Kac-Moody theory via nil-DAHA Ivan Cherednik, ETH-ITS, UNC Chapel Hill ICR, September, 2019

ABSTRACT. Classically, we express symmetric polynomials In terms of Schur ones, but this can be not optimal, especially if you need to expand theta functions and the Kac-Moody characters. And of course we need some canonical bases in all polynomials (not only symmetric)! Presumably level-1 Demazure characters (generally non-symmetric), and relatively new level-1 thick ("upper") ones are just fine. They are the key in nil-Daha theory serving the limits t = 0 and at infinity; they provide the characters of local Weyl modules, as well as the so-called nonsymmetric global Weyl modules (E.Feigin, Kato, Macedonskiy). Furthermore, they generalize

classical q-Hermite polynomials and serve perfectly theory of Rogers-Ramanujan sums. We will connect the latter with a version of 2d TQFT with levels. Nil-DAHA is DAHA where $T_i(T_i + 1) = 0$; we will not use it in this particular talk.

We will begin with the refined Rogers-Ramanujan sums, where the matrix entries of the (operators of) multiplication by θ^{ℓ} in the basis $\{P_a\}$ are the key. These matrix elements are also some sums of the DAHA-Jones polynomials of chains of Hopf 2-links (Ch, Danilenko). When $t \to 0$, we arrive at **Rogers-Ramanujan-type presentations for certain basic string** functions of level ℓ (Ch, B.Feigin). Importantly, the level-rank duality for gl_n can be seen directly from these sums. Then we will briefly discuss the nonsymmetric Rogers-Ramanujan sums and Demazure slices (Ch, Kato).

REFINED "LITTLEWOOD-RICHARDSON"

Let $R = \{\alpha\} \in \mathbb{R}^n$ be a simple root system, (\cdot, \cdot) the corresponding inner product normalized by $(\alpha_{sht}, \alpha_{sht}) = 2$, $\{\alpha_i\}$ simple roots, $W = \langle s_i = s_{\alpha_i} \rangle = \langle s_\alpha \rangle$ the Weyl group, $\rho_k = (1/2) \sum_{\alpha > 0} k_\alpha \alpha$, $P = \bigoplus_i \mathbb{Z} \omega_i$ the weight lattice (for fundamental ω_i), $P_+ = \bigoplus \mathbb{Z}_+ \omega_i$, $Q = \sum_{\alpha} \mathbb{Z} \alpha, Q_+ = \sum_{\alpha > 0} \mathbb{Z}_+ \alpha$. We set $\mathbb{C}[X_a] = \mathbb{C}[X_{\omega_i}^{\pm 1}]$, where $X_{a+b} = X_a X_b$ for $a, b \in P$, $w(X_a) = X_{w(a)}$ for $w \in W$, $\mathbb{C}[X]^W =$ $\{F \in \mathbb{C}[X_a], w(F) = F\}$, $\langle F \rangle$ the constant term of Laurent series F, $X_a^{\iota} = X_{\iota(a)}$, where $\iota(a) = -w_0(a)$ for the longest element $w_0 \in W$.

Let $\theta_u(X) \stackrel{\text{def}}{=} \sum_{a \in P} u(a)q^{(a,a)/2}X_a, \theta = \theta_{triv}$ for characters $u: P/Q \to \mathbb{C}^*$, playing the role of the classical theta- characteristics (necessary in the level-rank duality for R of type A). Also: $\theta_{\mathbf{u}}^{(\ell)} = \theta_{u_1} \cdots \theta_{u_\ell}$ for $\mathbf{u} = \{u_1, \ldots, u_\ell\}, \ell \ge 0$. Given a system of orthogonal polynomials $\{P_a, a \in P_+\}$ linearly generating $\mathbb{C}[X]^W$, the problem is to calculate/interpret $\widetilde{P}_a \widetilde{P}_b = \sum_c \mathbb{C}_{ab}^{c\mathbf{u}} \widetilde{P}_c$ for $\widetilde{P}_a \stackrel{\text{def}}{=} P_a \theta_{\mathbf{u}}^{(\ell)}, a, b \in P_+$.

