Strong positivity for quantum cluster algebras

Ben Davison (joint with Travis Mandel) Edinburgh

Algèbres amassées Combinatorial input

Let Q be a quiver (e.g. s. $t: Q_0 \rightarrow Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \rightarrow j\} - \#\{j \rightarrow i\}$), and $\{n + 1, ..., m\} = \bigcirc Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cup Q_0$.

Initial seed defined to be (y₁ := y^{e₁},..., y_m = y^{e_m}) ⊂ ℤ[L].
For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^v) for s a sequence of the unfrozen vertices, and v_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles (determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, \dots, m\} = \subset Q_0 = \{1, \dots, m\}$ subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \circ Q_0$.

Initial seed defined to be (y₁ := y^{e₁},..., y_m = y^{e_m}) ⊂ ℤ[L].
For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^v) for s a sequence of the unfrozen vertices, and v_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $[n + 1, ..., m] = \subset Q_0 = \{1, ..., m\}$ a subset of frozen vertices. Let $L = \mathbb{Z}^m = \mathbb{Z}$. Q

Initial seed defined to be (y₁ := y^{e₁},..., y_m = y^{e_m}) ⊂ ℤ[L].
For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_j} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^ν) for s a sequence of the unfrozen vertices, and ν_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, ..., m\} = \subset Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \setminus Q_0$

Initial seed defined to be (y₁ := y^{e₁},..., y_m = y^{e_m}) ⊂ Z[L].
For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^ν) for s a sequence of the unfrozen vertices, and ν_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, ..., m\} = \subset Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cdot Q_0$.

Initial seed defined to be (y₁ := y^{e₁},..., y_m = y^{e_m}) ⊂ ℤ[L].
For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^v) for s a sequence of the unfrozen vertices, and v_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, ..., m\} = \subset Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cdot Q_0$.

• Initial seed defined to be
$$(y_1 := y^{e_1}, \ldots, y_m = y^{e_m}) \subset \mathbb{Z}[L]$$

• For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to j} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^ν) for s a sequence of the unfrozen vertices, and ν_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, ..., m\} = \subset Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cdot Q_0$.

- Initial seed defined to be $(y_1 := y^{e_1}, \ldots, y_m = y^{e_m}) \subset \mathbb{Z}[L].$
- For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^v) for s a sequence of the unfrozen vertices, and v_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, ..., m\} = \subset Q_0 = \{1, ..., m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cdot Q_0$.

- Initial seed defined to be $(y_1 := y^{e_1}, \ldots, y_m = y^{e_m}) \subset \mathbb{Z}[L].$
- For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^ν) for s a sequence of the unfrozen vertices, and ν_i ≥ 0 for i ≤ n.

Let Q be a quiver (e.g. $s, t : Q_0 \to Q_1$) without loops or 2-cycles(determined by signed adjacency matrix $B_{ij} = \#\{i \to j\} - \#\{j \to i\}$), and $\{n + 1, \dots, m\} = \subset Q_0 = \{1, \dots, m\}$ a subset of *frozen* vertices. Let $L = \mathbb{Z}^m = \mathbb{Z} \cdot Q_0$.

- Initial seed defined to be $(y_1 := y^{e_1}, \ldots, y_m = y^{e_m}) \subset \mathbb{Z}[L].$
- For *i* unfrozen, mutate via

$$\mu_i(y_j) = \begin{cases} y_j & \text{if } i \neq j \\ y_i + y^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

- \rightarrow usual mutation rule for Q.
- A_Q is the algebra genrated by all *cluster monomials* μ_s(y^v) for s a sequence of the unfrozen vertices, and v_i ≥ 0 for i ≤ n.

Algèbres amassées, le palmarès

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈L} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{v,w} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions*{ϑ_p}_{p∈Θ} ⊂ Z[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈I} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{v,w} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions* {ϑ_p}_{p∈Θ} ⊂ ℤ[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈L} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{v,w} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions*{ϑ_p}_{p∈Θ} ⊂ Z[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈L} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{v,w} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions*{ϑ_p}_{p∈Θ} ⊂ Z[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈L} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{\mathbf{v},\mathbf{w}} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions*{ϑ_p}_{p∈Θ} ⊂ Z[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈L} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{\mathbf{v},\mathbf{w}} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions* {𝔄_p}_{p∈Θ} ⊂ Z[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈I} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{\mathbf{v},\mathbf{w}} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) $\mathcal{A}_Q \subset \mathcal{A}_Q^{can}$, where \mathcal{A}_Q^{can} has a basis of *theta functions* $\{\vartheta_{\mathbf{p}}\}_{\mathbf{p}\in\Theta} \subset \mathbb{Z}[L]$ indexed by $\Theta \subset L$, containing all of the cluster monomials. The structure

constants w.r.t. this basis are positive.

- Laurent phenomenon (Fomin and Zelevinsky): This definition makes sense. e.g. for s a sequence of unfrozen vertices
 µ_s(y^v) = ∑_{w∈I} c_{v,w}y^w for constants c_{v,w} ∈ Z
- Linear independence (Cerulli–Irelli, Keller, Labardini, Plamondon): The cluster monomials are linearly independent
- Positivity (Lee, Schiffler): The constants $c_{\mathbf{v},\mathbf{w}} \in \mathbb{Z}$ are positive
- Strong positivity (Gross, Hacking, Keel, Kontsevich) A_Q ⊂ A^{can}_Q, where A^{can}_Q has a basis of *theta functions*{ϑ_p}_{p∈Θ} ⊂ ℤ[L] indexed by Θ ⊂ L, containing all of the cluster monomials. The structure constants w.r.t. this basis are positive.

