Painlevé equations from Nakajima-Yoshioka blowup relations

Mikhail Bershtein
Landau Institute \& Skoltech
Moscow, Russia

based on ArXiv 1811.04050 with Anton Shchechkin

05 September 2019

Painlevé equation

- The Painlevé equations are second order differential equations without movable critical points except poles. They are equations of the isomonodromic deformation of linear differential equation.
- Parameterless Painlevé equations (other names: Painlevé III $D_{8}^{(1)}$ equation or Painlevé III_{3} equation)

$$
w^{\prime \prime}=\frac{w^{\prime 2}}{w}-\frac{w^{\prime}}{z}+\frac{2 w^{2}}{z^{2}}-\frac{2}{z}
$$

Painlevé equation

- The Painlevé equations are second order differential equations without movable critical points except poles. They are equations of the isomonodromic deformation of linear differential equation.
- Parameterless Painlevé equations (other names: Painlevé III $D_{8}^{(1)}$ equation or Painlevé III_{3} equation)

$$
w^{\prime \prime}=\frac{w^{\prime 2}}{w}-\frac{w^{\prime}}{z}+\frac{2 w^{2}}{z^{2}}-\frac{2}{z}
$$

- Can be rewritten as a system of Toda-like bilinear equations

$$
\left\{\begin{array}{l}
1 / 2 D_{[\log z]}^{2}\left(\tau_{0}(z), \tau_{0}(z)\right)=z^{1 / 2} \tau_{1}(z) \tau_{1}(z), \\
1 / 2 D_{[\log z]}^{2}\left(\tau_{1}(z), \tau_{1}(z)\right)=z^{1 / 2} \tau_{0}(z) \tau_{0}(z),
\end{array}\right.
$$

where $D_{[\log z]}^{2}$ denotes second Hirota operator with respect to $\log z$.
The function $w(z)$ is equal to $-z^{1 / 2} \tau_{0}(z)^{2} / \tau_{1}(z)^{2}$.

Formulas for tau functions

Painlevé tau function

$$
\begin{equation*}
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z) \tag{1}
\end{equation*}
$$

Due to AGT relation there are two ways to define \mathcal{Z}

- Algebraically, \mathcal{Z} is a Virasoro conformal block. In Liouville parameterization $c=1+6\left(b^{-1}+b\right)^{2}$, the condition $c=1$ corresponds to $b=\sqrt{-1}$.
- Geometrically, \mathcal{Z} is a generating function of equiaveriant volumes of ADHM moduli space of instantons.
In physical language $\mathcal{Z}_{c=1}-4 \mathrm{~d}$ Nekrasov partition \mathcal{Z} function $S U(2)$ with $\epsilon_{1}=\epsilon, \epsilon_{2}=-\epsilon$.
Incomplete list of people: [Gamayun, Iorgov, Lisovyy, Teschner, Shchechkin, Gavrylenko, Marshakov, Its, Bonelli, Grassi, Tanzini, Nagoya, Tykhyy, Maruyoshi, Sciarappa, Mironov, Morozov, Iwaki, Del Monte,...]

Another central charges

Question

What is the analog of the formula (1) with right side given as a series of Virasoro conformal blocks with $c \neq 1$?

Another central charges

Question

What is the analog of the formula (1) with right side given as a series of Virasoro conformal blocks with $c \neq 1$?

There are several reasons to believe the existence of such analogue for central charges of (logarithmic extension of) minimal models $\mathcal{M}(1, n)$

$$
\begin{equation*}
c=1-6 \frac{(n-1)^{2}}{n}, n \in \mathbb{Z} \backslash\{0\} \tag{2}
\end{equation*}
$$

Equvalently $b^{2}=\sqrt{-n}$, or $\epsilon_{1}=-\epsilon, \epsilon_{2}=n \epsilon$.

- Operator valued monodromies commute [lorgov, Lisovyy, Teschner 2014].
- Bilinear relations on conformal blocks [M.B., Shchechkin 2014]
- Action of $\operatorname{SL}(2, \mathbb{C})$ on the vertex algebra [Feigin 2017]

Today: $c=-2$ tau functions

$$
\begin{equation*}
\tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}(\sigma+n \mid z) \tag{3}
\end{equation*}
$$

Blowup relations

$$
\begin{align*}
\tau(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z), \tag{4}\\
\tau^{ \pm}(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) . \tag{5}
\end{align*}
$$

Blowup relations

$$
\begin{align*}
\tau(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{4}\\
\tau^{ \pm}(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) \tag{5}
\end{align*}
$$

- [Nakajima Yoshioka], [Göttshe, Nakajima, Yoshioka], [MB, Feigin, Litvinov],

$$
\beta_{D} \mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{m \in \mathbb{Z}+j / 2} \mathrm{D}\left(\mathcal{Z}\left(a+m \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right), \mathcal{Z}\left(a+m \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right)\right)
$$

D is some differential operator, $j=0,1, \beta_{D}$ is some function (may be zero).