TOPOLOGICAL VERTEX ALGEBRAICALLY

Assuming $\langle P_a P_b^{\iota} \mu \rangle = \delta_{ab} C_a$ for a measure μ (a Laurent series), $\mathbb{C}_{ab}^{c\mathbf{u}} = \langle P_a P_b P_c^{\iota} \theta_{\mathbf{u}}^{(\ell)} \mu \rangle / C_c$. When $\ell = 0$, this is essentially the setting of $2d \ TQFT$ (\simeq commutative finite-dimensional Frobenius algebras), though ∞ -dimensional and with ι . The "associativity" of \mathbb{C}_{ab}^c is in most theories related to that for proper bordisms (classically, pairs of pants); it is granted for any (Laurent series) θ , but only theories with sufficiently simple 2-point functions \mathbb{C}_{0b}^{cu} are expected interesting (they are δ_{bc} for $\ell = 0$ as $P_0 = 1$). This is what DAHA and Macdonald polynomials provide (at least) for products of θ -functions.

Quite a few theorems/conjectures connect \mathbb{C}_{ab}^c for proper orthogonal polynomials (mostly Macdonald-type ones) with open Gromov-Witten invariants counting holomorphic maps from bordered Riemann surfaces to "reasonable" CY 3-folds with boundary in 3 specific Lagrangian submanifolds (like \mathbb{C}^3 , various conifolds, toric CY).

TWO-POINT FUNCTIONS

Let c_+ be such that $c_+ \in W(c) \cap P_+$. Given $b \in P_+$, let $b \neq c_+ \in b - Q_+$, $P_b - \sum_{a \in W(b)} X_a \in \bigoplus_c \mathbb{C} X_c, \langle P_b X_{c^{\iota}} \mu(X;q,t) \rangle = 0$ for such c, where $\mu(X;q,t) \stackrel{\text{def}}{=} \prod_{\alpha \in R_+} \prod_{j=0}^{\infty} \frac{(1 - X_{\alpha} q_{\alpha}^{j})(1 - X_{\alpha}^{-1} q_{\alpha}^{j+1})}{(1 - X_{\alpha} t_{\alpha} q_{\alpha}^{j})(1 - X_{\alpha}^{-1} t_{\alpha} q_{\alpha}^{j+1})}, \text{ considered}$ a Laurent series of X_b (expanded in terms of positive powers of q), $q_{\alpha} = q^{\nu_{\alpha}}, \nu_{\alpha} = \frac{(\alpha, \alpha)}{2}, t_{\alpha} = t_{\nu_{\alpha}}$; the coefficients of P_b belong to the field $\mathbb{Q}(q, t_{\nu})$. Setting $t_{\alpha} = q_{\alpha}^{k_{\alpha}}, k_{\alpha} = k_{\nu_{\alpha}}, X_{a}(q^{b}) = q^{(a,b)},$ $P_{b}(q^{\rho_{k}}) = q^{-(\rho_{k},b)} \prod_{\alpha>0} \prod_{j=0}^{(\alpha^{\vee},b)-1} \left(\frac{1-q_{\alpha}^{j} t_{\alpha} X_{\alpha}(q^{\rho_{k}})}{1-q^{j} X_{\alpha}(q^{\rho_{k}})} \right), \langle P_{b} P_{c}^{\iota} \mu \rangle =$ $\left\langle \mu \right\rangle \delta_{bc} \prod_{\alpha>0} \prod_{j=0}^{(\alpha^{\vee},b)-1} \frac{(1-q_{\alpha}^{j+1}t_{\alpha}^{-1}X_{\alpha}(q^{\rho_k}))(1-q_{\alpha}^{j}t_{\alpha}X_{\alpha}(q^{\rho_k}))}{(1-q_{\alpha}^{j}X_{\alpha}(q^{\rho_k}))(1-q_{\alpha}^{j+1}X_{\alpha}(q^{\rho_k}))}.$ For any $b, c \in P_+$, $\mathbf{u} = (u_1, \ldots, u_\ell)$, and $\mathbb{C}_{ab}^{c\mathbf{u}}$ for $\theta_{\mathbf{u}}^{(\ell)}$ above: $\mathbb{C}_{0b}^{cu} \stackrel{\text{def}}{=} \frac{\langle P_b P_c^{\iota} \theta_u \, \mu \rangle}{\langle P_c P_c^{\iota} \mu \rangle} = \frac{q^{b^2/2 + c^2/2 + (b+c,\rho_k)}}{u(b-c) \langle P_c P_c^{\iota} \mu \rangle} P_b^{\iota}(q^{c+\rho_k}) P_c(q^{\rho_k}) \langle \theta \mu \rangle,$ $\mathbb{C}_{0b}^{cu} = \sum_{c_1, c_2, \dots, c_{\ell-1} \in P_+} \mathbb{C}_{0b}^{c_1 u_1} \mathbb{C}_{0c_1}^{c_2 u_2} \mathbb{C}_{0c_2}^{c_3 u_3} \cdots \mathbb{C}_{0c_{\ell-1}}^{cu_{\ell}}.$ (R-R)