Bond quantique

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

 $\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

•
$$(n)!_t := (1)_t \cdots (n)_t$$

•
$$\binom{n}{m}_t = (n)!_t / ((m)!_t (n-m)!_t)$$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

•
$$(n)!_t := (1)_t \cdots (n)_t$$

•
$$\binom{n}{m}_t = (n)!_t / ((m)!_t (n-m)!_t)$$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

•
$$(n)!_t := (1)_t \cdots (n)_t$$

•
$$\binom{n}{m}_t = (n)!_t / ((m)!_t (n-m)!_t)$$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)_t := (1)$ (n)

•
$$(n)!_t := (1)_t \cdots (n)_t$$
,

•
$$\binom{n}{m}_t = (n)!_t / ((m)!_t (n-m)!_t)$$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)!_t := (1)_t \cdots (n)_t,$

•
$$\binom{n}{m}_{t} = (n)!_{t}/((m)!_{t}(n-m)!_{t})$$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)!_t := (1)_t \cdots (n)_t,$
• $\binom{n}{m}_t = (n)!_t/((m)!_t(n-m)!_t)$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)!_t := (1)_t \cdots (n)_t,$
• $\binom{n}{m}_t = (n)!_t/((m)!_t(n-m)!_t)$

q-commutativity

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)!_t := (1)_t \cdots (n)_t,$
• $\binom{n}{m}_t = (n)!_t/((m)!_t(n-m)!_t)$

q-commutativity

How about setting $\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} {\binom{\mathbf{v}_i}{r}}_t y^{\mathbf{v}+r\beta_i}$? Not obviously a homomorphism Solution: find a skew-symmetric form on \mathbb{Z}^{Q_0} such that $\Lambda(Be_i, Be_j) = B(e_i, e_j)$ for unfrozen *i* (Berenstein+Zelevinsky call this a *compatible* form) and decree y y

How to quantize? Set $\beta_i = \sum_{i \to k} e_k - \sum_{k \to i} e_k = Be_i$. Then

$$\mu_i(y^{\mathbf{v}}) = \sum_{r=0}^{\mathbf{v}_i} \binom{\mathbf{v}_i}{r} y^{\mathbf{v}+r\beta_i}$$

Set

•
$$(n)_t = (t^n - t^{-n})/(t^1 - t^{-1}),$$

• $(n)!_t := (1)_t \cdots (n)_t,$
• $\binom{n}{m}_t = (n)!_t/((m)!_t(n-m)!_t)$

q-commutativity

L'algèbre amassée quantique

The ambient ring

Given a lattice *L* with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The **quantum cluster algebra** $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials (and the cluster of the cluster of a defined before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The **quantum cluster algebra** $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials (and the quantum cluster monomials) before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by y^ν · y^{ν'} = t^{ω(ν,ν')}y^{ν+ν'}.

The **quantum cluster algebra** $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials (and the quantum cluster monomials) before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The **quantum cluster algebra** $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials (and the quantum cluster monomials (and the defined before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The quantum cluster algebra $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials $(\mu_{\mathfrak{s}}(y^{\vee}) \leq t, y) \geq 0$ for $i \leq n$) as defined before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The quantum cluster algebra $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials ($\mu_{\mathbf{s}}(\mathbf{y}^{\mathbf{v}})$ s.t. $\mathbf{v}_i \ge 0$ for $i \le n$) as defined before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} e_k - \sum_{k \to i} e_k + e_i} & \text{if } i = j \end{cases}$$

and substitution rule $\mathbf{y}'_i = \mathbf{y}^{-\mathbf{e}_i + \sum_{k \to i} \mathbf{e}_k}$.

The ambient ring

Given a lattice L with skew-symmetric form ω we define $\mathbb{Z}_{\omega,t}[L]$, the free $\mathbb{Z}[t^{\pm 1}]$ -module with

- generators $\mathbf{y}^{\mathbf{v}}$ for $\mathbf{v} \in L$,
- multiplication given by $\mathbf{y}^{\mathbf{v}} \cdot \mathbf{y}^{\mathbf{v}'} = t^{\omega(\mathbf{v},\mathbf{v}')} \mathbf{y}^{\mathbf{v}+\mathbf{v}'}$.

The quantum cluster algebra $\mathcal{A}_{\Lambda} \subset \mathbb{Z}_{\Lambda,t}[L]$ is the algebra generated by all the quantum cluster monomials $(\mu_{\mathbf{s}}(\mathbf{y}^{\mathbf{v}}) \text{ s.t. } \mathbf{v}_i \ge 0 \text{ for } i \le n)$ as defined before. E.g. mutate via

$$\mu_i(\mathbf{y}_j) = \begin{cases} \mathbf{y}_j & \text{if } i \neq j \\ \mathbf{y}_i + \mathbf{y}^{\sum_{i \to k} \mathbf{e}_k - \sum_{k \to i} \mathbf{e}_k + \mathbf{e}_i} & \text{if } i = j \end{cases}$$

Palmarès quantique

- Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, μ_s(y^v) = ∑_{w∈L} c_{v,w}(t)y^w with c_{v,w}(t) ∈ ℤ[t^{±1}] if v_i ≥ 0 for all unfrozen i (e.g. i ≤ n).
- Quantum positivity (D): In the above expressions, all the $c_{v,w}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

Quantum cluster algebras: main results

• Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, $\mu_s(y^*) = \sum_{w \in L} c_{v,w}(t)y^w$ with $c_{v,w}(t) \in \mathbb{Z}[t^{\pm 1}]$ if $v_t \ge 0$ for all unfrozen i (e.g. $i \le n$)

• Quantum positivity (D): In the above expressions, all the $c_{v,w}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

• Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, $\mu_{\mathbf{s}}(\mathbf{y}^{\mathbf{v}}) = \sum_{\mathbf{w} \in L} c_{\mathbf{v},\mathbf{w}}(t) \mathbf{y}^{\mathbf{w}}$ with $c_{\mathbf{v},\mathbf{w}}(t) \in \mathbb{Z}[t^{\pm 1}]$ if $\mathbf{v}_i \ge 0$ for all unfrozen i (e.g. $i \le n$).