Blowup relations

$$
\begin{align*}
\tau(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{4}\\
\tau^{ \pm}(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) \tag{5}
\end{align*}
$$

- [Nakajima Yoshioka], [Göttshe, Nakajima, Yoshioka], [MB, Feigin, Litvinov],

$$
\beta_{D} \mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{m \in \mathbb{Z}+j / 2} \mathrm{D}\left(\mathcal{Z}\left(a+m \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right), \mathcal{Z}\left(a+m \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right)\right)
$$

D is some differential operator, $j=0,1, \beta_{D}$ is some function (may be zero).

- Set $\epsilon_{1}=\epsilon, \epsilon_{2}=-\epsilon$, and take the sum of these relations with coefficients s^{n}

$$
\begin{equation*}
\beta_{D} \tau(z)=\mathrm{D}\left(\tau^{+}(z), \tau^{-}(z)\right) \tag{6}
\end{equation*}
$$

Excluding $\tau(z)$ one gets system of bilinear relations on $\tau^{+}(z), \tau^{-}(z)$.

- This system can be used to prove the (Painlevé) bilinear relations on $\tau(z)$.

Plan of the talk

(1) Introduction
(2) The function \mathcal{Z}
(3) Blowup relations
(4) Painlevé equations
(5) Discussion

The function \mathcal{Z}

There are two ways to define:

- Geometric, through ADHM moduli space of instantons.
- Algebraically, through Virasoro algebra (or more generally W-algebras).

Geometric definition: $\mathcal{M}(r, N)$

- Denote by $\mathcal{M}(r, N)$ the moduli space of framed torsion free sheaves on $\mathbb{C P}^{2}$ of rank $r, c_{1}=0, c_{2}=N$.
- Description as a quver variety (ADHM description)

$$
\mathcal{M}(r, N) \cong\left\{\left(\begin{array}{r}
B_{1}, \\
B_{2}, \\
I, \\
J
\end{array}\right) \left\lvert\, \begin{array}{ll}
(\mathrm{i}) & {\left[B_{1}, B_{2}\right]+I J=0} \\
\text { there are } N \text { linear independent vec- } \\
\text { (iors obtained by the action of algebra } \\
\text { genareted by } B_{1} \text { and } B_{2} \text { on } I_{1}, I_{2}, \ldots, I_{r}
\end{array}\right.\right\} / \mathrm{GL}_{\mathrm{N}},
$$

- B_{j}, I and J are $N \times N, N \times r$ and $r \times N$ matrices.
- I_{1}, \ldots, I_{r} denote the columns of the matrix I.

for $g \in \mathrm{GL}_{N}$.

Geometric definition: \mathcal{Z}

- $\mathcal{M}(r, N)$ is smooth manifold of complex dimension $2 r N$.
- There is a natural action of the $r+2$ dimensional torus T on the $\mathcal{M}(r, N):\left(\mathbb{C}^{*}\right)^{2}$ acts on the base $\mathbb{C P}^{2}$ and $\left(\mathbb{C}^{*}\right)^{r}$ acts on the framing at the infinity.

$$
B_{1} \mapsto t_{1} B_{1} ; \quad B_{2} \mapsto t_{2} B_{2} ; \quad I \mapsto I t ; \quad J \mapsto t_{1} t_{2} t^{-1} J,
$$

Here $\left(t_{1}, t_{2}, t\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*} \times\left(\mathbb{C}^{*}\right)^{r}$. Denote by
 $\epsilon_{1}, \epsilon_{2}, a_{1}, \ldots, a_{r}$ coordinates on Lie T.

Geometric definition: \mathcal{Z}

- $\mathcal{M}(r, N)$ is smooth manifold of complex dimension $2 r N$.
- There is a natural action of the $r+2$ dimensional torus T on the $\mathcal{M}(r, N):\left(\mathbb{C}^{*}\right)^{2}$ acts on the base $\mathbb{C P}^{2}$ and $\left(\mathbb{C}^{*}\right)^{r}$ acts on the framing at the infinity.

$$
B_{1} \mapsto t_{1} B_{1} ; \quad B_{2} \mapsto t_{2} B_{2} ; \quad I \mapsto I t ; \quad J \mapsto t_{1} t_{2} t^{-1} J,
$$

Here $\left(t_{1}, t_{2}, t\right) \in \mathbb{C}^{*} \times \mathbb{C}^{*} \times\left(\mathbb{C}^{*}\right)^{r}$. Denote by
 $\epsilon_{1}, \epsilon_{2}, a_{1}, \ldots, a_{r}$ coordinates on Lie T.

Definition

$$
\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\sum_{N=0}^{\infty} q^{N} \int_{\mathcal{M}(r, N)}[1],
$$

These equivariant integrals can be computed by localization method and equal to the sum of contributions of torus fixed points (which are labeled by r-tuple of Young diagrams $\lambda_{1} \ldots, \lambda_{r}$).

