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Algèbres amassées
Combinatorial input
Let Q be a quiver (e.g. s, t : Q0 Ñ Q1) without loops or
2-cycles(determined by signed adjacency matrix
Bij “ #ti Ñ ju ´#tj Ñ iu), and tn ` 1, . . . ,mu “Ă Q0 “ t1, . . . ,mu a
subset of frozen vertices. Let L “ Zm “ Z ¨ Q0.

Initial seed defined to be py1 :“ y e1 , . . . , ym “ y emq Ă ZrLs.
For i unfrozen, mutate via

µi pyjq “

#

yj if i ‰ j

yi ` y
ř

iÑk ek´
ř

kÑi ek`ei if i “ j

and substitution rule y 1i “ y´ei`
ř

kÑi ek

Ñ usual mutation rule for Q.
AQ is the algebra genrated by all cluster monomials µspy

vq for s a
sequence of the unfrozen vertices, and vi ě 0 for i ď n.
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Algèbres amassées, le palmarès

Laurent phenomenon (Fomin and Zelevinsky): This definition makes
sense. e.g. for s a sequence of unfrozen vertices
µspy

vq “
ř

wPL cv,wy
w for constants cv,w P Z

Linear independence (Cerullli–Irelli, Keller, Labardini, Plamondon):
The cluster monomials are linearly independent
Positivity (Lee, Schiffler): The constants cv,w P Z are positive
Strong positivity (Gross, Hacking, Keel, Kontsevich) AQ Ă Acan

Q ,
where Acan

Q has a basis of theta functionstϑpupPΘ Ă ZrLs indexed by
Θ Ă L, containing all of the cluster monomials. The structure
constants w.r.t. this basis are positive.
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Bond quantique
How to quantize? Set βi “

ř

iÑk ek ´
ř

kÑi ek “ Bei . Then

µi py
vq “

vi
ÿ

r“0

ˆ

vi
r

˙

yv`rβi

Set

pnqt “ pt
n ´ t´nq{pt1 ´ t´1q,

pnq!t :“ p1qt ¨ ¨ ¨ pnqt ,
`

n
m

˘

t
“ pnq!t{ ppmq!tpn ´mq!tq

q-commutativity

How about setting µi pyvq “
řvi

r“0
`vi
r

˘

t
yv`rβi ? Not obviously a

homomorphism Solution: find a skew-symmetric form on ZQ0 such that
ΛpBei ,Bejq “ Bpei , ejq for unfrozen i (Berenstein+Zelevinsky call this a
compatible form) and decree yvyv1 “ tΛpv,v1qyv`v1
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L’algèbre amassée quantique

The ambient ring
Given a lattice L with skew-symmetric form ω we define Zω,trLs, the free
Zrt˘1s-module with

generators yv for v P L,
multiplication given by yv ¨ yv1 “ tωpv,v

1qyv`v1 .

The quantum cluster algebra AΛ Ă ZΛ,trLs is the algebra generated by
all the quantum cluster monomials (µspyvq s.t. vi ě 0 for i ď n) as defined
before. E.g. mutate via

µi pyjq “

#

yj if i ‰ j

yi ` y
ř

iÑk ek´
ř

kÑi ek`ei if i “ j

and substitution rule y1i “ y´ei`
ř

kÑi ek .
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Palmarès quantique

Quantum Laurent phenomenon (Berenstein+Zelevinsky): This
definition makes sense e.g. for s a sequence of unfrozen vertices,
µspyvq “

ř

wPL cv,wptqy
w with cv,wptq P Zrt˘1s if vi ě 0 for all

unfrozen i (e.g. i ď n).
Quantum positivity (D): In the above expressions, all the cv,wptq have
positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials
A sum of polynomials of the form pnqt is called Lefschetz. So called
because the Poincaré polynomial of a smooth projective variety is of
Lefschetz type thanks to the hard Lefschetz theorem.
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Plethysme
Plethystic exponentials
Let f pt, z1, . . . , zr q “

ř

pn,vqPZˆNr fn,v ¨ p´tq
nzv P Zpptqqrrz1, . . . , zr ss.

Then
Exppf pt, z1, . . . , zr qq :“

ź

pn,vqPZˆNr

p1´ p´tqnzvq´fn,v .

Epf pt, z1, . . . , zr qq :“ Exppf pt, z1, . . . , zr qtp1´ t2q´1q.

Let V be a ZˆNr -graded vector space with χtpV q P Zpptqqrrz1, . . . , zr ss`.
Then

ExppχtpV qq “ χtpSympV qq: “Plethystic exponential is
decategorification of symmetric algebra”
Let V “

À

ně0 Hppt {Glnqr´n
2s. Then χtpV q “ Epzq P Zpptqqrrzss.

Let V “
À

ně0 HpMatnˆnpCq{Glnq. Then
χtpV q “ Epzt´1q P Zpptqqrrzss.