• Quantum positivity (D): In the above expressions, all the $c_{v,w}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

- Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, $\mu_{\mathbf{s}}(\mathbf{y}^{\mathbf{v}}) = \sum_{\mathbf{w} \in L} c_{\mathbf{v},\mathbf{w}}(t) \mathbf{y}^{\mathbf{w}}$ with $c_{\mathbf{v},\mathbf{w}}(t) \in \mathbb{Z}[t^{\pm 1}]$ if $\mathbf{v}_i \ge 0$ for all unfrozen i (e.g. $i \le n$).
- Quantum positivity (D): In the above expressions, all the $c_{\mathbf{v},\mathbf{w}}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

- Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, $\mu_{\mathbf{s}}(\mathbf{y}^{\mathbf{v}}) = \sum_{\mathbf{w} \in L} c_{\mathbf{v},\mathbf{w}}(t) \mathbf{y}^{\mathbf{w}}$ with $c_{\mathbf{v},\mathbf{w}}(t) \in \mathbb{Z}[t^{\pm 1}]$ if $\mathbf{v}_i \ge 0$ for all unfrozen i (e.g. $i \le n$).
- Quantum positivity (D): In the above expressions, all the $c_{\mathbf{v},\mathbf{w}}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

- Quantum Laurent phenomenon (Berenstein+Zelevinsky): This definition makes sense e.g. for s a sequence of unfrozen vertices, μ_s(y^v) = ∑_{w∈L} c_{v,w}(t)y^w with c_{v,w}(t) ∈ ℤ[t^{±1}] if v_i ≥ 0 for all unfrozen i (e.g. i ≤ n).
- Quantum positivity (D): In the above expressions, all the $c_{\mathbf{v},\mathbf{w}}(t)$ have positive coefficients, and are moreover Lefschetz.

Aside: Lefschetz type polynomials

A sum of polynomials of the form $(n)_t$ is called Lefschetz. So called because the Poincaré polynomial of a smooth projective variety is of Lefschetz type thanks to the hard Lefschetz theorem.

Plethystic exponentials

Let $f(t, z_1, \ldots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \ldots, z_r]].$ Then

$$\operatorname{Exp}(f(t,z_1,\ldots,z_r)):=\prod_{(n,\mathbf{v})\in\mathbb{Z} imes\mathbb{N}^r}(1-(-t)^nz^{\mathbf{v}})^{-f_{n,\mathbf{v}}}.$$

 $\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- $Exp(\chi_t(V)) = \chi_t(Sym(V))$: "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

Plethystic exponentials Let $f(t, z_1, ..., z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, ..., z_r]].$ Then $Exp(f(t, z_1, ..., z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}.$

 $\mathbb{E}(f(t, z_1, \dots, z_r)) := \mathsf{Exp}(f(t, z_1, \dots, z_r)t(1-t^2)^{-1}).$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- $\text{Exp}(\chi_t(V)) = \chi_t(\text{Sym}(V))$: "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt} / \operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

the DT invariants of the zero/one loop quiver. ("fermionic" vs "bosonic"

Plethystic exponentials

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-t_{n, \mathbf{v}}}$$

 $\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- $Exp(\chi_t(V)) = \chi_t(Sym(V))$: "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

Plethystic exponentials

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\operatorname{Exp}(f(t, z_1, \dots, z_r)) := \prod (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}.$

$$(n,\mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- $Exp(\chi_t(V)) = \chi_t(Sym(V))$: "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

the DT invariants of the zero/one loop quiver. ("fermionic" vs "bosonic"

Plethystic exponentials

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-t_{n, \mathbf{v}}}$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

• $\text{Exp}(\chi_t(V)) = \chi_t(\text{Sym}(V))$: "Plethystic exponential is decategorification of symmetric algebra"

- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

the DT invariants of the zero/one loop quiver. ("fermionic"

Plethystic exponentials Let $f(t, z_1, \dots, z_r) = \sum_{i=1}^r \sum_{j=1}^r \sum_{j=1}^r \sum_{i=1}^r \sum_{j=1}^r \sum_{i=1$

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\operatorname{Exp}(f(t, z_1, \dots, z_r)) := \prod (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}.$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

 $(n,\mathbf{v})\in\mathbb{Z}\times\mathbb{N}^r$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- Exp(χ_t(V)) = χ_t(Sym(V)): "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$. • Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]]$.

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

Plethystic exponentials Let $f(t, z_1, ..., z_r) = \sum_{i=1}^r \sum_{j=1}^r f_{ij} \cdot (-t)$

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\operatorname{Exp}(f(t, z_1, \dots, z_r)) := \prod (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}.$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

 $(n,\mathbf{v})\in\mathbb{Z}\times\mathbb{N}^r$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- Exp(χ_t(V)) = χ_t(Sym(V)): "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.

• Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Ther $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

Plethystic exponentials Let $f(t, z_1, ..., z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, ..., z_r]].$ Then

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- Exp(\(\chi_t(V)\)) = \(\chi_t(Sym(V)\)): "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are the *DT invariants* of the zero/one loop guiver. ("fermionic" vs "bosonic")

Plethystic exponentials

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then $\prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-t_{n, \mathbf{v}}}$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- Exp(χ_t(V)) = χ_t(Sym(V)): "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are

Plethystic exponentials

Let $f(t, z_1, \ldots, z_r) = \sum_{(n,\mathbf{v})\in\mathbb{Z}\times\mathbb{N}^r} f_{n,\mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \ldots, z_r]].$ Then

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-t_{n, \mathbf{v}}}$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \ldots, z_r]]_+$. Then

• $\text{Exp}(\chi_t(V)) = \chi_t(\text{Sym}(V))$: "Plethystic exponential is decategorification of symmetric algebra"

• Let
$$V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$$
. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.

• Let
$$V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$$
. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are the *DT* invariants of the zero/one loop quiver. Ben Davison

Plethystic exponentials

Let $f(t, z_1, \dots, z_r) = \sum_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} f_{n, \mathbf{v}} \cdot (-t)^n z^{\mathbf{v}} \in \mathbb{Z}((t))[[z_1, \dots, z_r]].$ Then Exp($f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z}} (1 - (-t)^n z^{\mathbf{v}})^{-f_{n, \mathbf{v}}}$

$$\mathsf{Exp}(f(t, z_1, \dots, z_r)) := \prod_{(n, \mathbf{v}) \in \mathbb{Z} \times \mathbb{N}^r} (1 - (-t)^n z^{\mathbf{v}})^{-t_{n, \mathbf{v}}}$$

$$\mathbb{E}(f(t,z_1,\ldots,z_r)) := \mathsf{Exp}(f(t,z_1,\ldots,z_r)t(1-t^2)^{-1}).$$

Let V be a $\mathbb{Z} \times \mathbb{N}^r$ -graded vector space with $\chi_t(V) \in \mathbb{Z}((t))[[z_1, \dots, z_r]]_+$. Then

- Exp(χ_t(V)) = χ_t(Sym(V)): "Plethystic exponential is decategorification of symmetric algebra"
- Let $V = \bigoplus_{n \ge 0} H(\operatorname{pt}/\operatorname{Gl}_n)[-n^2]$. Then $\chi_t(V) = \mathbb{E}(z) \in \mathbb{Z}((t))[[z]]$.