Algebraic definition: Virasoro algebra

- By Vir we denote the Virasoro Lie algebra with the generators $C, L_{n}, n \in \mathbb{Z}$ subject of relation:

$$
\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{n^{3}-n}{12} C, \quad\left[L_{n}, C\right]=0
$$

- Denote by $\mathrm{V}_{\Delta, c}$ the Verma module of the Virasoro algebra generated by the highest weight vector v :

$$
L_{n} v=0, \text { for } n>0 \quad L_{0} v=\Delta v, C v=c v .
$$

- It is convenient to parametrize Δ and c as

$$
\Delta=\Delta(P, b)=\frac{\left(b^{-1}+b\right)^{2}}{4}-P^{2}, \quad c=1+6\left(b^{-1}+b\right)^{2}
$$

Algebraic definition: function \mathcal{Z}

- The Whittaker vector $W(z)=\sum_{N=0} w_{N} z^{N}$, defined by the equations:

$$
L_{0} w_{N}=(\Delta+N) w_{N}, \quad L_{1} w_{N}=w_{N-1}, \quad L_{k} w_{N}=0, \text { for } k>1 .
$$

These equations can be simply rewritten as

$$
L_{1} W(z)=z W(z), \quad L_{k} W(z)=0, \text { for } k>1
$$

- One can use normalization of W such that $\left\langle w_{0}, w_{0}\right\rangle=1$. Therefore

$$
\begin{gathered}
w_{0}=v, \quad w_{1}=\frac{1}{2 \Delta} L_{-1} v \\
w_{2}=\frac{c+8 \Delta}{4 \Delta\left(c-10 \Delta+2 c \Delta+16 \Delta^{2}\right)} L_{-1}^{2} v-\frac{3}{c-10 \Delta+2 c \Delta+16 \Delta^{2}} L_{-2} v
\end{gathered}
$$

- The Whittaker vector corresponding to $\mathrm{V}_{\mathrm{P}, b}$ will be denoted by $\mathrm{W}_{\mathrm{P}, b}(z)$.
- The Whittaker limit of the 4 point conformal block defined by:

$$
\begin{gathered}
\mathcal{Z}(P, b ; z)=\left\langle\mathrm{W}_{\mathrm{P}, b}(1), \mathrm{W}_{\mathrm{P}, b}(z)\right\rangle=\sum_{N=0}^{\infty}\left\langle w_{\mathrm{P}, b, N}, w_{\mathrm{P}, b, N}\right\rangle z^{N} \\
\mathcal{Z}(P, b ; z)=1+\frac{2}{\left(b+b^{-1}\right)^{2}-4 P^{2}} z+\ldots
\end{gathered}
$$

Plan of the talk

(1) Introduction
(2) The function \mathcal{Z}
(3) Blowup relations
(4) Painlevé equations
(5) Discussion

Blow up equations

- Denote by $\widehat{\mathbb{C P}^{2}}$ blowup in origin.
- Denote by $\widehat{\mathcal{M}}(r, k, N)$ moduli space framed torsion free sheaves on $\widehat{\mathbb{C P}^{2}}, r$ is a rank, k is a first Chern class, N is a second Chern class.

$$
\widehat{\mathcal{Z}}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\sum_{N=0}^{\infty} q^{N} \int_{\widehat{\mathcal{M}}(r, 0, N)}[1],
$$

- There is a map $\widehat{\pi}: \widehat{\mathcal{M}}(r, 0, N) \rightarrow \mathcal{M}_{0}(r, N)$ [Nakajima, Yoshioka]

$$
\widehat{\mathcal{Z}}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)
$$

Blow up equations

- Denote by $\widehat{\mathbb{C P}^{2}}$ blowup in origin.
- Denote by $\widehat{\mathcal{M}}(r, k, N)$ moduli space framed torsion free sheaves on $\widehat{\mathbb{P P}^{2}}, r$ is a rank, k is a first Chern class, N is a second Chern class.

$$
\widehat{\mathcal{Z}}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\sum_{N=0}^{\infty} q^{N} \int_{\widehat{\mathcal{M}}(r, 0, N)}[1],
$$

- There is a map $\widehat{\pi}: \widehat{\mathcal{M}}(r, 0, N) \rightarrow \mathcal{M}_{0}(r, N)$ [Nakajima, Yoshioka]

$$
\widehat{\mathcal{Z}}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)=\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, \vec{a} ; q\right)
$$

- There are two torus invariant points on the $\widehat{\mathbb{C}^{2}}$.
- The torus fixed points on the $\widehat{\mathcal{M}}(r, 0, N)$ are labelled by $\vec{\lambda}^{1}, \vec{\lambda}^{2}, k$

$$
\widehat{\mathcal{Z}}\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot \mathcal{Z}\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right)
$$

Blowup equations: representations

$$
\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot \mathcal{Z}\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right)
$$

- In terms of representation theory on the left side we have Vir_{b}, where $b^{2}=\epsilon_{1} / \epsilon_{2}$. On the right side we have a sum of $\operatorname{Vir}_{b_{1}}$ and $\operatorname{Vir}_{b_{2}}$, where $b_{1}=b / \sqrt{1-b^{2}}, b_{2}=\sqrt{b^{2}-1}$.

