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ABSTRACT. Classically, we express symmetric polynomi-
als In terms of Schur ones, but this can be not optimal, es-
pecially if you need to expand theta functions and the Kac-
Moody characters. And of course we need some canonical
bases in all polynomials (not only symmetric)! Presumably
level-1 Demazure characters (generally non-symmetric), and
relatively new level-1 thick (”upper”) ones are just fine. They
are the key in nil-Daha theory serving the limits ¢ = 0 and
at infinity; they provide the characters of local Weyl modules,
as well as the so-called nonsymmetric global Weyl modules
(E.Feigin, Kato, Macedonskiy). Furthermore, they generalize
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classical g-Hermite polynomials and serve perfectly theory of
Rogers-Ramanujan sums. We will connect the latter with a
version of 2d TQFT with levels. Nil-DAHA is DAHA where
T:(T; + 1) = 0; we will not use it in this particular talk.

We will begin with the refined Rogers-Ramanujan sums,
where the matrix entries of the (operators of) multiplication
by 6° in the basis {P,} are the key. These matrix elements
are also some sums of the DAHA-Jones polynomials of chains
of Hopf 2-links (Ch, Danilenko). When t — 0, we arrive at
Rogers-Ramanujan-type presentations for certain basic string
functions of level ¢ (Ch, B.Feigin). Importantly, the level-rank

duality for gl,, can be seen directly from these sums. Then
we will briefly discuss the nonsymmetric Rogers-Ramanujan
sums and Demazure slices (Ch, Kato).
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Let R = {a} € R" be a simple root system, (-, -) the correspond-
ing inner product normalized by (csnt, ashe) = 2, {a;} simple
roots, W =(s; =sa,) = (sa) the Weyl group, pr, =(1/2) > <o kaa,
P = ®;Zw; the weight lattice (for fundamental w;), P+ = ®Ztw;,
Q=> ,%0,Q1 =3 ~oZia. Weset C[X,] = (C[Xil], where
Xatp = XXy for a,b € Py w(Xa)=Xyy(q) for w e W, CIX|W =
{F € C[X,4],w(F)=F}, (F) the constant term of Laurent series F',
X = X,(a), Where 1(a) = —wq(a) for the longest element wo € W.

Let 0, (X) get > acP u(a)q(®»®/2X,, 0 = 04,5, for characters

u: P/Q — C*, playing the role of the classical theta- characteristics

(necessary in the level-rank duality for R of type A). Also: 91(16) =
Ouy - Ou, foru = {u1,...,up},£ > 0. Given a system of orthogonal

polynomials {P,,a € Py} linearly generating C[X]", the problem is

to calculate/interpret P, P, =) .. (Cc“P for P d—efP 91(15), a,be Py.
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Assuming (P, P} ) = §,,Cq for a measure 1 (a Laurent series),

Cev = (Pu Py Py 951@,@ /Cc. When £=0, this is essentially the setting
of 2d TQF'T (~ commutative finite-dimensional Frobenius algebras),
though oo-dimensional and with (. The ”associativity” of C¢, is in
most theories related to that for proper bordisms (classically, pairs
of pants); it is granted for any (Laurent series) 6, but only theories
with sufficiently simple 2-point functions Cg}' are expected interest-

ing (they are &p. for £ = 0 as Py = 1). This is what DAHA and
Macdonald polynomials provide (at least) for products of f-functions.

Quite a few theorems/conjectures connect C¢, for proper orthog-
onal polynomials (mostly Macdonald-type ones) with open Gromov-
Witten invariants counting holomorphic maps from bordered Rie-
mann surfaces to ’reasonable” CY 3-folds with boundary in 3 specific

Lagrangian submanifolds (like C3, various conifolds, toric CY).
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Let c4+ be such that c; €W (c)NP+. Given be Py, let b#c, €b—Q 4,
Pb—ZaEW(b)Xa €EDCXe, ( Py X pu(X;q,t))=0 for such ¢, where
Lo p) 9ef o (1-Xaql)(1-X5 "al ")
w(X;q,t) = HaeR+ | (—Xatad)(—Xa 't, D)
a Laurent series of X; (expanded in terms of positive powers of q),