DAHA VERTEX, HOPF LINKS

The series for $\mathbb{C}_{00}^{0\mathbf{u}}$ are refined Rogers-Ramanujan sums; they become modular 0-weight functions as $t \to 0$ [Ch, B. Feigin, 2013]. Similarly, for $\mathbf{b} = (b_i, 1 \le i \le m) \subset P_+ \ni c$ and $P_\mathbf{b} \stackrel{\text{def}}{=} \prod_i P_{b_i}, \mathbb{C}_{\mathbf{b}}^{cu} =$ $\frac{\langle P_\mathbf{b} P_c^\iota \theta_u \mu \rangle}{\langle P_c P_c^\iota \mu \rangle} = \frac{\langle P_\mathbf{b} P_{c^\iota} \theta \mu \rangle}{u(\Sigma_i b_i - c) \langle P_c P_c^\iota \mu \rangle} = \frac{\dot{\tau}_-^{-1} (P_\mathbf{b} P_{c^\iota}) (q^{\rho_k}) \langle \theta \mu \rangle}{u(\sum_i b_i - c) \langle P_c P_c^\iota \mu \rangle},$

where $\dot{\tau}_{-}(P_{b}) = q^{-(b,b)/2-(b,\rho_{k})}P_{b}$ for $b \in P_{+}$ define the action of the DAHA automorphism τ_{-} in the polynomial representation; $\dot{\tau}_{-}^{-1}(P_{b}P_{c^{\iota}})(q^{\rho_{k}})/P_{c}(q^{\rho_{k}})$ is the DAHA-Jones "polynomial" (for the root system R) from [Ch, Danilenko, 2015] for Hopf (m+1)-link with the pairwise linking numbers -1 for colors b and +1 between b and c (i.e. the orientation of the c-component is reversed). As above, the case of any ℓ can be reduced to $\ell = 1$, which gives Rogers-Ramanujan-type formulas for the key matrix entries of the operators of multiplication by $\theta_{\mathbf{u}}^{(\ell)}$ in the basis $\{P_{a}\}$, topologically related to chains of Hopf links.

DAHA VIA ELLIPTIC CONFIGURATION SPACE For $E = T^2$, we set $\mathcal{H} = \mathbb{C}\mathbf{B}_{ell}/\{T_i^2 + aT_i + b = 0\}$ for $\mathbf{B}_{ell} = \pi_1((E^N \setminus \{x_i = x_j\})/\mathbf{S}_N); \ T_i(1 \le i < N)$ are the usual "half-turns". \mathcal{H} can be generalized to any root systems, but then orbifold π_1 must be used. Here the action of the projective $PSL_2(\mathbb{Z})$ (= B_3 due to Steinberg) in \mathcal{H} is granted, which is far from obvious in other approaches: via $K_{T \times C^*}(G/B)$ and Harmonic Analysis. DAHA is a universal flat deformation of the Heisenberg-Weyl algebra extended by W. Its Fock representation is the polynomial representation. The eigenfunctions of "Y-operators" are *nonsymmetric* Macdonald polynomials. The symmetric polynomials are obtained upon the t-symmetrization. The limit $t \to 0$ results in nil-DAHA and generalized Hermite polynomials.