Blowup equations: representations

$$
\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot \mathcal{Z}\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right)
$$

- In terms of representation theory on the left side we have Vir_{b}, where $b^{2}=\epsilon_{1} / \epsilon_{2}$. On the right side we have a sum of $\operatorname{Vir}_{b_{1}}$ and $\mathrm{Vir}_{b_{2}}$, where $b_{1}=b / \sqrt{1-b^{2}}, b_{2}=\sqrt{b^{2}-1}$.

Theorem (M.B., Feigin, Litvinov)

There is a isomorphism of chiral algebas the (extended) product of Vir $_{b_{1}} \otimes$ Vir $_{b_{2}}$ and a product $\operatorname{Vir}_{b} \otimes \mathcal{U}$

Here \mathcal{U} is a special chiral algebra of central charge -5 . As a vertex algebra U is isomorphic to a lattice algebra $V_{\sqrt{2} \mathbb{Z}}$ or $\widehat{\mathfrak{s l}(2)_{1}}$.

Blowup equations: representations

$$
\mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}, a ; q\right)=\sum_{k \in \mathbb{Z}} \mathcal{Z}\left(\epsilon_{1}, \epsilon_{2}-\epsilon_{1}, a+k \epsilon_{1} ; q\right) \cdot \mathcal{Z}\left(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}, a+k \epsilon_{2} ; q\right)
$$

- In terms of representation theory on the left side we have Vir_{b}, where $b^{2}=\epsilon_{1} / \epsilon_{2}$. On the right side we have a sum of $\operatorname{Vir}_{b_{1}}$ and $\mathrm{Vir}_{b_{2}}$, where $b_{1}=b / \sqrt{1-b^{2}}, b_{2}=\sqrt{b^{2}-1}$.

Theorem (M.B., Feigin, Litvinov)

There is a isomorphism of chiral algebas the (extended) product of Vir $_{b_{1}} \otimes$ Vir $_{b_{2}}$ and a product Vir $_{b} \otimes \mathcal{U}$

Here \mathcal{U} is a special chiral algebra of central charge -5 . As a vertex algebra U is isomorphic to a lattice algebra $V_{\sqrt{2 \mathbb{Z}}}$ or $\widehat{\mathfrak{s l}(2)}{ }_{1}$.

- If $b^{2}=-2 / 3$ then \mathcal{U} is isomorphic to (extended) product of minimal models $2 / 5$ and $3 / 5$. Therefore

$$
\begin{align*}
& \chi\left(\mathcal{L}_{0,1}\right)=q^{-1 / 4}\left(\chi_{(1,2)}^{2 / 5} \cdot \chi_{(2,1)}^{5 / 3}+\chi_{(1,4)}^{2 / 5} \cdot \chi_{(4,1)}^{5 / 3}\right) \\
& \chi\left(\mathcal{L}_{1,1}\right)=q^{-1 / 4}\left(\chi_{(1,1)}^{2 / 5} \cdot \chi_{(1,1)}^{5 / 3}+\chi_{(1,3)}^{2 / 5} \cdot \chi_{(3,1)}^{5 / 3}\right) \tag{8}
\end{align*}
$$

Blowup equations: combinatorics

$$
\chi\left(\mathcal{L}_{0,1}\right)=q^{-1 / 4}\left(\chi_{(1,2)}^{2 / 5} \cdot \chi_{(2,1)}^{5 / 3}+\chi_{(1,4)}^{2 / 5} \cdot \chi_{(4,1)}^{5 / 3}\right)
$$

- Due to Weyl-Kac formula

$$
\chi\left(\mathcal{L}_{0,1}\right)=\sum_{k \in \mathbb{Z}} \frac{q^{k^{2}}}{(q)_{\infty}}=1+3 q+4 q^{2}+\cdots .
$$

- Fermionic formulas for minimal models [Feigin Frenkel], [Feigin Foda Welsh]

$$
\begin{gathered}
\chi_{1,1}^{2 / 5}=q^{\Delta\left(P_{1,1}, b_{2 / 5}\right)} \sum_{n=0}^{\infty} \frac{q^{n^{2}+n}}{(q)_{n}}, \quad \chi_{1,2}^{2 / 5}=q^{\Delta\left(P_{1,2}, b_{2 / 5}\right)} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q)_{n}}, \\
\chi_{2,1}^{5 / 3}=q^{\Delta\left(P_{1,2}, b_{3 / 5}\right)} \sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q)_{2 n}}, \quad \chi_{4,1}^{5 / 3}=q^{\Delta\left(P_{1,4}, b_{3 / 5}\right)} \sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}}{(q)_{2 n+1}} .
\end{gathered}
$$

here $(q)_{n}=\prod_{k=1}^{n}\left(1-q^{k}\right)$

Blowup equations: combinatorics

Definition

We call the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ a (I, k) configuration if
(1) $f(m)+f(m+1) \leq k$
(2) $f(2 m+1)=k-I, f(2 m)=I$, for $m \ll 0$
(3) $f(m)=0$, for $m \gg 0$