• Let
$$V = \bigoplus_{n \ge 0} H(\operatorname{Mat}_{n \times n}(\mathbb{C})/\operatorname{Gl}_n)$$
. Then $\chi_t(V) = \mathbb{E}(zt^{-1}) \in \mathbb{Z}((t))[[z]].$

Very different!: Exp(tz) = 1 + tz, and $Exp(z) = 1 + z + z^2 + ...$ These are the *DT invariants* of the zero/one loop quiver. ("fermionic" vs "bosonic") Ben Davison

Quantum \mathcal{X} space Let $\mathcal{K} = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[\mathcal{K}]$ as before $(\mathbf{x} \circ \mathbf{x}) = t^B(\mathbf{x} \circ \mathbf{x})$. Map $\mathbf{x} \mapsto \mathbf{y}^{B_2}$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathsf{x}_i)^{-1}}(\mathsf{y}_i) &= \iota \, \mathbb{E}(\mathsf{x}_i)^{-1} \mathsf{y}_i \iota \, \mathbb{E}(\mathsf{x}_i) \\ &= \mathsf{y}_i \, \mathbb{E}((1-t^2)\mathsf{x}_i) = \mathsf{y}_i + \mathsf{y}^{\mathsf{e}_i + B\mathsf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting ${\mathcal X}$ coordinates act on ${\mathcal A}$ coordinates via conjugation.

Quantum \mathcal{X} space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathsf{x}_i)^{-1}}(\mathsf{y}_i) &= \iota \, \mathbb{E}(\mathsf{x}_i)^{-1} \mathsf{y}_i \iota \, \mathbb{E}(\mathsf{x}_i) \\ &= \mathsf{y}_i \, \mathbb{E}((1-t^2)\mathsf{x}_i) = \mathsf{y}_i + \mathsf{y}^{\mathsf{e}_i + B\mathsf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting \mathcal{X} coordinates act on \mathcal{A} coordinates via conjugation.

Quantum ${\mathcal X}$ space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

$$\mathbf{x}^{\gamma} \mapsto \mathbf{y}^{B\gamma}$$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathsf{x}_i)^{-1}}(\mathsf{y}_i) &= \iota \, \mathbb{E}(\mathsf{x}_i)^{-1} \mathsf{y}_i \iota \, \mathbb{E}(\mathsf{x}_i) \\ &= \mathsf{y}_i \, \mathbb{E}((1-t^2)\mathsf{x}_i) = \mathsf{y}_i + \mathsf{y}^{\mathsf{e}_i + B\mathsf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting \mathcal{X} coordinates act on \mathcal{A} coordinates via conjugation.

Quantum \mathcal{X} space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

$$\mathbf{x}^{\gamma} \mapsto \mathbf{y}^{B\gamma}$$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathsf{x}_i)^{-1}}(\mathsf{y}_i) &= \iota \, \mathbb{E}(\mathsf{x}_i)^{-1} \mathsf{y}_i \iota \, \mathbb{E}(\mathsf{x}_i) \\ &= \mathsf{y}_i \, \mathbb{E}((1-t^2)\mathsf{x}_i) = \mathsf{y}_i + \mathsf{y}^{\mathsf{e}_i + B\mathsf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting $\mathcal X$ coordinates act on $\mathcal A$ coordinates via conjugation.

Quantum \mathcal{X} space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

$$\mathbf{x}^{\gamma} \mapsto \mathbf{y}^{B\gamma}$$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\operatorname{Ad}_{\iota \mathbb{E}(\mathbf{x}_{i})^{-1}}(\mathbf{y}_{i}) = \iota \mathbb{E}(\mathbf{x}_{i})^{-1} \mathbf{y}_{i} \iota \mathbb{E}(\mathbf{x}_{i})$$
$$= \mathbf{y}_{i} \mathbb{E}((1 - t^{2})\mathbf{x}_{i}) = \mathbf{y}_{i} + \mathbf{y}^{e_{i} + t}$$

E.g. cluster mutation is effected by letting $\mathcal X$ coordinates act on $\mathcal A$ coordinates via conjugation.

Quantum \mathcal{X} space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

$$\mathbf{x}^{\gamma} \mapsto \mathbf{y}^{B\gamma}$$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathbf{x}_i)^{-1}}(\mathbf{y}_i) &= \iota \, \mathbb{E}(\mathbf{x}_i)^{-1} \mathbf{y}_i \iota \, \mathbb{E}(\mathbf{x}_i) \\ &= \mathbf{y}_i \, \mathbb{E}((1-t^2)\mathbf{x}_i) = \mathbf{y}_i + \mathbf{y}^{\mathbf{e}_i + B\mathbf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting ${\mathcal X}$ coordinates act on ${\mathcal A}$ coordinates via conjugation.

Quantum \mathcal{X} space

Let $K = \mathbb{N}^n$ be the semigroup of *unfrozen* dimension vectors. Form the quantum torus $\mathbb{Z}_{B,t}[K]$ as before $(\mathbf{x}^{\gamma} \cdot \mathbf{x}^{\gamma'} = t^{B(\gamma,\gamma')}\mathbf{x}^{\gamma+\gamma'})$. Map

$$\mathbf{x}^{\gamma} \mapsto \mathbf{y}^{B\gamma}$$

defines a homomorphism $\iota \colon \mathbb{Z}_{B,t}[K] \to \mathbb{Z}_{\Lambda,t}[L]$

Easy calculation: if $i \neq j \ \iota \mathbb{E}(\mathbf{x}_i)$ and \mathbf{y}_i commute, otherwise

$$\begin{aligned} \mathsf{Ad}_{\iota \, \mathbb{E}(\mathbf{x}_i)^{-1}}(\mathbf{y}_i) &= \iota \, \mathbb{E}(\mathbf{x}_i)^{-1} \mathbf{y}_i \iota \, \mathbb{E}(\mathbf{x}_i) \\ &= \mathbf{y}_i \, \mathbb{E}((1-t^2)\mathbf{x}_i) = \mathbf{y}_i + \mathbf{y}^{\mathbf{e}_i + B\mathbf{e}_i} \end{aligned}$$

E.g. cluster mutation is effected by letting \mathcal{X} coordinates act on \mathcal{A} coordinates via conjugation.