DAHA INVARIANTS OF HOPF CHAINS

Let us consider now the chains $\cup_j \mathbf{b}_j$ of Hopf links $(b_{i,j} \text{ are the colors of the corresponding unknots})$. Here $1 \leq j \leq p$ and $\mathbf{b}_j = \{b_{i,j}, 1 \leq i \leq m_j\}$ and the unknots $\{m_j, j\}$ and $\{1, j + 1\}$ are identified $(1 \leq j < p)$. We assume that pairwise linking numbers are -1 within any given component \mathbf{b}_j unless with $i = m_j$, when they are all +1; otherwise the linking numbers are zero. Any tree formed by such chains can be taken, but we will consider here only "paths". The DJ polynomials normalized at the "top" unknots $\{m_j, j\}$ are: $\frac{\langle P_{b_{1,1}} \cdots P_{b_{m_1-1,1}} P_{b_{m_1,1}}^i \theta \mu \rangle}{P_{b_{m_1,1}} (q^{\rho_k}) \langle \theta \mu \rangle} \cdots \frac{\langle P_{b_{1,p}} \cdots P_{b_{m_p-1,p}} P_{b_{m_p,p}}^i \theta \mu \rangle}{P_{b_{m_p,p}} (q^{\rho_k}) \langle \theta \mu \rangle}.$

They are defined as products of DAHA invariants of Hopf links (and products for direct sums); the comatibility is due [Ch,Danilenko,2015]. The corresponding general LR-coefficients $\mathbb{C}_{b_1,...,b_p}$ have the same numerators, but $P_b(q^{\rho_k}) \langle \theta \mu \rangle$ are replaced in \mathbb{C} by $\langle P_b P_b^{\iota} \mu \rangle$ in the denominators. There is a connection to [Aganagic,Klemm,Marino,Vafa, 2005].

ASSOCIATIVITY VIA TQFT

Following TQFT (the unoriented one due to Turaev-Tuner with ι), the relations between $\mathbb{C}_{\mathbf{b}}^{c\mathbf{u}}$ can be interpreted as follows. Let \mathscr{A} be a commutative algebra with 1 and a symmetric non-degenerate form $\langle f, g \rangle = \langle fg^{\iota}\mu_1 \rangle$ for $\epsilon : \mathscr{A} \ni f \mapsto \langle f\mu_1 \rangle, \ \mu_1^{\iota} = \mu_1, \ 1^{\iota} = 1, \ \epsilon(1) = 1.$ Define $\Delta : \mathscr{A} \to \mathscr{A} \widehat{\otimes} \mathscr{A}$ via $\langle \Delta(f), x \otimes y \rangle = \langle f, xy \rangle$. In the basis of orthogonal polynomials/functions $\{P_a \in \mathscr{A}\}$ under $P_0 = 1, \langle 1, 1 \rangle = 1$: $\Delta(P_a V) = \sum_{b,c} \frac{\langle P_a V, P_b P_c \rangle P_b \otimes P_c}{\langle P_b, P_b \rangle \langle P_c, P_c \rangle} \text{ for any } \iota\text{-invariant function } V.$ The invariant of S^2 is then $\langle V\mu_1 \rangle$. Taking $V = \theta_{\mathbf{u}}^{(\ell)}, P_a(a \in P_+)$ etc., as above, it is $\langle \theta_{\mathbf{u}}^{(\ell)} \mu \rangle / \langle \mu \rangle$. The corresponding invariant for the torus T^2 is $\sum_{b \in P_+} \frac{\langle \theta_{\mathbf{u}}^{(\ell)}, P_b P_b^{\iota} \rangle}{\langle P_b, P_b \rangle}$. For $A_1, \theta_{\mathbf{u}}^{(\ell)} = \theta$ as $t \to 0$, it is proportional to $1 + \sum_{m>1} \frac{1}{(1-q)\cdots(1-q^m)}$, which diverges as |q| < 1. One can use here some renormalization (and analytic continuation), roots of unity q, ... or proper V. There are no convergence problems though for $\theta_{11}^{(\ell)}$ ($\ell \ge 0$) if no "cycles" are allowed (the next page)!