The set of such configurations we denote by $\Sigma_{l, k}$. Extremal configuration:

$f_{2 n}(m)$											
m	\cdots	$k-l$	l	$k-l$	l	$k-l$	l	0	0	0	\cdots
		\cdots	$2 n-3$	$2 n-2$	$2 n-1$	$2 n$	$2 n+1$	$2 n+2$	\cdots		

Blowup equations: combinatorics

Definition

We call the function $f: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ a (l, k) configuration if
(1) $f(m)+f(m+1) \leq k$
(2) $f(2 m+1)=k-I, f(2 m)=I$, for $m \ll 0$
(3) $f(m)=0$, for $m \gg 0$

The set of such configurations we denote by $\Sigma_{l, k}$. Extremal configuration:

$f_{2 n}(m)$										
m	\cdots	$k-1$	1	$k-1$	1	$k-1$	1	0	0	0
\cdots		\cdots	$2 n-3$	$2 n-2$	$2 n-1$	$2 n$	$2 n+1$	$2 n+2$	\cdots	

Define a weight

$$
w_{q}(f)=-\sum_{m<0}(2 m+1)(k-I-f(2 m+1))-\sum_{m<0} 2 m(I-f(2 m))+\sum_{m \geq 0} m f(m)
$$

Theorem (Feigin Stoyanovsky)

$$
\chi\left(\mathcal{L}_{l, k}\right)=q^{\frac{I(l+2)}{(t k+2)}} \sum_{f \in \Sigma_{l, k}} q^{w_{q}(f)} .
$$

Blowup equations: combinatorics

- $\Sigma_{l, k}=\sqcup \Sigma_{l, k}^{r}$, where $\Sigma_{l, k}^{r}$ consists of (I, k) configurations such that $f(0)=r$. $\Sigma_{l, k}^{r}=\Sigma_{k}^{+, k-r} \times \Sigma_{l, k}^{-, k-r}$, where
$\Sigma_{k}^{+, k-r}$: functions $f: \mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(1) \leq k-r$ and (1), (3) hold; $\sum_{l, k}^{-, k-r}$: functions $f:-\mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(-1) \leq k-r$ and (1), (2) hold.

$$
q^{-\frac{l(l+2)}{4(k+2)}} \cdot \chi\left(\mathcal{L}_{l, k}\right)=\sum_{f \in \Sigma_{l, k}} q^{w_{q}(f)}=\sum_{0 \leq r \leq k}\left(\sum_{f \in \Sigma_{k}^{+, k-r}} q^{w_{q}(f)}\right) \cdot\left(\sum_{f \in \Sigma_{l, k}^{-k-r}} q^{w_{q}(f)}\right)
$$

Blowup equations: combinatorics

- $\Sigma_{l, k}=\sqcup \Sigma_{l, k}^{r}$, where $\Sigma_{l, k}^{r}$ consists of (I, k) configurations such that $f(0)=r$.
$\Sigma_{l, k}^{r}=\Sigma_{k}^{+, k-r} \times \Sigma_{l, k}^{-, k-r}$, where
$\Sigma_{k}^{+, k-r}$: functions $f: \mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(1) \leq k-r$ and (1), (3) hold;
$\Sigma_{l, k}^{-, k-r}$: functions $f:-\mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(-1) \leq k-r$ and (1), (2) hold.

$$
q^{-\frac{l(l+2)}{4(k+2)}} \cdot \chi\left(\mathcal{L}_{l, k}\right)=\sum_{f \in \Sigma_{l, k}} q^{w_{q}(f)}=\sum_{0 \leq r \leq k}\left(\sum_{f \in \Sigma_{k}^{+, k-r}} q^{w_{q}(f)}\right) \cdot\left(\sum_{f \in \Sigma_{l, k}^{-, k-r}} q^{w_{q}(f)}\right)
$$

- [Feigin Frenkel], [Feigin Foda Welsh]

$$
\begin{array}{ll}
\chi_{1,1}^{2 / 5}=q^{\Delta\left(P_{1,1}, b_{2 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{+, 0}} q^{w_{q}(f)}, & \chi_{1,2}^{2 / 5}=q^{\Delta\left(P_{1,2}, b_{2 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{+, 1}} q^{w_{q}(f)} \\
\chi_{1,2}^{3 / 5}=q^{\Delta\left(P_{1,2}, b_{3 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{-, 1}} q^{w_{q}(f)}, & \chi_{1,4}^{3 / 5}=q^{\Delta\left(P_{1,4}, b_{3 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{-, 0}} q^{w_{q}(f)}
\end{array}
$$

