Riemannian geometry without indices. Joint work with Pierre Goussard.

Main objects

Vielbein
smooth manifold of dimension n, (pseudo)Euclidean space of dimension n. also a trivial bundle on M with the fibre V. metric on V.
$\theta \in \Omega^{1}(M, \mathrm{~V}) . \theta: T M \rightarrow \mathrm{~V}$ isomorphism.
Metric on M:
$g=\theta^{*} \eta$,
Connection on $\mathrm{V} \quad \omega \in \Omega^{1}(M, o(\mathrm{~V}))$.

Clifford algebra $\mathrm{Cl}(\mathrm{V})$

$C l(\mathrm{~V})=\left\{\langle V>| v v^{\prime}+v^{\prime} v=\eta\left(v, v^{\prime}\right)\right\}$.
$\Lambda(\mathrm{V})=\left\{\langle V\rangle \mid v v^{\prime}+v^{\prime} v=0\right\}$. External algebra.
$\Lambda(\mathrm{V})$ acts on $\mathrm{Cl}(\mathrm{V})$ by

$$
v \wedge a \mapsto \frac{1}{2}\left(v a+(-1)^{\operatorname{deg} a} a v\right)
$$

inducing an isomorphism $\Lambda(\mathrm{V}) \rightarrow C l(\mathrm{~V})$ as $\Lambda(\mathrm{V})$ modules.
Therefore $C l(\mathrm{~V})=\oplus_{i} C l^{i}(\mathrm{~V})$.
str : $C l(\mathrm{~V}) \rightarrow \mathbb{C}$ a map defined by $\operatorname{str}(a b)=(-1)^{\operatorname{deg} a \operatorname{deg} b} \operatorname{str}(b a)$
and $\operatorname{str} \mathrm{Vol}=1$.

$\Omega^{p q}-$ algebra of Clifford forms.

$$
\Omega^{p q}=\Omega^{q}\left(M, C l^{q}(M)\right) .
$$

Vielbein
Connection form
Covariant derivative

Curvature
Torsion
Gauge transformation
$\theta \in \Omega^{11}$
$\omega \in \Omega^{21}$
$\nabla: \Omega^{p q} \rightarrow \Omega^{p, q+1}$
$\nabla x=d x+\omega x-(-1)^{q} x \omega$ for any $x \in \Omega^{p q}$
$R \in \Omega^{22} . R=d \omega+\omega^{2}$
$t \in \Omega^{12} . t=\nabla \theta=d \theta+\omega \theta+\theta \omega$,
$\theta \rightarrow G^{-1} \theta G, \omega \rightarrow G^{-1} \omega G+G^{-1} d G$, where $G \in \exp \left(\Omega^{20}\right)$.

Hodge *

$$
\begin{aligned}
& *: C l^{i} \rightarrow C l^{n-i} \\
& * f\left(\xi_{1}, \ldots, \xi_{n}\right)=\int e^{\eta^{i j}} \xi_{i} \zeta_{j} f\left(\zeta_{1}, \ldots, \zeta_{n}\right) d \zeta_{n} \cdots d \zeta_{1} . \\
& *_{1}: \Omega^{p q} \rightarrow \Omega^{p, n-q} \\
& *_{2}: \Omega^{p q} \rightarrow \Omega^{n-p, q}
\end{aligned}
$$

$\mathfrak{s l}(2) \times \mathfrak{s l}(2)$

$$
\begin{aligned}
& E: \Omega^{p q} \rightarrow \Omega^{p+1, q+1}, 2 E x=\theta x+(-1)^{p+q} \times \theta \\
& E^{\prime}: \Omega^{p q} \rightarrow \Omega^{p+1, q-1}, E^{\prime}=*_{1}^{-1} E *_{1} \\
& F^{\prime}: \Omega^{p q} \rightarrow \Omega^{p+1, q-1}, F^{\prime}=*_{2}^{-1} E *_{2} \\
& F: \Omega^{p q} \rightarrow \Omega^{p-1, q-1}, F=*_{1}^{-1} *_{2}^{-1} E *_{2} *_{1} . \\
& H: \Omega^{p q} \rightarrow \Omega^{p, q}, H=n-p-q, \\
& H: \Omega^{p q} \rightarrow \Omega^{p, q}, H=p-q .
\end{aligned}
$$

Claim:
The operators $E, F, H, E^{\prime}, F^{\prime}, H^{\prime}$ generate the action of $\mathfrak{s l}(2) \times \mathfrak{s l}(2)$ on Ω.