Qoo = @7, Vg = (aéa),ta = t,,; the coefficients of P, belong to

the field Q(q,t,). Setting to = qga, ko = kv, Xa(qb) = q(a,b),
_—(pp.b (a,b)—=1 (1—=al ta Xa(a"k) L) —
Pla?t) ="+ Taso T2 ( 1—ql, Xa(qPk) ) PoPep) =
(@¥,p)—1 (1=alt'to ' Xa(aPk))(1—al taXa(a”k))
(1) b Tlaso T1520 (1—aL Xa(a?%) 1~k ' Xa(aPk))

, considered

For any b,c € Py, u = (u1,...,ug), and CS} for 9&6) above:
def (P P 0y p) _ qb°/2+c?/2+(bte.pp,)
Cob = “mhrn = utam Lo (@7 Pe(aP) (Op),

cu __ Ciul ~C2U2 ~C3u3z mCUy _
(C()b _201,02,...,02_16P+ <COb <COcl COCZ COC£_1 ’ (R R)
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The series for (Cgbl are refined Rogers-Ramanujan sums; they be-

come modular 0-weight functions as t — 0 [Ch,B.Feigin,2013]. Simi-

larly, for b= (b;,1<i<m)CP; >c and P, =[], P,,, Ceu=

(PoPt0up) (PoPefp) 77 (PoPer)(g”%)(0n)

(PePip)  u(Sibi— o) (PePip)  u(Ss,bi —c) (PoPip)
where 7_(P,) = g~ (:0)/2=(b:pk) Py for b € P, define the action
of the DAHA automorphism 7_ in the polynomial representation;
7+~ Y (PpP..)(gP*)/Pe(qP*) is the DAHA-Jones " polynomial” (for the
root system R) from [Ch, Danilenko,2015| for Hopf (m+1)-link with the
pairwise linking numbers —1 for colors b and 41 between b and c (i.e.
the orientation of the c-component is reversed). As above, the case
of any ¢ can be reduced to /=1, which gives Rogers-Ramanujan-type
formulas for the key matrix entries of the operators of multiplication

by (91(16) in the basis { P, }, topologically related to chains of Hopf links.
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For E = T?, we set #{ = CBey/{T? +aT;+b =0} for
By = m((E™ \ {z: = 2;})/Sn); T3(1 < i < N) are the
usual ”half-turns”. 74 can be generalized to any root sys-
tems, but then orbifold 7; must be used. Here the action
of the projective PSL2(Z) (= Bs due to Steinberg) in 7H is
granted, which is far from obvious in other approaches: via
Kryxc» (CT/\B) and Harmonic Analysis. DAHA is a univer-
sal flat deformation of the Heisenberg-Weyl algebra extended
by W. Its Fock representation is the polynomial representa-
tion. The eigenfunctions of ”Y-operators” are nonsymmetric
Macdonald polynomials. The symmetric polynomials are ob-
tained upon the t-symmetrization. The limit ¢ — O results in
nil-DAHA and generalized Hermite polynomials.
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Let us consider now the chains U;b; of Hopf links (b; ; are the
colors of the corresponding unknots). Here 1 < j < p and b; =
{bi;j,1 < i < m;} and the unknots {m,,j} and {1,5 + 1} are
identified (1 < j < p). We assume that pairwise linking numbers are
—1 within any given component b; unless with : = m;, when they
are all +1; otherwise the linking numbers are zero. Any tree formed
by such chains can be taken, but we will consider here only ”paths”.
The DJ polynomials normalized at the ”top” unknots {m,j} are:

L L
L (qPk) (Ou) Pbmpm(qpk) (Ou)