Blowup equations: combinatorics

- $\Sigma_{l, k}=\sqcup \Sigma_{l, k}^{r}$, where $\Sigma_{l, k}^{r}$ consists of (I, k) configurations such that $f(0)=r$.
$\Sigma_{l, k}^{r}=\Sigma_{k}^{+, k-r} \times \Sigma_{l, k}^{-, k-r}$, where
$\Sigma_{k}^{+, k-r}$: functions $f: \mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(1) \leq k-r$ and (1), (3) hold;
$\Sigma_{l, k}^{-, k-r}$: functions $f:-\mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $f(-1) \leq k-r$ and (1), (2) hold.

$$
q^{\left.-\frac{l(l+2)}{4(k+2)} \cdot \chi\left(\mathcal{L}_{l, k}\right)=\sum_{f \in \Sigma_{l, k}} q^{w_{q}(f)}=\sum_{0 \leq r \leq k}\left(\sum_{f \in \Sigma_{k}^{+, k-r}} q^{w_{q}(f)}\right) \cdot\left(\sum_{f \in \Sigma_{l, k}^{-, k-r}} q^{w_{q}(f)}\right), ~\right) .}
$$

- [Feigin Frenkel], [Feigin Foda Welsh]

$$
\begin{aligned}
\chi_{1,1}^{2 / 5}=q^{\Delta\left(P_{1,1}, b_{2 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{+, 0}} q^{w_{q}(f)}, & \chi_{1,2}^{2 / 5}=q^{\Delta\left(P_{1,2}, b_{2 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{+, 1}} q^{w_{q}(f)} \\
\chi_{1,2}^{3 / 5}=q^{\Delta\left(P_{1,2}, b_{3 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{-, 1}} q^{w_{q}(f)}, & \chi_{1,4}^{3 / 5}=q^{\Delta\left(P_{1,4}, b_{3 / 5}\right)} \sum_{f \in \Sigma_{0,1}^{-, 0}} q^{w_{q}(f)}
\end{aligned}
$$

$$
\chi\left(\mathcal{L}_{0,1}\right)=q^{-1 / 4}\left(\chi_{(1,2)}^{2 / 5} \cdot \chi_{(2,1)}^{5 / 3}+\chi_{(1,4)}^{2 / 5} \cdot \chi_{(4,1)}^{5 / 3}\right)
$$

Plan of the talk

(1) Introduction
(2) The function \mathcal{Z}
(3) Blowup relations
(4) Painlevé equations
(5) Discussion

Blowup relations

$$
\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{m \in \mathbb{Z}} \mathcal{Z}\left(a+m \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right) \mathcal{Z}\left(a+m \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right),
$$

Blowup relations

$$
\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{m \in \mathbb{Z}} \mathcal{Z}\left(a+m \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right) \mathcal{Z}\left(a+m \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right),
$$

- Imposing condition $\epsilon_{1}+\epsilon_{2}=0$ we get in the CFT notations

$$
\begin{equation*}
\mathcal{Z}_{c=1}(\sigma \mid z)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{c=-2}^{+}\left(\sigma-n \left\lvert\, \frac{Z}{4}\right.\right) \mathcal{Z}_{c=-2}^{-}\left(\sigma+n \left\lvert\, \frac{Z}{4}\right.\right), \tag{9}
\end{equation*}
$$

We get

$$
\tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)
$$

Recall that in CFT notation

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Blowup relations 2

We get

$$
\tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)
$$

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Blowup relations 2

We get $\quad \tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)$,

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Differential blowup relations

$$
\begin{align*}
& \left.\sum_{n \in \mathbb{Z}} \mathcal{Z}\left(a+2 \epsilon_{1} n ; \epsilon_{1}, \epsilon_{2}-\epsilon_{1} \left\lvert\, z e^{-\frac{1}{2} \epsilon_{1} \alpha}\right.\right) \mathcal{Z}\left(a+2 \epsilon_{2} n ; \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \left\lvert\, z e^{-\frac{1}{2} \epsilon_{2} \alpha}\right.\right)\right|_{\alpha^{4}}= \\
& \quad=\mathcal{Z}\left(a ; \epsilon_{1}, \epsilon_{2} \mid z\right)+\frac{(2 \alpha)^{4}}{4!}\left(\left(\frac{\epsilon_{1}+\epsilon_{2}}{4}\right)^{4}-2 z^{4}\right) \mathcal{Z}\left(a ; \epsilon_{1}, \epsilon_{2} \mid z\right)+O\left(\alpha^{5}\right) \tag{10}
\end{align*}
$$

$$
D_{[\log z]}^{1}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4} \tau_{1}, \quad D_{[\log z]}^{2}\left(\tau^{+}, \tau^{-}\right)=0
$$

We get

$$
\begin{equation*}
D_{[\log z]}^{3}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4}\left(z \frac{d}{d z}\right) \tau_{1}, \quad D_{[\log z]}^{4}\left(\tau^{+}, \tau^{-}\right)=-2 z \tau \tag{11}
\end{equation*}
$$