Ex 1. Uniqueness of the torsion zero connection.

Proof: $t=d \theta+\omega \theta+\theta \omega=d \theta+2 E \theta$.
$E: \Omega^{21} \rightarrow \Omega^{12}$ is an isomorphism since $H_{\Omega^{12}}=-1, H_{\Omega^{21}}=1$. Therefore for a given θ there exists a unique ω such that the torsion vanishes.

Ex 2. Bianchi identity

The curvature R is symmetric considered as an element of $C l^{2}(\mathrm{~V}) \otimes C l^{2}(\mathrm{~V})$
Proof:
$t=0 \Longrightarrow$
$\nabla t=d t+\omega t-t \omega=R \theta-\theta R=-2 E^{\prime} R=0$.
Since $H^{\prime} R=(2-2) R=0$ we have also
$F^{\prime} R=0$
therefore $\exp \left(\frac{\pi}{2}\left(E^{\prime}-F^{\prime}\right)\right) R=R$.

Ex. 3. Weil tensor

The Weyl tensor is a projection of the curvature R alng the image of E. It is conformaly invariant.
Proof:
Lemma: If (θ, ω) is torsion zero then
$(\tilde{\theta}, \tilde{\omega})=\left(e^{\phi} \theta,=\omega+\theta \varepsilon-\varepsilon \theta\right)$, where $\phi \in \Omega^{01}$ and
$\varepsilon=\frac{1}{4} F^{\prime} d \phi \in \Omega^{10}$ is torsion zero.
The corresponding curvature is
$\tilde{R}=R-\theta \rho-\rho \theta=R-2 E \rho$
where $\rho=d \varepsilon+\omega \varepsilon-\varepsilon \omega+\varepsilon \theta \varepsilon \in \Omega^{11}$.
Example of the computation:

$$
\begin{aligned}
\tilde{R} & =d \tilde{\omega}+\tilde{\omega}^{2}=R+d(\theta \varepsilon-\varepsilon \theta)+\omega(\theta \varepsilon-\varepsilon \theta)+(\theta \varepsilon-\varepsilon \theta) \omega+(\theta \varepsilon-\varepsilon \theta)^{2}= \\
& =-(\omega \theta+\theta \omega) \varepsilon+\varepsilon(\omega \theta+\theta \omega)-\theta d \varepsilon-d \varepsilon \theta+\omega(\theta \varepsilon-\varepsilon \theta)+(\theta \varepsilon-\varepsilon \theta) \omega+ \\
& +(\theta \varepsilon-\varepsilon \theta)^{2}=R-\theta(d \varepsilon+\omega \varepsilon-\varepsilon \omega+\varepsilon \theta \varepsilon)-(d \varepsilon+\omega \varepsilon-\varepsilon \omega+\varepsilon \theta \varepsilon) \theta
\end{aligned}
$$

Ex 4. Einstein equation.

Hilbert action: $S(\theta, \omega)=\operatorname{str} \int_{M} \theta^{n-2}\left(d \omega+\omega^{2}\right)=\operatorname{str} \int_{M} E^{n-2} R$.

$$
\begin{aligned}
& \frac{\delta S}{\delta \theta}=(-1)^{\left(n^{2}+n\right) / 2}(n-2) E^{n-3}\left(d \omega+\omega^{2}\right) \\
& \frac{\delta S}{\delta \omega}=(-1)^{\left(n^{2}-n\right) / 2} E^{n-3}(d \theta+\theta \omega+\omega \theta)
\end{aligned}
$$

$E^{n-3} t=0 \Longrightarrow t=0$
Einstein equation: $E^{n-3} R=0 \Longrightarrow$ Ricci tensor $r=F R=0$.
In dimension $4 \quad H R=0$, therefore R is invariant under the whole $\mathfrak{s l}(2) \times \mathfrak{s l}(2)$.

Generalisation: Kähler case.

Two vielbeins θ and $\bar{\theta}$
Four copies of the algebra $\mathfrak{s l}(2)$.
Claim:
These $\mathfrak{s l}(2)$-s generate the affine group $\widehat{\mathfrak{s l}(4)}$