They are defined as products of DAHA invariants of Hopf links (and
products for direct sums); the comatibility is due [Ch,Danilenko,2015].
The corresponding general LR-coeflicients Cy, ,..bp have the same
numerators, but P, (q”*) (0p) are replaced in C by (P, P¢ ) in the
denominators. There is a connection to [Aganagic,Klemm,Marino,Vafa, 2005].
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Following TQF'T (the unoriented one due to Turaev-Tuner with
L), the relations between C{" can be interpreted as follows. Let </ be
a commutative algebra with 1 and a symmetric non-degenerate form
(fr9) = (fg'm) for € : &S f = (fur), ] =p1, 1" =1,€(1) = 1.
Define A : &/ — @ ®4/ via (A(f),z ® y) = (f, zy). In the basis of
orthogonal polynomials/functions { P, € </} under Pp=1, (1,1)=1:

APV) =3, <13<C;3‘;’1;’;§D<C}PI}D®>P < for any (-invariant function V.

The invariant of S2 is then (Vu1). Taking V =0, P.(a € P,)
etc., as above, it is (01(16) 1) /{u). The corresponding invariant for

(080 P, PL)
(Pp,Py)

. For A1,009 =0 as t — 0, it is

-1(1—qm y which diverges as |q| < 1.

the torus T2 is ZbeP+

proportional to 1+

One can use here some renormalization (and analytic continuation),
roots of unity q, ... or proper V. There are no convergence problems

though for 9516) (£ > 0) if no ”cycles” are allowed (the next page)!
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Generators, relations and some amplitudeS'

------

a
a=y18p, op, = 1@“

a
where Py = 1, % _ <PgPEPLOY> <Py PpPAY>
0 - - - .

<PaPau> <P,Pju>

Q ? <Py Py PO ><p>
P 8 _>Z{bc} Vpb ®PC5 / o <pbPl; W><P; Ptp>
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From pairs of pants to Hopf links:

a
@ DAHA-Jones
I ormalization +1 invariants of

— ~ Z ° Hopf links
A teyzy 1/

RN

+]
1 2
c
Il € |l
<P,PpP;9*p> <PSPL9 p><P} Pe I><PLP), P,OU><PSPy 9 1>
<PgPy pu> Py (tP)P;(tP)Px(tP)Pq(tP) <Ou>*

So renormalized DJ/super-polynomials result in 2d TQFT!

11
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The usual Rogers-Ramanujan sums occur as t —0 (¢, — 0, to be
exact). The yu-function and P-polynomials are well-defined at ¢ = 0;
we put then [, Py, C*. Also, lim;_,q ¢(®Pk) P, (¢¢1Pk) =q(*:¢), One

~cu def (P, BP0, i (b—c)?/2
has at t=0: C(C)"I‘j:e < b c_“M: d 7 ,
<PCPL;_L> b—c n (C’a’i ) 1— J
c uwb—) 17, T2, " (1—q;)
~eu NC1U] NC2U2 FNC3UZ | NCUp )
COb _ch,cg,...,Cg_l cePy COb COcl COCQ ) CO,Cg_l (R R)

q(co—01)2/2+(01 —e9)2 /24 4 (cp_1—cg)? /2

(cp,aY) :
Hf)zl up(cp—l_cp)nznzl Hj:pl ¢ (1—qg)

¢i € Py,qi=qa;,a; =2a;/(ay, a;), and we set co=b,cp=c € Py.

, Where

_ZC]_,CQ,...,C£_1

Here ¢g-Hermite polynomials Py coincide with dominant Demazure
level-one characters (Sanders, Ion). Upon the division by their norms,
they coincide with the characters of some natural quotients of the up-

per level-one Demazure modules and those of global Weyl modules.
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Let us discuss briefly the connections with string functions. Here
~ (a,a)
0 (X) cef > acviqd 2 Xa for v € P/Q are more convenient.
Then the corresponding (P, Pty i) /(P. Pt i) for co =b, c, =c are
q(co—cl)2/2—|-...—|—(c£_1—c£)2/2

/\V L B

Cb,c_zcl,CQ,...,c£_1€P+ P N (cp,oz;/) P ,WhereV—
szl H@':l Hj:l (1_%)

{vi,...,vy} C P/Q and the summation is over ¢; — ¢;11 € v; + Q.

