
Deautonomization of cluster integrable systems

M. Bershtein, P. Gavrylenko, A. Marshakov

arXiv:1711.02063 [math-ph]
arXiv:1804.10145 [math-ph]

HSE & Skoltech, Moscow, Russia

Giens, September 5, 2019

P. Gavrylenko Deautonomization of cluster integrable systems September 11, 2019 1 / 27



General scheme [BGM] (simplest example)

Newton polygon ∆

Non-autonomous q-difference system

G (qZ )G (q−1Z ) =
(

G(Z)+Z
G(Z)+1

)2

Topological string partition function
= general solution (τ -function) of the equation

Cluster discrete flow
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General scheme

Take Newton polygon ∆
↓

Draw Thurston diagram
↓

Draw bipartite graph
↓

Draw quiver
↓

Find quiver mapping class group
↓

Find Abelian subgroup of
MCG and take corresponding
flows. Each flow = equation.

Compute topological string partition
function for ∆ → get solution

Write word in a double coextended Weyl
group
↓

Write element in P̂GL
]
(N)

[Fock-Goncharov], [Fock-Marshakov]
↓

Write q-isomonodromic Lax matrix
↓

Consider refactorization dynamics =
q-isomonodromic dynamics
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Goncharov-Kenyon map (simplest example)

In the q=1 limit q-difference system turns into discrete symmetries of GK
(cluster) integrable system. Switching on q 6= 1 is called deautonomization.

Autonomous picture:

Bipartite graph on torus

Family of spectral curves
=

Newton polygon
Quiver
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Mapping class group GQ

We have to find all combinations of mutations, permutations of vertices and
simultaneous inversions of edges, that preserve quiver. This is purely
combinatorial problem. Example:

1 4

32

x1 x4

x2 x3

1 4

32

1/x1 x4(1 + x1)2

x2(1 + x−1
1 )−2 x3

1 4

32

1/x1 x4( 1+x1

1+x−1
3

)2

x2( 1+x3

1+x−1
1

)2
1/x3

1 4

32

x2( 1+x3

1+x−1
1

)2
1/x3

1/x1 x4( 1+x1

1+x−1
3

)2
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Discrete flow

Take a map coming from quiver automorphism.
Forget about x1x2x3x4 = 1 =⇒ no Hamiltonians. x1x2x3x4 = q

T : (x1, x2, x3, x4) 7→
(
x2(

1 + x3

1 + x−1
1

)2, x−1
1 , x4(

1 + x1

1 + x−1
3

)2, x−1
3

)

T : (x1, x2, z , q) 7→
(
x2(

x1 + z

x1 + 1
)2, x−1

1 , qz , q

)
Casimir z becomes “time”, so introduce xi = xi (z), T : xi (z) 7→ xi (qz).

x1(qz)x1(q−1z) =

(
x1(z) + z

x1(z) + 1

)2

This is q-Painlevé III3 equation, or P(A
(1)′

7 ).

Only for q = 1 flow T preserves H =
√
x1x2 + 1√

x1x2
+
√

x1

x2
+ Z

√
x2

x1
.
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Quantization (one of the main advantages)

In addition to non-autonomous parameter q one may add quantum
deformation p:

x̂i x̂j = p−2εij x̂j x̂i

There are quantum mutations

µj : x̂j 7→ x̂−1
j , x̂

1/|εij |
i 7→ x̂

1/|εij |
i

(
1 + px̂

sgn εij
j

)sgn εij
, i 6= j

All groups GQ are the same.

And so there are quantum deformations of all systems. For example,
quantum q-Painlevé III3:x̂1(q−1z)1/2 x̂1(qz)1/2 =

x̂1(z) + pz

x̂1(z) + p
,

x̂1(z)x̂1(q−1z) = p4x̂1(q−1z)x̂1(z).

