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Combinatorial input

Let Q be a quiver (e.g. s,t: Qy — Q1) without loops or
2-cycles(determined by signed adjacency matrix
Bi=#{i—j}—#{—i}),and {n+1,... m}=c Q={1,...
subset of frozen vertices. Let L =ZM =Z - Qp.

o Initial seed defined to be (y1 := y©, ..., ym

= yem) c Z[L].
@ For i/ unfrozen, mutate via
i) = 17 A
1\ yi + yZi—»k &k~ Dk €k € if 7 :J’

and substitution rule y/ = y =& 2k &
@ — usual mutation rule for Q.

e Ag is the algebra genrated by all cluster monomials ps(y¥) for s a
sequence of the unfrozen vertices, and v; > 0 for i < n.
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Algebres amassées, le palmarés

@ Laurent phenomenon (Fomin and Zelevinsky): This definition makes
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The cluster monomials are linearly independent

o Positivity (Lee, Schiffler): The constants ¢, w € Z are positive

@ Strong positivity (Gross, Hacking, Keel, Kontsevich) Ag = AZ",
where A" has a basis of theta functions{p}pco = Z[L] indexed by
© c L, containing all of the cluster monomials. The structure
constants w.r.t. this basis are positive.
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Quantum version
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Quantum version
How to quantize? Set Bi = >, € — >.x_,; €& = Bej. Then

(VY — < Vi\ v+
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(n)e = (" —t7")/(t' —t7h),

(Ml = (1) (n)e,
(1), = (Mle/ ((m)le(n — m)ly)

g-commutativity

e o6 o
S

How about setting 1;(y¥) = Y37 (%) "7 Not obviously a
homomorphism Solution: find a skew-symmetric form on Z9 such that
N(Be;, Bej) = B(ei, €j) for unfrozen i (Berenstein+Zelevinsky call this a
compatible form) and decree y¥y¥ = tAV:V)yv+v'
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Z[t*1]-module with

@ generators y¥ forve L,

o multiplication given by yV - y"/ = tw(v’vl)ywvl-

The quantum cluster algebra Aj\ < Za ;[L] is the algebra generated by

all the quantum cluster monomials (us(y¥) s.t. v = 0 for i < n) as defined
before. E.g. mutate via
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@ Quantum Laurent phenomenon (Berenstein+Zelevinsky): This
definition makes sense e.g. for s a sequence of unfrozen vertices,
ps(YY) = Dwer Cow(t)y™ with oy w(t) € Z[tE1] if v; = 0 for all
unfrozen i (e.g. i < n).

@ Quantum positivity (D): In the above expressions, all the ¢, w(t) have
positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form (n) is called Lefschetz. So called
because the Poincaré polynomial of a smooth projective variety is of
Lefschetz type thanks to the hard Lefschetz theorem.
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Mutation aprés Kontsevich—-Soibelman—Nagao—Efimov

Quantum X space

Let K = N” be the semigroup of unfrozen dimension vectors.
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quantum torus Zg :[K] as before (x? - x7" = tB(:)x7+7").
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Mutation via Kontsevich—Soibelman—Nagao—Efimov

Quantum X space

Let K = N" be the semigroup of unfrozen dimension vectors. Form the
quantum torus Zg :[K] as before (x” - x7" = tBO:)x7+7") . Map

X7 — yBY

defines a homomorphism ¢: Zg ;[K] — Zp +[L]

Easy calculation: if i # j 1 E(x;) and y; commute, otherwise

AdL E(X,‘)71 (yl) =l E(XI)_ly,L E(X,)
=Yi E((]- — t2)X,') =y + yei+Be,-

E.g. cluster mutation is effected by letting X' coordinates act on A
coordinates via conjugation.
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Positivité: chemin dur

The old proof
e From what we saw before, E(x;) = x¢(H(Repye, Q. Q)vir)-
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Jac(@Q, W)-reps such that Ad,  (H(7)) recreates cluster mutation.
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Positivity (the hard way)

The old proof
o From what we saw before, E(x;) = x:(H(Repye, @, Q)vir)-
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Positivity (the hard way)

The old proof
o From what we saw before, E(x;) = x:(H(Repye, @, Q)vir)-
@ For iterated mutation along s, Nagao showed there is a stack 7g of
Jac(@Q, W)-reps such that Ad,  (H(7)) recreates cluster mutation.
e Cohomological wall crossing(CWC) shows that this cohomology is
pure, so we can take x; instead of strange xwt (e.g. categorify)

o Similarly CWC shows that expression Ad,, _ (7)) (Y") can be
categorified — positivity (+ some Hodge theory) — Lefschetz type.

The take-away: Categorification is our friend, the rest of the proof maybe
less so.
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Contre les murs

Write L, = L A B(N")g.
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Walls

Write Ly = L n B(N")r. v € L, primitive, p a positive multiple of v.
Define an automorphism of Z[L]

by oy (L4 yP)NPY)

define GS'° to be group generated by all such automorphisms.
Definition

A (classical) wall (9, f) is a (n — 1)-dimensional rational polyhedral cone d
in Lg parallel to v for some v € L, \Ker(A), along with a f € GS*. The
wall is called incoming if closed under adding v.
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Scattering diagrams

Definition
A scattering diagram D is a union of walls (2., f;) in Lgr such that
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Scattering diagrams
Definition

A scattering diagram D is a union of walls (9, f3) in Lg such that (VN
only finitely many functions of order N and below)

o Joints(D) = (J,.n 02" 0x) U (U, 00)
e Given ~y : [0,1] — Lg avoiding joints crossing wall wy, ..., w, at times
t1,...,t, define