Positivité: chemin dur

The old proof

• From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$

- For iterated mutation along s, Nagao showed there is a stack T_s of Jac(Q, W)-reps such that Ad_{Xwt(H(T_s))} recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression Ad_{XK,wt}(H(T_s))(y^v) can be categorified → positivity (+ some Hodge theory) → Lefschetz type.

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{X_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression Ad_{XK,wt}(H(T_s))(y^v) can be categorified → positivity (+ some Hodge theory) → Lefschetz type.

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{\chi_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression Ad_{XK,wt}(H(T_s))(y^v) can be categorified → positivity (+ some Hodge theory) → Lefschetz type.

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{\chi_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression ${\sf Ad}_{\chi_{{\cal K},{\rm wt}}({\sf H}({\cal T}_{{\sf s}}))}({\sf y}^{{\sf v}})$ can be categorified positivity (+ some Hodge Hodg

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{\chi_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression $\operatorname{Ad}_{\chi_{K,\operatorname{wt}}(H(\mathcal{T}_{s}))}(\mathbf{y}^{\mathbf{v}})$ can be categorified \rightarrow positivity (+ some Hodge Hodge Lefschetz type)

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{\chi_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange $\chi_{\rm wt}$ (e.g. categorify)
- Similarly CWC shows that expression $Ad_{\chi_{K,wt}(H(\mathcal{T}_s))}(\mathbf{y}^{\mathbf{v}})$ can be categorified \rightarrow positivity (+ some Hodge theory) \rightarrow Lefschetz type.

The old proof

- From what we saw before, $\mathbb{E}(\mathbf{x}_i) = \chi_t(\mathsf{H}(\mathsf{Rep}_{\mathbb{N}e_i} Q, \mathbb{Q})_{\mathsf{vir}}).$
- For iterated mutation along s, Nagao showed there is a stack \mathcal{T}_s of $\operatorname{Jac}(Q, W)$ -reps such that $\operatorname{Ad}_{\chi_{\operatorname{wt}}(\operatorname{H}(\mathcal{T}_s))}$ recreates cluster mutation.
- Cohomological wall crossing(CWC) shows that this cohomology is pure, so we can take χ_t instead of strange χ_{wt} (e.g. categorify)
- Similarly CWC shows that expression $\operatorname{Ad}_{\chi_{K,\mathrm{wt}}(H(\mathcal{T}_{s}))}(\mathbf{y}^{\mathbf{v}})$ can be categorified \rightarrow positivity (+ some Hodge theory) \rightarrow Lefschetz type.

Contre les murs

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$, $v \in L_+$ primitive, p a positive multiple of v. Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define G_v^{class} to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $L_{\mathbb{R}}$ parallel to $\mathbf{v}^{\wedge\perp}$ for some $\mathbf{v} \in L_+ \setminus \operatorname{Ker}(\Lambda)$, along with a $f \in G_{\mathbf{v}}^{\text{class}}$. The wall is called **incoming** if closed under adding \mathbf{v} .

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$. $\mathbf{v} \in L_+$ primitive, \mathbf{p} a positive multiple of \mathbf{v} . Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define G_v^{class} to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $L_{\mathbb{R}}$ parallel to $\mathbf{v}^{\wedge\perp}$ for some $\mathbf{v} \in L_+ \setminus \operatorname{Ker}(\Lambda)$, along with a $f \in G_{\mathbf{v}}^{\text{class}}$. The wall is called **incoming** if closed under adding \mathbf{v} .

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$. $\mathbf{v} \in L_+$ primitive, \mathbf{p} a positive multiple of \mathbf{v} . Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define G_v^{class} to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $L_{\mathbb{R}}$ parallel to $\mathbf{v}^{\wedge\perp}$ for some $\mathbf{v} \in L_+ \setminus \operatorname{Ker}(\Lambda)$, along with a $f \in G_{\mathbf{v}}^{\text{class}}$. The wall is called **incoming** if closed under adding \mathbf{v} .

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$. $\mathbf{v} \in L_+$ primitive, \mathbf{p} a positive multiple of \mathbf{v} . Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define $G_{\mathbf{v}}^{\text{class}}$ to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $\mathcal{L}_{\mathbb{R}}$ parallel to $\mathbf{v}^{\Lambda \perp}$ for some $\mathbf{v} \in \mathcal{L}_+ \setminus \text{Ker}(\Lambda)$, along with a $f \in \mathcal{L}_+$ wall is called incoming it closed under adding \mathbf{v}

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$. $\mathbf{v} \in L_+$ primitive, \mathbf{p} a positive multiple of \mathbf{v} . Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define $G_{\mathbf{v}}^{\text{class}}$ to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $L_{\mathbb{R}}$ parallel to $\mathbf{v}^{\Lambda \perp}$ for some $\mathbf{v} \in L_+ \setminus \text{Ker}(\Lambda)$, along with a $f \in G_{\mathbf{v}}^{\text{class}}$. The wall is called incoming if closed under adding \mathbf{v}

Write $L_+ = L \cap B(\mathbb{N}^n)_{\mathbb{R}}$. $\mathbf{v} \in L_+$ primitive, \mathbf{p} a positive multiple of \mathbf{v} . Define an automorphism of $\mathbb{Z}[L]$

$$l_{\mathbf{p}}: y^{\mathbf{v}'} \mapsto y^{\mathbf{v}'} (1+y^{\mathbf{p}})^{\Lambda(\mathbf{p},\mathbf{v}')}$$

define $G_{\mathbf{v}}^{\text{class}}$ to be group generated by all such automorphisms.

Definition

A (classical) wall (\mathfrak{d}, f) is a (n-1)-dimensional rational polyhedral cone \mathfrak{d} in $L_{\mathbb{R}}$ parallel to $\mathbf{v}^{\Lambda \perp}$ for some $\mathbf{v} \in L_+ \setminus \operatorname{Ker}(\Lambda)$, along with a $f \in G_{\mathbf{v}}^{\text{class}}$. The wall is called **incoming** if closed under adding \mathbf{v} .

