{n}=c_{n} p_{n}, n=1,2,3, \ldots$, the function \mathcal{I} becomes a solution to the KP (Kadomtsev-Petviashvili) hierarchy of partial differential equations, and \mathcal{I}° a τ-function of the $K P$ hierarchy. The solution and the τ-function are the same for all umbral graph invariants.

Rescaling

Theorem

After the rescaling of the variables $q_{n}=\frac{2^{n(n-1) / 2}(n-1)!}{i_{n}} \cdot p_{n}$, the generating function \mathcal{I}° becomes the following linear combination of one-part Schur polynomials:
$\mathcal{S}\left(p_{1}, p_{2}, \ldots\right)=1+2^{0} s_{1}\left(p_{1}\right)+2^{1} s_{2}\left(p_{1}, p_{2}\right)+\cdots+2^{n(n-1) / 2} s_{n}\left(p_{1}, \ldots, p_{n}\right)+\ldots$

Rescaling

Theorem

After the rescaling of the variables $q_{n}=\frac{2^{n(n-1) / 2}(n-1)!}{i_{n}} \cdot p_{n}$, the generating function \mathcal{I}° becomes the following linear combination of one-part Schur polynomials:
$\mathcal{S}\left(p_{1}, p_{2}, \ldots\right)=1+2^{0} s_{1}\left(p_{1}\right)+2^{1} s_{2}\left(p_{1}, p_{2}\right)+\cdots+2^{n(n-1) / 2} s_{n}\left(p_{1}, \ldots, p_{n}\right)+\ldots$

The one-part Schur polynomials are defined through the expansion

$$
1+s_{1}\left(p_{1}\right)+s_{2}\left(p_{1}, p_{2}\right)+s_{3}\left(p_{1}, p_{2}, p_{3}\right)+\cdots=e^{\frac{p_{1}}{1}+\frac{p_{2}}{2}+\frac{p_{3}}{3}+\ldots}
$$

Rescaling

Theorem

After the rescaling of the variables $q_{n}=\frac{2^{n(n-1) / 2}(n-1)!}{i_{n}} \cdot p_{n}$, the generating function \mathcal{I}° becomes the following linear combination of one-part Schur polynomials:
$\mathcal{S}\left(p_{1}, p_{2}, \ldots\right)=1+2^{0} s_{1}\left(p_{1}\right)+2^{1} s_{2}\left(p_{1}, p_{2}\right)+\cdots+2^{n(n-1) / 2} s_{n}\left(p_{1}, \ldots, p_{n}\right)+\ldots$

The one-part Schur polynomials are defined through the expansion

$$
1+s_{1}\left(p_{1}\right)+s_{2}\left(p_{1}, p_{2}\right)+s_{3}\left(p_{1}, p_{2}, p_{3}\right)+\cdots=e^{\frac{p_{1}}{1}+\frac{p_{2}}{2}+\frac{p_{3}}{3}+\ldots}
$$

It is known that any linear combination of one-part Schur polynomials with the free term 1 is a τ-function for the KP hierarchy.

Other Hopf algebras

The Hopf algebra of graphs is not unique. Other examples include

- weighted graphs;
- k-regular hypergraphs;
- binary delta-matroids;
- chord diagrams;

Other Hopf algebras

The Hopf algebra of graphs is not unique. Other examples include

- weighted graphs;
- k-regular hypergraphs;
- binary delta-matroids;
- chord diagrams;
- . . .

Theorem (E. Krasilnikov, 2019)

None of the above Hopf algebras possesses integrability property similar to that of the Hopf algebra of graphs.

Other Hopf algebras

The Hopf algebra of graphs is not unique. Other examples include

- weighted graphs;
- k-regular hypergraphs;
- binary delta-matroids;
- chord diagrams;
- ...

Theorem (E. Krasilnikov, 2019)

None of the above Hopf algebras possesses integrability property similar to that of the Hopf algebra of graphs.

Exception: Hopf algebra of framed graphs (=simple graphs with loops allowed).

Thank you for your attention