0, — FEn N (0)  poBn(\u ' (12))

e D is called consistent if 0, only depends on the endpoints of 6.
(Gross—Siebert): every scattering diagram can be made consistent by
adding a unique (up to equivalence) set of outgoing walls.
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Droites brisés
Definition
Let Q € Lg\D.
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Broken lines
Definition

Let Q € Lgr\D. A broken line with ends (p, Q) is a piecewise linear path
(—00,0] — Lg avoiding joints,
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Let Q € Lgr\D. A broken line with ends (p, Q) is a piecewise linear path
(—00,0] — Lg avoiding joints, meeting walls wy, ..., w, at t1,..., t, with
each piecewise linear section labelled by a monomial ¢;y"i such that

Q@ 1(0)=2

@ for t € (t;, ti+1), we have 7/(t) = —v;.
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(—00,0] — Lg avoiding joints, meeting walls wy, ..., w, at t1,..., t, with
each piecewise linear section labelled by a monomial ¢;y"i such that

Q@ 1(0)=2

@ for t € (t;, ti+1), we have 7/(t) = —v;.

© cw=1landvg=p

Q ¢ 1yVitt is a monomial in 0, ;(ciyi).

Remarks

Ben Davison Strong positivity 12 /15



Broken lines

Definition

Let Q € Lgr\D. A broken line with ends (p, Q) is a piecewise linear path
(—00,0] — Lg avoiding joints, meeting walls wy, ..., w, at t,..., t, with
each piecewise linear section labelled by a monomial ¢;y"i such that

Q 1(0)=9

@ for t € (t;, ti+1), we have 7/(t) = —v;.
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Q ¢ 1yVitt is a monomial in 0, ;(ciyi).

Remarks

@ As long as only functions of the form £, (not their inverses) appear on
the walls, all resulting monomials are positive.
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Broken lines

Definition

Let Q € Lgr\D. A broken line with ends (p, Q) is a piecewise linear path
(—00,0] — Lg avoiding joints, meeting walls wy, ..., w, at t,..., t, with
each piecewise linear section labelled by a monomial ¢;yYi such that

Q 1(0)=9

@ for t € (t;, ti+1), we have 7/(t) = —v;.

© cw=1landvg=p

Q ¢ 1yVitt is a monomial in 0, ;(ciyi).

Remarks

@ As long as only functions of the form £, (not their inverses) appear on
the walls, all resulting monomials are positive.

@ (GHKK) Cluster monomials and structure constants are given by sums
of broken lines

e Easy to quantize: replace f, with Ad, ()
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Exemple facile
L = Z2% A(er, &) = 1. Start with inconsistent scattering diagram

E(x2)
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Easy example
L =22 Aer,e)=1. Add walls to make it consistent

E(x(1D) E()
X2
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Easy example
L =22 A(e;,e) =1.  Add up contributions from broken lines

gD
E(x)
e
Q y1
E(x(1D)

E(x2)
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Easy example
L =22 A(e;,e) =1.  Add up contributions from broken lines

y(@.D)
E(x)
By yen
}\L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Q y1
E(x(1D)

E(x2)
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Positivité de base theta

Via perturbations of scattering diagrams and recursive arguments, we can
reduce the construction of consistent scattering diagrams to the two wall

case with E(t“x;) and E(t*2x;) on the walls with «; € {0,t — 1}, and
A(ei,e) =neN.
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Positivity for quantum theta functions

Via perturbations of scattering diagrams and recursive arguments, we can
reduce the construction of consistent scattering diagrams to the two wall
case with E(t“x;) and E(t*2x;) on the walls with «; € {0,t — 1}, and
A(e1, e2) = ne N. These examples get pretty hard to calculate...
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Positivity for quantum theta functions
A(e1, &) = 1; inconsistent

E(t_lxl)

~

E(x2)
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Positivity for quantum theta functions
A(e1, e2) = 1; still inconsistent

E(t_lxl)

E(t~1x(1D)

E(x2)
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Positivity for quantum theta functions
A(e1, e2) = 1; still inconsistent...

E(t_IX]_)

E(t72x2Y 4+ ..)

E(t_lx(l,l))

E(x2)
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Positivity for quantum theta functions
A(e1, e2) = 1; after infinitely many steps... consistent but infinite

E(t_lxl)

pi

E(t3xGY 4+ ..)
E(t72x2Y 4+ ..)

E(t_lx(]wl))

E(x2)
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Positivity for quantum theta functions

o Let Q be the quiver with vertices {1,2}, 1 + «; loops at each i, and n
arrows from 1 to 2. In general, the problem of what goes on the walls
comes down to factorizing

E(t"x2) E(t"x1) = E(t™x1) | [[ E(Fx®?, 1)) |E(t*x2)
a/b
oo—>0

in ZB7t[N2] .
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@ Let Q be the quiver with vertices {1,2}, 1 + «; loops at each 7, and n
arrows from 1 to 2. In general, the problem of what goes on the walls
comes down to factorizing
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@ The wall crossing formula plus earlier caclulations for
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Positivity for quantum theta functions

@ Let Q be the quiver with vertices {1,2}, 1 + «; loops at each 7, and n
arrows from 1 to 2. In general, the problem of what goes on the walls
comes down to factorizing

E(t"x2) E(t"x1) = E(t™x1) | [[ E(Fx®?, 1)) |E(t*x2)

a/b
0o—>0

in ZB,t[N2]'
@ The wall crossing formula plus CWC plus earlier caclulations for
zero/one loop quiver tell us that

E(F(x#?, 1)) = x¢(P H(Rep(s sy @ Qvir)

n=0

o Integrality theorem (-,Meinhardt): RHS = E(x(BPS,)) is
manifestly positive.
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Enoncé principal (avec T. Mandel)

Theorem

There is a subset © — L and quantum theta functions {¥p}pco < Zp ¢[L]
such that
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