Different approaches to quantization were also considered long before by
K. Hasegawa, G. Kuroki, H. Nagoya, Y. Yamada.
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Generic solution [BShch]/[BGM] (quantum q-GIL formula)

x̂1(z) = pz1/2T̂1(z)2T̂3(z)−2

T̂1(z) = â
∑
n∈Z

ŝnZ 2,0(ûq2n; q1q
−1
2 , q2

2 |z)

T̂3(z) = i â
∑

n∈ 1
2 +Z

ŝnZ 2,0(ûq2n; q1q
−1
2 , q2

2 |z)

Where
q2 = q1/2, q1 = q−1

2 p2, ûŝ = p4ŝ û

and also
q2

2 â = p−2âq2
2 = âq−1

1 q2, q1q
−1
2 â = p2âq1q

−1
2 = âq2

1

So here we have operator Fourier transformation.

Z 2,0(ûq2n; q1q
−1
2 , q2

2 |z) is a topological string partition function (with prefactor),
or 5D Nekrasov function for SU(2) pure gauge theory.

Proofs for the classical case: M. Bershtein, A. Shchechkin (also conjectured this);

M. Jimbo, H. Nagoya, H. Sakai (P(A
(1)
3 ) ) + Y. Matsuhira, H. Nagoya (limit)
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Bilinear relations for q−PIII eqaution

There is a blow-up relation conjectured by Bershtein and Shchechkin:∑
2n∈Z

(
u2n(q1q2)4n2

z2n2

F(1)(uq4n
1 |q2

1z)F(2)(uq4n
2 |q2

2z)
)

=

= (1− q1q2z)
∑
2n∈Z

(
z2n2

F(1)(uq4n
1 |z)F(2)(uq4n

2 |z)
)

where

F(1)(u|z) = F(u; q2
1 , q
−1
1 q2|z), F(2)(u|z) = F(u; q1q

−1
2 , q2

2 |z)

and F(u; q2
1 , q
−1
1 q2|z) is appropriately normalized q-deformed Virasoro conformal

block = Nekrasov partition function.

Z 2,0(u; q1, q2|z) = exp

(
− log z (log u)2

4 log q1 log q2

)
F(u; q1, q2|z)

For q1 = q−1
2 shifts are symmetric, and one has classical bilinear relations for the

usual commutative Fourier transformations of Z 2,0:
τ1(qz)τ1(q−1z) = τ1(z)2 + z1/2τ3(z)2
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Numerology of cluster integrable systems

(# of variables) = 2*Area(∆).

Dimension of the phase space = 2*(# of internal points).

Number of Casimirs (without q) = (# of boundary points) - 3.

(# of discrete flows) = number of Casimirs (without q)

Simplest cases: 1) one discrete flow, 2) one Hamiltonian.
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Example of the MCG: q−PVI equation

s0 = (1, 2),
s1 = (5, 6),
s2 = (1, 5) ◦ µ5 ◦ µ1,
s3 = (3, 7) ◦ µ3 ◦ µ7,
s4 = (3, 4),
s5 = (7, 8),
π = (1, 7, 5, 3)(2, 8, 6, 4),
σ = (1, 7)(2, 8)(3, 5)(4, 6) ◦ ς,
here ς — inversion of all arrows

0

1
2 3

4

5

1

2

3

4

5

6

7

8
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Example of the MCG: E
(1)
6 equation

s1 = (2, 3),
s2 = (1, 2),
s4 = (4, 5),
s5 = (5, 6),
s6 = (7, 8),
s0 = (8, 9),
s3 = (4, 7) ◦ µ1 ◦ µ4 ◦ µ7 ◦ µ1,
π = (1, 4, 7)(2, 5, 8)(3, 6, 9),
σ = (1, 7)(2, 8)(3, 9) ◦ ς

3

2

1

6

7

4

5

1
2

3

7
8

9

4

5

6
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Some other examples

m

n

K. Kajiwara, M. Noumi, Y. Yamada: action of the

W (A
(1)
n−1)×W (A

(1)
m−1) Weyl group

(?) m = 2, n = 2k case: N. Okubo, T. Suzuki (?)