They are zero unless b—ctvi1+. . vy € Q. When b = 0, they are mod-
ular weight-zero functions for minuscule c, w.r.t. some congruence
subgroups of SL(2,Z) and up to ¢°®. Let n = qﬁ [152,(1 —q%).
2
First, q_%@é}ll =>">_, HT:qj(wlb—qzj) Hj:1(1+qj)2 for A; and
¢ = 3; the sum is the Rogers-Ramanujan "G" after ¢g> — ¢. Upon
%x, @8?8, @(1)’1(?, @é?lo, @(1)’111 coincide with the basic string functions

o . 200 200 Wotw1 woHo1 .
for si3 of level 2: CO , Cal-l-oéz , Cwl , Cw1-|-0t2 [Georgzev,1995].




14 Kac-Moody case

Here \ = ) + o6 for A € Py, wg = 0, and string functions for
affine dominant A of level ¢ are the coefficients of the decomposition
of the character of the integrable Kac-Moody module L 5 in terms of
the standard affine orbit sums 9¢,; namely, x(Lp) = >, CH9%.

The calculations are quite involved here (based on parafermions).
Thus we arrived at the level-rank duality (1. Frenkel and others) for cer-
tain string functions. Surprisingly, this duality is simple to observe in
terms of the sums C. The quadratic g-powers here are given in terms
of the (inverse) Cartan matrix for the root system R ® Ay 1. So for
R = A,,_1, a straightforward analysis shows that they satisfy n <> £.
At the level of sets v: the /-sets of the element from P/Q =
for A,,_1 are naturally identified with n-sets of the elements from
P/Q = Zy for Ay_1. Note that counting classes of integrable mod-

ules, you have essentially ("’M 1) /n = (""M 1) /£, but the duality
for the corresponding string functions is generally much more subtle.
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Let us briefly discuss [Ch, Kato|]. The focus on the identification
of the (recent) nonsymmetric global Weyl modules [E.Feigin, Kato,
Macedonskiy, 2017)] with the Demazure slices of the upper Demazure
filtration in the (basic) level-one module .. The upper Demazure
modules are with respect to b_ in contrast to the Borel subalgebra
/b\+, resulting in the usual level-one Demazure modules D;, b € P.
The characters of the latter coincide with non-symmetric g-Hermite
polynomials Ej, = Ey(t — 0) (Sanderson, Ion), where Ej, are nonsym-
metric Macdonald polynomials for b € P. They are orthogonal for
the same p, but now form a basis in the whole C[X}]. The characters
of Demazure slices are identified with Eg = FEp(t — o0), divided
by their norms hg, which can be defined as the limits ¢ — O of the
norms of F,. The dag-polynomials are significantly more subtle than
Ey, though PJ are closely related to P, (for b € Py). Let us relate
the decomposition of L®¢ via the Demazure slices to R-R sums.
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The first part is entirely numerical (based on the DAHA theory).
Let § = 9%, g = pu(t — 0) (actually, (du) = 1); then 0 can be
identified with the graded character of the level-one (basic) integrable
representation I of the twisted affinization g of the simple Lie algebra
g corresponding to the root system R.

For / € NNb € Pandc = {¢; € P, 1 < i </}, Ebaé\e =

(by—(c1) )%+ (g1 g —(ep))?)/ 2 Bl .
> e Ce ol 7T 70 ) o+, where C is some
i=1 ce

Cq

(non-trivial) power of g, EZ* is EZ where X, — X5t g — g 1.

Its Kac-Moody interpretation is essentially as follows. For a level
one usual Demazure module D} associated to b € P and its dual Dl\)/ ,
the module D) ® L®* admits a filtration by the Demazure slices (as
constituents). Its multiplicities are provided by the formula above.
Actually any integrable modules have such decompositions (Chari,. . .).