Painlevé equations from Nakajima-Yoshioka blowup relations

$$
\begin{equation*}
\tau_{0}=\tau^{+} \tau^{-}, D_{[\log z]}^{1}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4} \tau_{1}, D_{[\log z]}^{2}\left(\tau^{+}, \tau^{-}\right)=0 . \tag{12}
\end{equation*}
$$

Theorem (MB, Shchechkin)

Let $\tau^{ \pm}$satisfy equations (12). Then τ_{0} and τ_{1} satisfy Toda-like equation

$$
\begin{equation*}
D_{[\log z]}^{2}\left(\tau_{0}, \tau_{0}\right)=-2 z^{1 / 2} \tau_{1}^{2} \tag{13}
\end{equation*}
$$

Since we know from blowup relations that $\tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)$ satisfy (12) we proved that $\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z)$ satisfy Painlevé equation.

Plan of the talk

(1) Introduction
(2) The function \mathcal{Z}
(3) Blowup relations
(4) Painlevé equations
(5) Discussion

Blowup relations for $\mathbb{C}^{2} / \mathbb{Z}_{2}$

$$
\begin{equation*}
\tau(a, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{14}
\end{equation*}
$$

Blowup relations for $\mathbb{C}^{2} / \mathbb{Z}_{2}$

$$
\begin{equation*}
\tau(a, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \not{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{14}
\end{equation*}
$$

- [Bruzzo, Poghossian, Tanzini 09], [Bruzzo, Pedrini, Sala, Szabo 2013], [Ohkawa 2018], [Belavin, M.B., Feigin, Litvinov, Tarnopolsky 2011]

$$
\begin{equation*}
\tilde{\mathcal{Z}}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{n} \mathrm{D}\left(\mathcal{Z}\left(a+n \epsilon_{1}, 2 \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right), \mathcal{Z}\left(a+n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid z\right)\right) . \tag{15}
\end{equation*}
$$

Here $\tilde{\mathcal{Z}}$ is Nekrasov partition function for $\mathbb{C}^{2} / \mathbb{Z}_{2}$.

- After specialization $\epsilon_{1}+\epsilon_{2}=0$ and exclusion $\tilde{\mathcal{Z}}$ we get bilinear relations on $\mathcal{Z}_{c=1}$, which lead to bilinear relations of $\tau(z)$

$$
\begin{equation*}
\tilde{\mathrm{D}}(\tau(z), \tau(z))=0 \tag{16}
\end{equation*}
$$

These are (Paivlevé) bilinear equations, without additional τ^{+}, τ^{-}.

Painlevé and blowup after Nekrasov

$$
\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{n \in \mathbb{Z}} \mathcal{Z}\left(a+n \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right) \cdot \mathcal{Z}\left(a+n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right)
$$

Take the limit $\epsilon_{1} \rightarrow 0$. In this limit

$$
\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right) \sim \exp \left(\frac{1}{\epsilon_{1}} f(a, z)\right)
$$

where f is a classical conformal block.
The limit of the blowup relations takes the form

$$
\left.\exp \left(\frac{\partial f}{\partial \epsilon_{2}}\right)=\sum_{n \in \mathbb{Z}} e^{n \frac{\partial f}{\partial a}} \mathcal{Z}_{c=1}\left(a+n,-\epsilon_{2}, \epsilon_{2} \mid z\right)\right) .
$$

For the left side [Reshetikhin], [Teschner], [Litvinov, Lukyanov, Nekrasov, Zamolodchikov].

Thank you for the attention!

Explicit formulas

$$
\mathcal{Z}=\mathcal{Z}_{c l} \mathcal{Z}_{1-\text { loop }} \mathcal{Z}_{\text {inst }}
$$

where

$$
\begin{aligned}
\mathcal{Z}_{c l}\left(a ; \epsilon_{1}, \epsilon_{2} \mid \Lambda\right) & =\Lambda^{-\frac{a^{2}}{\epsilon_{1} \epsilon_{2}}} \\
\mathcal{Z}_{1-\text { loop }}\left(a ; \epsilon_{1}, \epsilon_{2}\right) & =\exp \left(-\gamma_{\epsilon_{1}, \epsilon_{2}}(a ; 1)-\gamma_{\epsilon_{1}, \epsilon_{2}}(-a ; 1)\right), \\
\mathcal{Z}_{\text {inst }}\left(a ; \epsilon_{1}, \epsilon_{2} \mid \Lambda\right) & =\sum_{\lambda^{(1)}, \lambda^{(2)}} \frac{\left(\Lambda^{4}\right)^{\left|\lambda^{(1)}\right|+\left|\lambda^{(2)}\right|}}{\prod_{i, j=1}^{2} N_{\lambda^{(i)}, \lambda^{(j)}}\left(a_{i}-a_{j} ; \epsilon_{1}, \epsilon_{2}\right)}, \quad|\lambda|=\sum \lambda_{j}, \\
N_{\lambda, \mu}\left(a ; \epsilon_{1}, \epsilon_{2}\right) & =\prod_{s \in \lambda}\left(a-\epsilon_{2}\left(a_{\mu}(s)+1\right)+\epsilon_{1} I_{\lambda}(s)\right) \prod_{s \in \mu}\left(a+\epsilon_{2} a_{\lambda}(s)-\epsilon_{1}\left(I_{\mu}(s)+1\right)\right) \\
\gamma_{\epsilon}(x ; \Lambda) & =\left.\frac{d}{d s}\right|_{s=0} \frac{\Lambda^{s}}{\Gamma(s)} \int_{0}^{+\infty} \frac{d t}{t} t^{s} \frac{e^{-t x}}{e^{\epsilon t}-1}, \quad \operatorname{Re} x>0 .
\end{aligned}
$$