TQFT WITH LEVELS Generators, relations and some amplitudes: $\vartheta^l = \sum l \bigotimes^a P_a, \ \vartheta^l P_a = l \bigotimes^a 1 + \dots, \ m \bigotimes^l \bigotimes^l = \frac{\langle \vartheta^{l+m} \mu \rangle}{\langle \mu \rangle},$ where $P_0 = 1$, $\lim_{l \to 0} \frac{\langle P_a P_b^{\mathsf{l}} P_c^{\mathsf{l}} \vartheta^l \mu \rangle}{\langle P_a P_a^{\mathsf{l}} \mu \rangle} = \frac{\langle P_a^{\mathsf{l}} P_b P_c \vartheta^l \mu \rangle}{\langle P_a P_a^{\mathsf{l}} \mu \rangle}$. Δ : $P_a \,\vartheta^l \to \sum_{\{b,c\}} \bigcup_{l=0}^{b=c} P_b \otimes P_c, \quad \bigcup_{l=0}^{b=c} = \frac{\langle P_a P_b^{\mathsf{L}} P_c^{\mathsf{L}} \vartheta^l \mu \rangle \langle \mu \rangle}{\langle P_b P_b^{\mathsf{L}} \mu \rangle \langle P_c P_c^{\mathsf{L}} \mu \rangle}.$

CONNECTION TO HOPF LINKS From pairs of pants to Hopf links:

So renormalized DJ/super-polynomials result in 2d TQFT!

NIL-THEORY: THE LIMIT $t \to 0$

The usual Rogers-Ramanujan sums occur as $t \rightarrow 0$ ($t_{\nu} \rightarrow 0$, to be exact). The μ -function and P-polynomials are well-defined at t=0; we put then $\bar{\mu}, \bar{P}_b, \bar{\mathbb{C}}^*_*$. Also, $\lim_{t\to 0} q^{(b,\rho_k)} P_b(q^{c+\rho_k}) = q^{(b,c)}$. One has at t=0: $\bar{\mathbb{C}}_{0b}^{cu} \stackrel{\text{def}}{=} \frac{\langle \bar{P}_b \bar{P}_c^\iota \theta_u \bar{\mu} \rangle}{\langle \bar{P}_c \bar{P}_c^\iota \bar{\mu} \rangle} = \frac{q^{(b-c)^2/2}}{u(b-c)\prod_{i=1}^n \prod_{j=1}^{(c,\alpha_i^\vee)} (1-q_i^j)},$ $\bar{\mathbb{C}}_{0b}^{c\mathbf{u}} = \sum_{c_1, c_2, \dots, c_{\ell-1} \in P_+} \bar{\mathbb{C}}_{0b}^{c_1 u_1} \bar{\mathbb{C}}_{0c_1}^{c_2 u_2} \bar{\mathbb{C}}_{0c_2}^{c_3 u_3} \cdots \bar{\mathbb{C}}_{0, c_{\ell-1}}^{cu_{\ell}} \quad (\mathbf{R-R})$ $= \sum_{c_1, c_2, \dots, c_{\ell-1}} \frac{q^{(c_0 - c_1)^2/2 + (c_1 - c_2)^2/2 + \dots + (c_{\ell-1} - c_{\ell})^2/2}}{\prod_{p=1}^{\ell} u_p(c_{p-1} - c_p) \prod_{i=1}^{n} \prod_{j=1}^{(c_p, \alpha_i^{\vee})} (1 - q_i^j)}, \text{ where }$ $c_i \in P_+, q_i = q_{\alpha_i}, \alpha_i^{\vee} = 2\alpha_i/(\alpha_i, \alpha_i), \text{ and we set } c_0 = b, c_\ell = c \in P_+.$

Here *q*-Hermite polynomials \overline{P}_b coincide with dominant Demazure level-one characters (*Sanders*, *Ion*). Upon the division by their norms, they coincide with the characters of some natural quotients of the upper level-one Demazure modules and those of global Weyl modules.