Scattering diagrams

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N)$

only finitely many functions of order N and below)

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given $\gamma : [0,1] \rightarrow L_{\mathbb{R}}$ avoiding joints crossing wall w_1, \ldots, w_r at times t_1, \ldots, t_r define

$$\theta_{\gamma} = f_{w_r}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_1}, \gamma'(t_1)))}$$

• \mathfrak{D} is called **consistent** if θ_{γ} only depends on the endpoints of θ . (Gross–Siebert): every scattering diagram can be made consistent by adding a unique (up to equivalence) set of outgoing walls.

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given γ : [0,1] → L_R avoiding joints crossing wall w₁,..., w_r at times t₁,..., t_r define

$$\theta_{\gamma} = f_{w_{r}}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_{r}},\gamma'(t_{r})))} \cdots f_{w_{1}}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_{1}},\gamma'(t_{1})))}$$

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

• $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$

 Given γ : [0,1] → L_R avoiding joints crossing wall w₁,..., w_r at times t₁,..., t_r define

$$\theta_{\gamma} = f_{w_r}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_1}, \gamma'(t_1)))}$$

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given $\gamma : [0,1] \rightarrow L_{\mathbb{R}}$ avoiding joints crossing wall w_1, \ldots, w_r at times t_1, \ldots, t_r define

$$\theta_{\gamma} = f_{w_r}^{\operatorname{sgn}(\Lambda(\mathsf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\operatorname{sgn}(\Lambda(\mathsf{v}_{w_1}, \gamma'(t_1)))}$$

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given $\gamma : [0,1] \rightarrow L_{\mathbb{R}}$ avoiding joints crossing wall w_1, \ldots, w_r at times t_1, \ldots, t_r define

$$heta_{\gamma} = f_{w_r}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\operatorname{sgn}(\Lambda(\mathbf{v}_{w_1}, \gamma'(t_1)))}$$

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given $\gamma : [0,1] \rightarrow L_{\mathbb{R}}$ avoiding joints crossing wall w_1, \ldots, w_r at times t_1, \ldots, t_r define

$$heta_{\gamma} = f_{w_r}^{\mathsf{sgn}(\Lambda(\mathbf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\mathsf{sgn}(\Lambda(\mathbf{v}_{w_1}, \gamma'(t_1)))}$$

D is called consistent if θ_γ only depends on the endpoints of θ.
 (Gross-Siebert) every scattering diagram can be made consistent by adding a unique (up to equivalence) set of outgoing walls.

Definition

A scattering diagram \mathfrak{D} is a union of walls (\mathfrak{d}_a, f_a) in $L_{\mathbb{R}}$ such that $(\forall N \text{ only finitely many functions of order } N \text{ and below})$

- $\mathsf{Joints}(\mathfrak{D}) = \left(\bigcup_{a \neq a'} \mathfrak{d}_a \cap \mathfrak{d}_{a'}\right) \cup \left(\bigcup_a \delta \mathfrak{d}_a\right)$
- Given $\gamma : [0,1] \rightarrow L_{\mathbb{R}}$ avoiding joints crossing wall w_1, \ldots, w_r at times t_1, \ldots, t_r define

$$heta_{\gamma} = f_{w_r}^{\mathsf{sgn}(\Lambda(\mathbf{v}_{w_r}, \gamma'(t_r)))} \cdots f_{w_1}^{\mathsf{sgn}(\Lambda(\mathbf{v}_{w_1}, \gamma'(t_1)))}$$

Droites brisés

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (p, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{v_i}$ such that

- $\bigcirc \ \gamma(0) = \mathcal{Q}$
- **(a)** for $t \in (t_i, t_{i+1})$, we have $\gamma'(t) = -\mathbf{v}_i$.
- **(**) $c_0 = 1$ and $v_0 = p$
- $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace f_p with Ad_{i E(x^p)}

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \rightarrow L_{\mathbb{R}}$ avoiding joints, meeting walls with

each piecewise linear section labelled by a monomial $c_i y^{*_i}$ such that

- $\bigcirc \ \gamma(0) = \mathcal{Q}$
- (a) for $t \in (t_i, t_{i+1})$, we have $\gamma'(t) = -\mathbf{v}_i$.
- **(**) $c_0 = 1$ and $v_0 = p$
- $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $Ad_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

- $\bigcirc \ \gamma(0) = \mathcal{Q}$
- **(a)** for $t \in (t_i, t_{i+1})$, we have $\gamma'(t) = -\mathbf{v}_i$.
- **(**) $c_0 = 1$ and $v_0 = p$
- $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $Ad_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

 $\bigcirc \ \gamma(0) = \mathcal{Q}$

(a) for $t \in (t_i, t_{i+1})$, we have $\gamma'(t) = -\mathbf{v}_i$.

() $c_0 = 1$ and $v_0 = p$

• $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $Ad_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

- $\bigcirc \ \gamma(\mathbf{0}) = \mathcal{Q}$
- 2 for $t \in (t_i, t_{i+1})$, we have $\gamma'(t) = -\mathbf{v}_i$.

() $c_0 = 1$ and $v_0 = p$

• $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $Ad_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

$$\ \, \mathbf{0} \ \, \gamma(\mathbf{0}) = \mathcal{Q}$$

3 for
$$t \in (t_i, t_{i+1})$$
, we have $\gamma'(t) = -\mathbf{v}_i$.

$$c_0 = 1 \text{ and } \mathbf{v}_0 = \mathbf{p}$$

• $c_{i+1}y^{\mathbf{v}_{i+1}}$ is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $Ad_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

$$\bigcirc \ \gamma(\mathbf{0}) = \mathcal{Q}$$

(2) for
$$t \in (t_i, t_{i+1})$$
, we have $\gamma'(t) = -\mathbf{v}_i$.

3
$$c_0 = 1$$
 and $v_0 = p$

•
$$c_{i+1}y^{\mathbf{v}_{i+1}}$$
 is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $\operatorname{Ad}_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

$$\ \, \mathbf{0} \ \, \gamma(\mathbf{0}) = \mathcal{Q}$$

(2) for
$$t \in (t_i, t_{i+1})$$
, we have $\gamma'(t) = -\mathbf{v}_i$.

3
$$c_0 = 1$$
 and $v_0 = p$

•
$$c_{i+1}y^{\mathbf{v}_{i+1}}$$
 is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $\operatorname{Ad}_{\iota \operatorname{\mathbb{E}}(\mathbf{x}^{\mathbf{p}})}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

$$\ \, \mathbf{0} \ \, \gamma(\mathbf{0}) = \mathcal{Q}$$

(2) for
$$t \in (t_i, t_{i+1})$$
, we have $\gamma'(t) = -\mathbf{v}_i$.