where $\lambda^{(1)}, \lambda^{(2)}$ are partitions, $a_{\lambda}(s), I_{\lambda}(s)$ denote the lengths of arms and legs for the box s in the Young diagram corresponding to the partition λ.

\mathcal{U}

Definition

The conformal algebra \mathcal{U} coincide with the $V_{\sqrt{2} \mathbb{Z}}$ as the operator algebra, but the stress-energy tensor is modified:

$$
\begin{align*}
& T_{\mathcal{U}}=\frac{1}{2}(\partial \varphi)^{2}+\frac{1}{\sqrt{2}}\left(\partial^{2} \varphi\right)+\epsilon\left(2(\partial \varphi)^{2} e^{\sqrt{2} \varphi}+\sqrt{2}\left(\partial^{2} \varphi\right) e^{\sqrt{2} \varphi}\right)= \\
&=\frac{1}{2} \partial_{z} \varphi(z)^{2}+\frac{1}{\sqrt{2}} \partial_{z}^{2} \varphi(z)+\epsilon \partial_{z}^{2}\left(e^{\sqrt{2} \varphi(z)}\right), \quad \varepsilon \neq 0 \tag{17}
\end{align*}
$$

- The conformal algebras \mathcal{U} isomorphic for different values $\varepsilon \neq 0$. For the $\varepsilon=0$ $T_{\mathcal{U}}(z)$ has the from discussed above form for $u=\frac{1}{\sqrt{2}}$ and central charge -5 .
- The spaces $U_{0}=\bigoplus_{k \in \mathbb{Z}} \mathrm{~F}_{k \sqrt{2}}$ and $U_{1}=\bigoplus_{k \in \mathbb{Z}+1 / 2} \mathrm{~F}_{k \sqrt{2}}$ become a representations of \mathcal{U}.

Calculation

$$
\begin{align*}
& \sum_{n_{1}, n_{2} \in \mathbb{Z}} s^{n_{1}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+n_{1}-n_{2} \left\lvert\, \frac{Z}{4}\right.\right) \mathcal{Z}_{c=-2}^{-}\left(\sigma+n_{1}+n_{2} \left\lvert\, \frac{z}{4}\right.\right)= \\
& \left.=\sum_{n_{1}, n_{2} \in \mathbb{Z} \mid n_{1}+n_{2} \in 2 \mathbb{Z}}+\sum_{n_{1}, n_{2} \in \mathbb{Z} \mid n_{1}+n_{2} \in 2 \mathbb{Z}+1}=\| n_{ \pm}=\frac{1}{2}\left(n_{1} \pm n_{2}\right) \right\rvert\,= \\
& =\sum_{n_{+} \in \mathbb{Z}} s^{n_{+}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+2 n_{+} \left\lvert\, \frac{Z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}} s^{n_{-}} \mathcal{Z}_{c=-2}^{-}\left(\sigma+2 n_{-} \left\lvert\, \frac{Z}{4}\right.\right)+ \tag{18}\\
& +\sum_{n_{+} \in \mathbb{Z}+1 / 2} s^{n_{+}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+2 n_{+} \left\lvert\, \frac{Z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}+1 / 2} s^{n_{-}} \mathcal{Z}_{c=-2}^{-}\left(\sigma+2 n_{-} \left\lvert\, \frac{Z}{4}\right.\right)= \\
& =\sum_{n_{+} \in \mathbb{Z}} s^{n_{+} / 2} \mathcal{Z}_{c=-2}^{+}\left(\sigma+n_{+} \left\lvert\, \frac{Z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}} s^{n_{-} / 2} \mathcal{Z}_{c=-2}^{-}\left(\sigma+n_{-} \left\lvert\, \frac{Z}{4}\right.\right),
\end{align*}
$$

where the last equality follows from the

$$
\mathcal{Z}^{+}\left(\sigma+n_{+}+1 / 2\right) \mathcal{Z}^{-}\left(\sigma+n_{-}\right)+\mathcal{Z}^{-}\left(\sigma+n_{+}+1 / 2\right) \mathcal{Z}^{+}\left(\sigma+n_{-}\right)=0, \quad n_{+}, n_{-} \in \mathbb{Z},
$$

$$
\begin{equation*}
\tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z) \tag{19}
\end{equation*}
$$