Very different!: Expptzq “ 1` tz , and Exppzq “ 1` z ` z2 ` . . .These are
the DT invariants of the zero/one loop quiver. (“fermionic” vs “bosonic”)
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Mutation après Kontsevich–Soibelman–Nagao–Efimov

Quantum X space
Let K “ Nn be the semigroup of unfrozen dimension vectors. Form the
quantum torus ZB,trK s as before (xγ ¨ xγ1 “ tBpγ,γ

1qxγ`γ1). Map

xγ ÞÑ yBγ

defines a homomorphism ι : ZB,trK s Ñ ZΛ,trLs

Easy calculation: if i ‰ j ιEpxi q and yi commute, otherwise

AdιEpxi q´1pyi q “ιEpxi q´1yi ιEpxi q

“yi Epp1´ t2qxi q “ yi ` yei`Bei

E.g. cluster mutation is effected by letting X coordinates act on A
coordinates via conjugation.
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Positivité: chemin dur

The old proof
From what we saw before, Epxi q “ χtpHpRepNei Q,Qqvirq.
For iterated mutation along s, Nagao showed there is a stack Ts of
JacpQ,W q-reps such that AdχwtpHpTsqq recreates cluster mutation.
Cohomological wall crossing(CWC) shows that this cohomology is
pure, so we can take χt instead of strange χwt (e.g. categorify)
Similarly CWC shows that expression AdχK ,wtpHpTsqqpy

vq can be
categorified Ñ positivity (+ some Hodge theory) Ñ Lefschetz type.

The take-away: Categorification is our friend, the rest of the proof maybe
less so.
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Contre les murs

Write L` “ LX BpNnqR. v P L` primitive, p a positive multiple of v.
Define an automorphism of ZrLs

lp : yv1 ÞÑ yv1p1` ypqΛpp,v
1q

define G class
v to be group generated by all such automorphisms.

Definition
A (classical) wall pd, f q is a pn ´ 1q-dimensional rational polyhedral cone d
in LR parallel to vΛK for some v P L`zKerpΛq, along with a f P G class

v . The
wall is called incoming if closed under adding v.
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Scattering diagrams

Definition
A scattering diagram D is a union of walls pda, faq in LR such that (@N
only finitely many functions of order N and below)

JointspDq “
`
Ť

a‰a1 da X da1
˘

Y p
Ť

a δdaq

Given γ : r0, 1s Ñ LR avoiding joints crossing wall w1, . . . ,wr at times
t1, . . . , tr define

θγ “ f
sgnpΛpvwr ,γ1ptr qqq
wr ¨ ¨ ¨ f

sgnpΛpvw1 ,γ
1pt1qqq

w1

D is called consistent if θγ only depends on the endpoints of θ.
(Gross–Siebert): every scattering diagram can be made consistent by
adding a unique (up to equivalence) set of outgoing walls.
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Droites brisés
Definition
Let Q P LRzD. A broken line with ends pp,Qq is a piecewise linear path
p´8, 0s Ñ LR avoiding joints, meeting walls w1, . . . ,wr at t1, . . . , tr with
each piecewise linear section labelled by a monomial ciyvi such that

1 γp0q “ Q
2 for t P pti , ti`1q, we have γ1ptq “ ´vi .
3 c0 “ 1 and v0 “ p
4 ci`1y

vi`1 is a monomial in θγ,i pciyvi q.

Remarks
As long as only functions of the form fv (not their inverses) appear on
the walls, all resulting monomials are positive.
(GHKK) Cluster monomials and structure constants are given by sums
of broken lines
Easy to quantize: replace fp with AdιEpxpq
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Exemple facile
L “ Z2, Λpe1, e2q “ 1. Start with inconsistent scattering diagram

oo

��

Epx1q

Epx2q
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Easy example
L “ Z2, Λpe1, e2q “ 1. Add walls to make it consistent

oo

����

Epx1q

Epx2q
Epx p1,1qq
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Easy example
L “ Z2, Λpe1, e2q “ 1. Count broken lines with ends p1, 0q,Q
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Q
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oo ��ss
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Easy example
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Positivitè de base theta
Via perturbations of scattering diagrams and recursive arguments, we can
reduce the construction of consistent scattering diagrams to the two wall
case with Eptα1x1q and Eptα2x2q on the walls with αi P t0, t ´ 1u, and
Λpe1, e2q “ n P N. These examples get pretty hard to calculate...

Let Q be the quiver with vertices t1, 2u, 1` αi loops at each i , and n
arrows from 1 to 2. In general, the problem of what goes on the walls
comes down to factorizing

Eptα2x2qEptα1x1q “ Eptα1x1q

¨

˚

˝

ź

8
a{b
ÝÝÑ0

Epf pxpa,bq, tqq

˛

‹

‚

Eptα2x2q

in ZB,trN2s.
The wall crossing formula plus CWC plus earlier caclulations for
zero/one loop quiver tell us that

Epf pxpa,bq, tqq “ χp
à

ně0
HpRepsst

pna,nbqQ,Qqvirq

Integrality theorem (-,Meinhardt): RHS “ EpχpBPSa{bqq is
manifestly positive.
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Positivity for quantum theta functions
Λpe1, e2q “ 1; inconsistent
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Positivity for quantum theta functions
Λpe1, e2q “ 1; still inconsistent...
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Énoncé principal (avec T. Mandel)
Theorem
There is a subset Θ Ă L and quantum theta functions tϑpupPΘ Ă ZΛ,trLs
such that

Each ϑp can be written

ϑp “ yp `
ÿ

vPL`z0

cp,vptqy
p`v

with cp,vptq P Nrt˘1s

Zrt˘1s-module generated by ϑp is strongly positive algebra and
contains all of the cluster monomials.
This is a universally positive atomic basis.

Conjecture
Each of the cp,vptq are Lefschetz
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