3
$$c_0 = 1$$
 and $v_0 = p$

•
$$c_{i+1}y^{\mathbf{v}_{i+1}}$$
 is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form $f_{\mathbf{v}}$ (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace f_p with $Ad_{\iota E(x^p)}$

Definition

Let $Q \in L_{\mathbb{R}} \setminus \mathfrak{D}$. A broken line with ends (\mathbf{p}, Q) is a piecewise linear path $(-\infty, 0] \to L_{\mathbb{R}}$ avoiding joints, meeting walls w_1, \ldots, w_r at t_1, \ldots, t_r with each piecewise linear section labelled by a monomial $c_i y^{\mathbf{v}_i}$ such that

$$\ \, \mathbf{0} \ \, \gamma(\mathbf{0}) = \mathcal{Q}$$

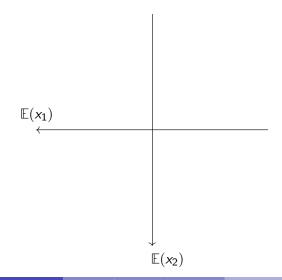
(2) for
$$t \in (t_i, t_{i+1})$$
, we have $\gamma'(t) = -\mathbf{v}_i$.

3
$$c_0 = 1$$
 and $v_0 = p$

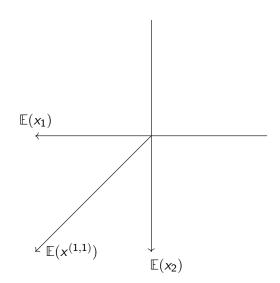
•
$$c_{i+1}y^{\mathbf{v}_{i+1}}$$
 is a monomial in $\theta_{\gamma,i}(c_iy^{\mathbf{v}_i})$.

- As long as only functions of the form f_v (not their inverses) appear on the walls, all resulting monomials are positive.
- (GHKK) Cluster monomials and structure constants are given by sums of broken lines
- Easy to quantize: replace $f_{\mathbf{p}}$ with $\operatorname{Ad}_{\iota \mathbb{E}(\mathbf{x}^{\mathbf{p}})}$

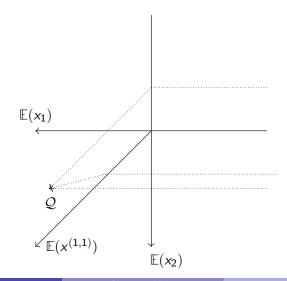
Exemple facile $L = \mathbb{Z}^2$, $\Lambda(e_1, e_2) = 1$. Start with *inconsistent* scattering diagram

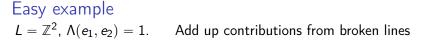


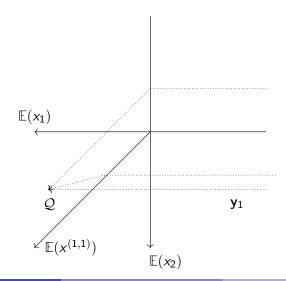
Easy example $L = \mathbb{Z}^2$, $\Lambda(e_1, e_2) = 1$. Add walls to make it consistent



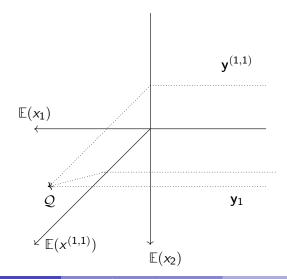
Easy example $L = \mathbb{Z}^2$, $\Lambda(e_1, e_2) = 1$. Count broken lines with ends (1, 0), Q



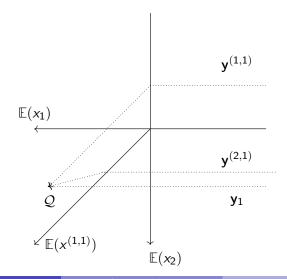




Easy example $L = \mathbb{Z}^2$, $\Lambda(e_1, e_2) = 1$. Add up contributions from broken lines



Easy example $L = \mathbb{Z}^2$, $\Lambda(e_1, e_2) = 1$. Add up contributions from broken lines



Positivitè de base theta

Via perturbations of scattering diagrams and recursive arguments, we can reduce the construction of consistent scattering diagrams to the two wall case with $\mathbb{E}(t^{\alpha_1}\mathbf{x}_1)$ and $\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)$ on the walls with $\alpha_i \in \{0, t-1\}$, and $\Lambda(e_1, e_2) = n \in \mathbb{N}$. These examples get pretty hard to calculate.

• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each *i*, and *n* arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2} \mathbf{x}_2) \mathbb{E}(t^{\alpha_1} \mathbf{x}_1) = \mathbb{E}(t^{\alpha_1} \mathbf{x}_1) \left(\prod_{\alpha \in \mathbf{a}/\mathbf{b} \to 0} \mathbb{E}(f(\mathbf{x}^{(a,b)}, t)) \right) \mathbb{E}(t^{\alpha_2} \mathbf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

• The wall crossing formula plus CMC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}_{(na,nb)}^{\mathrm{sst}} Q, \mathbb{Q})_{\mathsf{vir}})$$

Via perturbations of scattering diagrams and recursive arguments, we can reduce the construction of consistent scattering diagrams to the two wall case with $\mathbb{E}(t^{\alpha_1}\mathbf{x}_1)$ and $\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)$ on the walls with $\alpha_i \in \{0, t-1\}$, and $\Lambda(e_1, e_2) = n \in \mathbb{N}$. These examples get pretty hard to calculate...

• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each i, and n arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2} \mathsf{x}_2) \mathbb{E}(t^{\alpha_1} \mathsf{x}_1) = \mathbb{E}(t^{\alpha_1} \mathsf{x}_1) \left(\prod_{\substack{\alpha \in a/b \\ \infty \to 0}} \mathbb{E}(f(\mathsf{x}^{(a,b)}, t)) \right) \mathbb{E}(t^{\alpha_2} \mathsf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

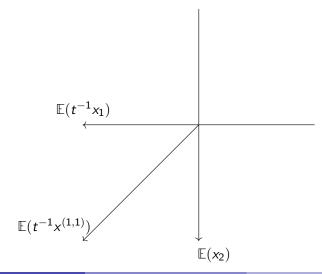
• The wall crossing formula plus CMC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}_{(na,nb)}^{\mathrm{sst}} Q, \mathbb{Q})_{\mathsf{vir}})$$

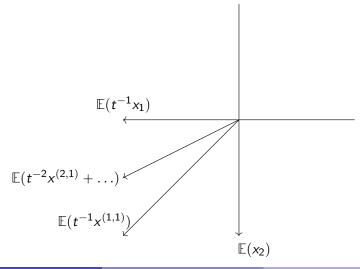
Positivity for quantum theta functions $\Lambda(e_1, e_2) = 1$; inconsistent

$$\mathbb{E}(t^{-1}x_1)$$

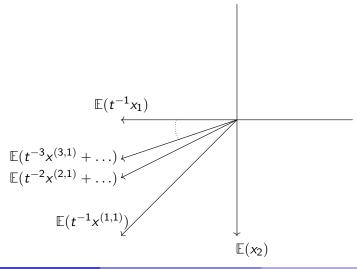
Positivity for quantum theta functions $\Lambda(e_1, e_2) = 1$; still inconsistent



Positivity for quantum theta functions $\Lambda(e_1, e_2) = 1$; still inconsistent...



 $\Lambda(e_1, e_2) = 1$; after infinitely many steps... consistent but infinite



• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each *i*, and *n* arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2} \mathbf{x}_2) \mathbb{E}(t^{\alpha_1} \mathbf{x}_1) = \mathbb{E}(t^{\alpha_1} \mathbf{x}_1) \left(\prod_{\substack{\alpha \xrightarrow{a/b} \\ \infty \xrightarrow{a/b} 0}} \mathbb{E}(f(\mathbf{x}^{(a,b)}, t)) \right) \mathbb{E}(t^{\alpha_2} \mathbf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

 The wall crossing formula plus CWC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}_{(na,nb)}^{\mathrm{sst}} Q, \mathbb{Q})_{\mathrm{vir}})$$

• Integrality theorem (-,Meinhardt): $RHS = \mathbb{E}(\chi(\mathcal{BPS}_{a/b}))$ is manifestly positive.

Ben Davison

• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each *i*, and *n* arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)\mathbb{E}(t^{\alpha_1}\mathbf{x}_1) = \mathbb{E}(t^{\alpha_1}\mathbf{x}_1)\left(\prod_{\substack{\alpha \xrightarrow{a/b} \\ \infty \xrightarrow{a/b} 0}} \mathbb{E}(f(\mathbf{x}^{(a,b)},t))\right)\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

• The wall crossing formula plus CWC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi_{wt}(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}^{\mathrm{sst}}_{(na,nb)} Q, \mathbb{Q})_{\mathsf{vir}})$$

• Integrality theorem (-,Meinhardt): $RHS = \mathbb{E}(\chi(\mathcal{BPS}_{a/b}))$ is manifestly positive.

• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each *i*, and *n* arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)\mathbb{E}(t^{\alpha_1}\mathbf{x}_1) = \mathbb{E}(t^{\alpha_1}\mathbf{x}_1)\left(\prod_{\substack{\alpha \xrightarrow{a/b} \\ \infty \xrightarrow{a/b} 0}} \mathbb{E}(f(\mathbf{x}^{(a,b)},t))\right)\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

• The wall crossing formula plus CWC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi_t(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}_{(na,nb)}^{\mathrm{sst}} Q, \mathbb{Q})_{\mathsf{vir}})$$

 Integrality theorem (-,Meinhardt): RHS = E(\chi(\mathcal{BPS}_{a/b})) is manifestly positive.

• Let Q be the quiver with vertices $\{1, 2\}$, $1 + \alpha_i$ loops at each *i*, and *n* arrows from 1 to 2. In general, the problem of what goes on the walls comes down to factorizing

$$\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)\mathbb{E}(t^{\alpha_1}\mathbf{x}_1) = \mathbb{E}(t^{\alpha_1}\mathbf{x}_1)\left(\prod_{\substack{\alpha \xrightarrow{a/b} \\ \infty \xrightarrow{a/b} 0}} \mathbb{E}(f(\mathbf{x}^{(a,b)},t))\right)\mathbb{E}(t^{\alpha_2}\mathbf{x}_2)$$

in $\mathbb{Z}_{B,t}[\mathbb{N}^2]$.

• The wall crossing formula plus CWC plus earlier caclulations for zero/one loop quiver tell us that

$$\mathbb{E}(f(\mathbf{x}^{(a,b)},t)) = \chi_t(\bigoplus_{n \ge 0} \mathsf{H}(\mathsf{Rep}^{\mathrm{sst}}_{(na,nb)} Q, \mathbb{Q})_{\mathsf{vir}})$$

• Integrality theorem (-,Meinhardt): $RHS = \mathbb{E}(\chi(\mathcal{BPS}_{a/b}))$ is manifestly positive.

Ben Davison

Énoncé principal (avec T. Mandel)

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

Each ϑ_p can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus 0} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- ullet $\mathbb{Z}[t^{\pm 1}]$ -module generated by $artheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus \mathbf{0}} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]$ -module generated by $artheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus \mathbf{0}} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]\text{-module generated by }\vartheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus 0} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]\text{-module generated by }\vartheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus 0} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]\text{-module generated by }\vartheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus 0} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]$ -module generated by $\vartheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture

Theorem

There is a subset $\Theta \subset L$ and quantum theta functions $\{\vartheta_p\}_{p\in\Theta} \subset \mathbb{Z}_{\Lambda,t}[L]$ such that

• Each $\vartheta_{\mathbf{p}}$ can be written

$$\vartheta_{\mathbf{p}} = \mathbf{y}^{\mathbf{p}} + \sum_{\mathbf{v} \in L^+ \setminus 0} c_{\mathbf{p}, \mathbf{v}}(t) y^{\mathbf{p} + \mathbf{v}}$$

with $c_{\mathbf{p},\mathbf{v}}(t) \in \mathbb{N}[t^{\pm 1}]$

- $\mathbb{Z}[t^{\pm 1}]$ -module generated by $\vartheta_{\mathbf{p}}$ is strongly positive algebra and
- contains all of the cluster monomials.
- This is a universally positive atomic basis.

Conjecture