RELATION TO STRING FUNCTIONS

Let us discuss briefly the connections with string functions. Here $\widehat{\theta}_v(X) \stackrel{\text{def}}{=} \sum_{a \in v \perp O} q^{\frac{(a,a)}{2}} X_a$ for $v \in P/Q$ are more convenient. Then the corresponding $\langle \bar{P}_b \bar{P}_c^{\iota} \hat{\theta}_v \bar{\mu} \rangle / \langle \bar{P}_c \bar{P}_c^{\iota} \bar{\mu} \rangle$ for $c_0 = b, c_\ell = c$ are $\widehat{\mathbb{C}}_{b,c}^{\mathbf{v}} = \sum_{c_1, c_2, \dots, c_{\ell-1} \in P_+} \frac{\frac{q^{(c_0 - c_1)^2 / 2 + \dots + (c_{\ell-1} - c_{\ell})^2 / 2}}{\prod_{p=1}^{\ell} \prod_{i=1}^{n} \prod_{i=1}^{(c_p, \alpha_i^{\vee})} (1 - q_i^j)}, \text{ where } \mathbf{v} =$ $\{v_1, \ldots, v_\ell\} \subset P/Q$ and the summation is over $c_i - c_{i+1} \in v_i + Q$. They are zero unless $b-c+v_1+\ldots+v_\ell \in Q$. When b=0, they are modular weight-zero functions for minuscule c, w.r.t. some congruence subgroups of $SL(2,\mathbb{Z})$ and up to q^{\bullet} . Let $\eta = q^{\frac{1}{24}} \prod_{i=1}^{\infty} (1-q^i)$. First, $q^{-\frac{1}{4}} \widehat{\mathbb{C}}_{0,1}^{111} = \sum_{m=0}^{\infty} \frac{q^{2m^2}}{\prod_{j=1}^{m} (1-q^2j)} \prod_{j=1}^{\infty} (1+q^j)^2$ for A_1 and $\ell = 3$; the sum is the Rogers-Ramanujan "G" after $q^2 \mapsto q$. Upon $\frac{q}{n^2} \times$, $\widehat{\mathbb{C}}_{0,0}^{000}$, $\widehat{\mathbb{C}}_{0,0}^{110}$, $\widehat{\mathbb{C}}_{0,1}^{100}$, $\widehat{\mathbb{C}}_{0,1}^{111}$ coincide with the basic string functions for $\widehat{sl_3}$ of level 2: $C_0^{2\widehat{\omega}_0}, C_{\alpha_1+\alpha_2}^{2\widehat{\omega}_0}, C_{\omega_1}^{\widehat{\omega}_0+\widehat{\omega}_1}, C_{\omega_1+\alpha_2}^{\widehat{\omega}_0+\widehat{\omega}_1}$ [Georgiev, 1995].

LEVEL-RANK DUALITY

Here $\widehat{\lambda} = \lambda + \delta$ for $\lambda \in P_+$, $\omega_0 = 0$, and string functions for affine dominant Λ of level ℓ are the coefficients of the decomposition of the character of the integrable Kac-Moody module L_{Λ} in terms of the standard affine orbit sums ϑ_{ν}^{ℓ} ; namely, $\chi(L_{\Lambda}) = \sum_{\nu} C_{\nu}^{\Lambda} \vartheta_{\nu}^{\ell}$.