m

n

M. Semenyakin, A. Marshakov:

W (A
(1)
n−1 × A

(1)
m−1)2 o Z

m

n

k

R. Inoue, T. Ishibashi, T. Lam, H. Oya, P. Pylyavskyy:

quiver Qm(A
(1)
n−1)k
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4 boundary points, hyperelliptic curves (Toda family)

Classification: Y N,k polygons with 0 ≤ k ≤ N (left picture) and L1,2N−1,2

polygons (right picture):

(N,0)

(0,-1)

(0,0)

(N-k,1)

N=6, k=2

(N-1,0)

(0,-1)(-1,-1)

(0,1)

N=6

Quivers for Y N,k theories can be glued from blocks of three types 0, 1, -1,
respectively. N = N1 + N0 + N−1, k = N1 − N−1.

Similar non-cyclic quivers appeared in Di Francesco’s paper.
Graphs also computed by S. Franco, A. Hanany, K. Kennaway, D. Vegh, B. Wecht
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Building blocks for Thurston diagrams and dimer lattices
(0,N)

(1,0)
(0,0)

(-1,N-k)

N=6, k=2

N=6, k=2
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Action of the automorphism group

N=6, k=2
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Action of the automorphism group

N=6, k=2
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Equations

Mutable “+”-variables are labelled by the points of integer lattice: x(n,m). They
satisfy periodicity condition and Y-system in order to be compatible with
mutations:

x(n,m+1)x(n,m−1)

x2
(n,m)

=
(1 + x(n+1,m))(1 + x(n−1,m))

(1 + x(n,m))2
, x(n,m) = x(n+N,m+k)

One can move from Y-system to T-system (from X-clusters to A-clusters):

x(n,m) = z
1/N
0 q(kn−Nm+N)/N2 τ(n−1,m−1)τ(n+1,m−1)

τ 2
(n,m−1)

, τ(n,m) = τ(n+N,m+k)

τ(n,m+1)τ(n,m−1) = τ 2
(n,m) + z

1/N
0 q(kn−Nm)/N2

τ(n+1,m)τ(n−1,m)

And after some change of labeling:

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
, j ∈ Z/NZ

P. Gavrylenko Deautonomization of cluster integrable systems September 11, 2019 18 / 27



Solution

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
, j ∈ Z/NZ

Fourier transformation of partition function of 5D SU(N) pure gauge theory with
Chern-Simons term at level k :

τj(z) =
∑

~Λ∈QN−1+ωj

∏
i

(sΛi

i ) · ZN,k({uiqΛi}; q, q−1|z), j ∈ Z/NZ .

where QN−1 is SL(N) root lattice, and ωi are SL(N) fundamental weights
(ω0 = 0).

K. Takasaki constructed solution for special u’s: ui ≈ q
N+1−2i

2N , k = N
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Nekrasov functions

ZN,k(~u; q1, q2|z) = ZN,k
cl (~u; q1, q2|z) · ZN

1−loop(~u; q1, q2) · ZN,k
inst(~u; q1, q2|z) ,

where

ZN,k
cl (~u; q1, q2|z) = exp

(
log z

∑
(log ui )

2

−2 log q1 log q2
+ k

∑
(log ui )

3

−6 log q1 log q2

)
,

ZN
1−loop(~u; q1, q2) =

∏
1≤i 6=j≤N

(ui/uj ; q1, q2)∞ ,

ZN,k
inst(~u; q1, q2|z) =

∑
~λ

z |
~λ|∏N

i=1(Tλ(i) (ui ; q1, q2))k∏N
i,j=1 Nλ(i),λ(j) (ui/uj ; q1, q2)

,

~λ = (λ(1), . . . , λ(N)), |~λ| =
∑
|λ(i)|, |λ| =

∑
λj ,

Nλ,µ(u, q1, q2) =
∏
s∈λ

(1− uq
−aµ(s)−1
2 q

`λ(s)
1 ) ·

∏
s∈µ

(1− uq
aλ(s)
2 q

−`µ(s)−1
1 ) ,

Tλ(u; q1, q2) = u−|λ|q
|λ′|− 1

2 (‖λ′‖)
1 q

1
2 (|λ|−‖λ‖)
2 =

∏
(i,j)∈λ

u−1q1−i
1 q1−j

2 ,

‖λ‖ =
∑

λ2
j .
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Differential limit (5D → 4D)

