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Stanley’s symmetrized chromatic polynomial (1995)
(= Weighted chromatic polynomial of [CDL94])

The chromatic polynomial χG (c)
is the number of proper colorings
of the vertices of a simple
graph G into c colors.

WG (q1, q2, . . . ) is defined for
graphs with weighted vertices and
takes values in the ring of
polynomials in infinitely many
variables (in the form of
[CDL94]).

χ•(c) = c ;

χG1tG2(c) = χG1(c)χG2(c);

χG (c) = χG ′
e
(c)− χG ′′

e
(c).

W•n = qn;

WG1tG2 = WG1WG2 ;

WG (c) = WG ′
e

+ WG ′′
e

.

For ordinary graphs all the
weights are taken to be 1,

χG (c) = (−1)|V (G)|WG (c ,−c, c , . . . ).
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Example

The weighted chromatic polynomials for the two connected graphs with
three vertices are

WP3(q1, q2, . . . ) = q31 + 2q1q2 + q3,

WK3(q1, q2, . . . ) = q31 + 3q1q2 + 2q3.

Starting with graphs on 4 vertices, the weighted chromatic polynomial
becomes a finer graph invariant than the ordinary chromatic polynomial.

Conjecture (R. Stanley)

The weighted chromatic polynomial distinguishes trees.
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Generating functions for weighted chromatic polynomial

W◦(q1, q2, . . . ) =
∑
G

WG (q1, q2, . . . )

|Aut(G )|

= 1 +
1

1!
q1 +

1

2!

(
2q21 + q2

)
+

1

3!

(
8q31 + 12q1q2 + 5q3

)
+

1

4!

(
64q41 + 192q21q2 + 48q22 + 160q1q3 + 79q4

)
+ . . .

W(q1, q2, . . . ) =
∑

G connected
non-empty

WG (q1, q2, . . . )

|Aut(G )|

=
1

1!
q1 +

1

2!

(
q21 + q2

)
+

1

3!

(
4q31 + 9q1q2 + 5q3

)
+

1

4!

(
38q41 + 144q21q2 + 45q22 + 140q1q3 + 79q4

)
+ . . . ,

W◦ = exp(W)
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Integrability theorem

Theorem

After an appropriate rescaling of the variables qi = cipi , i = 1, 2, 3, . . . ,
the function W becomes a solution to the KP (Kadomtsev–Petviashvili)
hierarchy of partial differential equations, and W◦ a τ -function of the KP
hierarchy.
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Kadomtsev–Petviashvili hierarchy

The KP hierarchy is an “integrable” infinite system of partial differential
equations for a function in infinitely many variables, the first of which is

∂2F

∂p22
=

∂2F

∂p1∂p3
− 1

2

(
∂2F

∂p21

)2

− 1

12

∂4F

∂p41
.

For functions independent of variables with even indices, the KP hierarchy
degenerates into the KdV hierarchy.
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Another solution to KP: Generating function for the
numbers of rooted maps (I. Goulden, D. Jackson, 2008)

Define exponential generating functions in a variable w (recording the
number of faces), a variable z (recording the number of edges), and
infinitely many variables p1, p2, . . . (recording the verticies’ valencies):

R◦(w , z ; p1, p2, . . . ) =
∑
m,n,µ

r◦m,n;µ
2n

pµ1pµ2 . . .
wm

m!

zn

n!
;

and

R(w , z ; p1, p2, . . . ) =
∑
m,n,µ

rm,n;µ
2n

pµ1pµ2 . . .
wm

m!

zn

n!
;

Here µ = (µ1, µ2, . . . ), µ1 ≥ µ2 ≥ . . . runs over all partitions µ ` 2n,
r◦m,n;µ is the number of rooted maps, and rm,n;µ is the number of
connected rooted maps with m faces, n edges and partition of valencies of
the vertices µ.
The two are related by

R◦ = exp(R).
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Hopf algebra of graphs (Rota, around 1970)

Gk , k = 0, 1, 2, . . . , the vector space (say, over C) spanned by simple
graphs with k vertices. The vector space of graphs

G = G0 ⊕ G1 ⊕ G2 ⊕ . . . .

Multiplication G ⊗ G → G — induced by the disjoint union of graphs

Comultiplication G → G ⊗ G — is defined on a graph as the sum over all
splittings of the set of its vertices into two disjoint subset,

G 7→
∑

V (G)=ItJ

G |I ⊗ G |J .

Both operations are graded and together they make G into a connected
commutative cocommutative Hopf algebra.
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Umbral graph invariants

Definition

An umbral graph invariant is a graded Hopf algebra homomorphism
G → C[q1, q2, . . . ].

Comultiplication: qi 7→ 1⊗ qi + qi ⊗ 1, i = 1, 2, . . . .

One more example: the Abel polynomial AG of a graph G is defined as

AG (q1, q2, . . . ) =
∑

forests F⊂E(G)

∏
trees T in F

|V (T )|q|V (T )|.

The coefficient of qm1
1 qm2

2 . . . in AG is the number of rooted forests in G
having m1 trees with 1 vertex, m2 trees with 2 vertices, . . . .
The Abel polynomial of complete graphs:

AKn(x , x , x , . . . ) = x(x + n)n−1 = An(x).
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Generating function for umbral invariant

Let I be an umbral graph polynomial invariant. Define two generating
functions by

I◦(q1, q2, . . . ) =
∑
G

IG (q1, q2, . . . )

|Aut(G )|

I(q1, q2, . . . ) =
∑

G connected
non-empty

IG (q1, q2, . . . )

|Aut(G )|

I◦ = exp(I)

Define constants in, n = 1, 2, . . . , by

in = [qn]
∑

G ,|V (G)|=n

IG (q1, q2, . . . )

|Aut(G )|
.
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Main theorem

Theorem

Suppose all the constants in, n = 1, 2, 3, . . . , are nonzero. Then after an
appropriate rescaling of the variables qn = cnpn, n = 1, 2, 3, . . . , the
function I becomes a solution to the KP (Kadomtsev–Petviashvili)
hierarchy of partial differential equations, and I◦ a τ -function of the KP
hierarchy. The solution and the τ -function are the same for all umbral
graph invariants.
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Rescaling

Theorem

After the rescaling of the variables qn =
2n(n−1)/2(n − 1)!

in
· pn, the

generating function I◦ becomes the following linear combination of
one-part Schur polynomials:

S(p1, p2, . . . ) = 1+20s1(p1)+21s2(p1, p2)+· · ·+2n(n−1)/2sn(p1, . . . , pn)+. . . .

The one-part Schur polynomials are defined through the expansion

1 + s1(p1) + s2(p1, p2) + s3(p1, p2, p3) + · · · = e
p1
1
+

p2
2
+

p3
3
+...

It is known that any linear combination of one-part Schur polynomials with
the free term 1 is a τ -function for the KP hierarchy.
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Other Hopf algebras

The Hopf algebra of graphs is not unique. Other examples include

weighted graphs;

k-regular hypergraphs;

binary delta-matroids;

chord diagrams;

. . .

Theorem (E. Krasilnikov, 2019)

None of the above Hopf algebras possesses integrability property similar to
that of the Hopf algebra of graphs.

Exception: Hopf algebra of framed graphs (=simple graphs with loops
allowed).
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Thank you
for your attention
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