The calculations are quite involved here (based on parafermions). Thus we arrived at the level-rank duality (I.Frenkel and others) for certain string functions. Surprisingly, this duality is simple to observe in terms of the sums $\widehat{\mathbb{C}}$. The quadratic *q*-powers here are given in terms of the (inverse) Cartan matrix for the root system $R \otimes A_{\ell-1}$. So for $R = A_{n-1}$, a straightforward analysis shows that they satisfy $n \leftrightarrow \ell$. At the level of sets v: the ℓ -sets of the element from $P/Q = \mathbb{Z}_n$ for A_{n-1} are naturally identified with *n*-sets of the elements from $P/Q = \mathbb{Z}_{\ell}$ for $A_{\ell-1}$. Note that counting *classes* of integrable modules, you have essentially $\binom{n+\ell-1}{n-1}/n = \binom{n+\ell-1}{\ell-1}/\ell$, but the duality for the corresponding string functions is generally much more subtle.

NONSYMMETRIC THEORY

Let us briefly discuss [Ch, Kato]. The focus on the identification of the (recent) nonsymmetric global Weyl modules [E.Feigin, Kato, Macedonskiy, 2017)] with the Demazure slices of the upper Demazure filtration in the (basic) level-one module L. The upper Demazure modules are with respect to $\hat{\mathfrak{b}}_{-}$ in contrast to the Borel subalgebra $\widehat{\mathfrak{b}}_+$, resulting in the usual level-one Demazure modules $D_b, b \in P$. The characters of the latter coincide with non-symmetric q-Hermite polynomials $\bar{E}_b = E_b(t \to 0)$ (Sanderson, Ion), where E_b are nonsym*metric Macdonald polynomials* for $b \in P$. They are orthogonal for the same μ , but now form a basis in the whole $\mathbb{C}[X_b]$. The characters of Demazure slices are identified with $E_b^{\dagger} = E_b(t \to \infty)$, divided by their norms h_b^0 , which can be defined as the limits $t \to 0$ of the norms of E_b . The dag-polynomials are significantly more subtle than \bar{E}_b , though P_b^{\dagger} are closely related to \bar{P}_b (for $b \in P_+$). Let us relate the decomposition of $L^{\otimes \ell}$ via the Demazure slices to R-R sums.

DEMAZURE SLICES

The first part is entirely numerical (based on the DAHA theory). Let $\hat{\theta} \stackrel{\text{def}}{=} \theta \frac{\langle \bar{\mu} \rangle}{\langle \theta \bar{\mu} \rangle}$, $\bar{\mu} = \mu(t \to 0)$ (actually, $\langle \theta \bar{\mu} \rangle = 1$); then $\hat{\theta}$ can be identified with the graded character of the level-one (basic) integrable representation L of the twisted affinization $\hat{\mathfrak{g}}$ of the simple Lie algebra \mathfrak{g} corresponding to the root system R.

For $\ell \in \mathbb{N}, b \in P$ and $\mathbf{c} = \{c_i \in P, 1 \leq i \leq \ell\}, \quad \overline{E}_{b^{\ell}} \widehat{\theta}^{\ell} = \sum_{\mathbf{c}} C_{\mathbf{c}} \frac{q^{\left((b_{+}-(c_{1})_{+})^{2}+\ldots+((c_{\ell-1})_{+}-(c_{\ell})_{+})^{2}\right)/2}}{\prod_{i=1}^{\ell-1} h_{c_{i}}^{0}} \frac{E_{c_{\ell}}^{\dagger *}}{h_{c_{\ell}}^{0}}, \text{ where } C_{\mathbf{c}} \text{ is some}$

(non-trivial) power of q, $E_c^{\dagger *}$ is E_c^{\dagger} where $X_a \to X_a^{-1}$, $q \to q^{-1}$.

Its Kac-Moody interpretation is essentially as follows. For a level one usual Demazure module D_b associated to $b \in P$ and its dual D_b^{\vee} , the module $D_b^{\vee} \otimes L^{\otimes \ell}$ admits a filtration by the Demazure slices (as constituents). Its multiplicities are provided by the formula above. Actually any integrable modules have such decompositions (*Chari*,...).