τj (qz) τj
(
q−1z

)
= τj(z)2 + z1/Nτj+1

(
qk/Nz

)
τj−1

(
q−k/Nz

)
We take q = expR, z = R2Nz and send R → 0:

(∂log z)2 log τj = z1/N τj+1τj−1

τ 2
j

, j ∈ Z/NZ

So we see no dependence on k . In the different variables

φj = log τj − log τj−1, r = 2Nz
1

2N

We have

d2φn
dr2

+
1

r

dφn
dr

= eφn+1−φn − eφn−φn−1

This is radial Toda equation, for N = 2 — radial sinh-Gordon equation (PIII3).
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Thurston diagrams and words in the double coextended
Weyl group

Picture from Fock-Marshakov paper:

si permutes strands 2i − 1 and 2i + 1
si permutes strands 2i and 2i + 2
Λ rotates strands cyclically, ΛN = 1

Together we have (Z/NZ) n (SN × SN)
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Coextended loop group

Coextended loop group (Kac-Moody with zero level) P̂GL
]
(N):

L̂ = L(λ)qλ
∂
∂λ

Generators for P̂GL
]
(2):

H i (x) = Hi (x)xλ
∂
∂λ , H0(x) =

(
1 0
0 1

)
, H1(x) = x−1/2

(
x 0
0 1

)
,

E0(λ) =

(
1 0
λ 1

)
, E1 =

(
1 1
0 1

)
,

F0(λ) = E0̄(λ) =

(
1 λ−1

0 1

)
, F1 = E1̄ =

(
1 0
1 1

)
, Λ(λ) =

(
0 λ−1

1 0

)
.
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Relations

Formulas from Fock-Marshakov paper:
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From Weyl group to P̂GL
]
(N)

Make a replacement si 7→ Ei , si 7→ Ei , Λ 7→ Λ(λ), then add appropriate number of
H i (xk) in between. In the simplest case: si si 7→ EiH i (xk)EiH i (xk+1)

Example: q−Painlevé III: u = s0s1s0s1 ∈ S2 × S2

L̂ = H0(x1x2)−1/2 ·H0(x1)E0(λ)H1(x3)E1H0(x2)F0(λ)H1(x4)F1 ·H0(x1x2)1/2

Decompose Lax operator according to the decomposition u: u = u+u−, where u+

contains all si , and u− contains all si :

L̂ = L+(λ, x)L−(λ, x) · (x1x2x3x4)λ
∂
∂λ

where

L+(λ, x) = E0

(
λ · x1(x1x2)−1/2

)
H1(x3)E1H1(1 + x−1

3 ) ,

L−(λ, x) = H1(
x3

1 + x3
)H0(x2)F0

(
λ · x1x2x3(x1x2)−1/2

)
H1(x4)F1
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q-isomonodromic systems [work in progress]

q-difference linear system:

L+(λ, x)L−(λ, x)ψ(qλ) = ψ(λ)

q-isomonodromic transformation:

ψ(λ) = L+(λ, x)ψ′(λ)

Resulting system:
L−(λ, x)L+(qλ, x)ψ′(qλ) = ψ′(λ)

Using the relation (analog of si sj = sjsi )

FiHi (x)Ei =
∏
j 6=i

Hj(1 + x)−CijHi (1 + x−1)−1EiHi (x
−1)FiHi (1 + x−1)−1

refactorize Lax matrix:

L′(λ, x) = L−(λ, x)L+(qλ, x) = L+(λ, x ′)L−(λ, x ′) = L(λ, x ′)

where

x ′1 = x2

(
x1 + z

x1 + 1

)2

, x2 = x−1
1 , z ′ = qz , q′ = q .
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Thank you for your attention!
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