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Conformal symmetry in various dimensions

• In the extreme infrared or ultraviolet regime, physics
is described by a �xed point of the renormaliza-
tion group, most often trivial, sometimes not: in-
variance under the Lorentz (super)group SO(1, d−
1) is then promoted to an invariance under the
(super)conformal group SO(2, d), including dilation
and special conformal generators.

• This is especially powerful in study of critical phe-
nomena in 2 dimensions, where the in�nite dimen-
sional Virasoro extension of SO(2,2) often allows
to determine critical exponents valid within univer-
sality classes of theories.

• Conformal invariance also occurs in a number of 4-
dimensional gauge theories such as N = 4 SYM or
softly broken versions thereof, which remain con-
formal quantum mechanically at high energy; as
embodied in the AdS/CFT correspondence.

• Non-trivial conformal �xed points can also surpris-
ingly be found in gauge theories in higher dimen-
sions: the UV behaviour of D = 5 SYM is described
by (2,0) theory in D = 5 + 1, etc
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Conformal symmetry in one dimension

• The conformal group in D = 0 + 1, SO(2,1) =
Sl(2, R) = Sp(1), corresponds to invariance under
fractional transformations of time, t → (at+b)/(ct+
d), with ad− bc = 1.

• The simplest example was introduced by de Alfaro
Fubini Furlan (DFF, 1976) : a 1-dimensional non-
relativistic particle in a 1/x2 potential.

• The near-horizon geometry of charged (Reissner-
Nordström) black holes, AdS2 × S2, has isometry
group Sl(2) × SU(2). The Sl(2) symmetry is real-
ized in the dynamics of test particles through con-
formal transformations of time.

• More generally, string theory on AdS2 should have
a dual description through a conformal quantum
mechanical �gauge� theory in 1D: AdS fragmenta-
tion,. . .

• In this talk, we will consider a di�erent setting
where D = 0+1 conformal invariance arises: gravity
near a space-like (cosmological) singularity.

3



Outline

1. Conformal quantum mechanics and black-holes

2. Quantum cosmology at a spacelike singularity

3. Coadjoint orbits and generalized CQM

4. Outlook

4



Conformal quantum mechanics
• Conformal quantum mechanics was �rst introduced
in 1976 by de Alfaro, Fubini and Furlan (DFF) as
an attempt to understand soft breaking of confor-
mal invariance:

L =
1

2

(
dq

dt

)2

− g

q2
, g > 0

• The Lagrangian is invariant under conformal trans-
formations of the time axis (up to total der.),

t → at + b

ct + d
, q(t) → q(t)

ct + d
, ad− bc = 1

• The Noether charges generating these transforma-
tions at t = 0 read

E+ =
1

2

(
p2 +

g

q2

)
= H , D = −1

2
pq , E− =

1

2
q2

• They represent the conformal group SO(2,1) =
Sl(2) in 0+1 dimensions,

{E+, E−} = 2D, {D, E±} = ±E±

• Upon quantization, p → i∂q, conformal invariance
�xes ordering ambiguities:

E+ =
1

2

(
p2 +

g

q2

)
= H , D = −1

4
(pq+qp) , E− =

1

2
q2
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Mass can preserves conformal invariance !

• The Hamiltonian H = E+ is a parabolic element
of SO(2,1). It has a delta-normalizable continuous
positive spectrum starting at 0, with eigenfunctions

ψE(q) = q1/2J2r−1(x
√

2E) → q2r−1/2 as E → 0

• The spectrum may be ren-
dered discrete by deform-
ing the Hamiltonian into
H = E+ + Λ2E− where 1/Λ
is a new length scale, which
can however be changed by
acting with D. x0

potential

• The Hamiltonian is now a compact (elliptic) ele-
ment of SO(2,1), with discrete normalizable spec-
trum, generated by the rising and lowering opera-
tors,

L± = E+ − E− ± iD , [H, L±] = ±L±
acting on the vacuum,

L−ψ0 = 0 ⇒ ψ0(q) = q2r−1

2e−q2Λ2/2

• We thus have an (even) integer spaced spectrum,
with eigenmodes

ψn(x) = (qΛ)2r−1

2 e−q2Λ2/2L2r−1
n (q2Λ2)

where Ln are Laguerre polynomials.
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CQM and RN black holes

• Reissner-Nordström black holes have a near-horizon
geometry given by AdS2 × S2,
ds2 = −(2M/r)4dt2 + (2M/r)2dr2 + M2dΩ2 ,

A = (2M/r)2dt

• The Hamiltonian of a free particle of mass m and
charge q in static gauge is, in the limit M →∞ with
M2(m− q) �xed,

H =
p2

r

2m
+

g

2r2
,

with
g = 8M2(m− q) + 4`(` + 1)/m .

Claus Derix Kallosh Kumar Townsend Van Proeyen

• At �nite M , one has in fact a relativistic general-
ization of DFF. A superconformal version of this
model can also be found by considering a superpar-
ticle on the near-horizon geometry.

Claus Derix Kallosh Kumar Townsend Van Proeyen
de Azcarraga Izquierdo Perez Bueno Townsend
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From parabolic to elliptic, now justi�ed
• Instead of working with asymptotic time ∂t with
has a degenerate Killing horizon, one may choose
instead a global time, e.g. (u + v) in �Kruskal� co-
ordinates:

motion
generated by

bo
un

da
ry

bo
un

da
ry

horizon

ho
riz

on

h

motion generated by h+k

u -u +=

t +
=

-t
=

u -u += +π

• The Hamiltonian wrt to the new Killing vector is
just the combination introduced by DFF,

∂u + ∂v = E+ + E− =
p2

r

2
+

1

2r2
+

r2

2
yielding a discrete spectrum of normalizable states.
Claus Derix Kallosh Kumar Townsend Van Proeyen; Kallosh
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2. Spacelike singularity and CQM

• As one approaches a cosmological (spacelike) sin-
gularity, the dynamics of points separated by more
than a cosmological horizon ∼ cT decouple.
As T → 0, this reduces
to a set of decoupled 0+1-
dimensional (quantum) me-
chanical systems at each point
on the spacelike slice !

t

0

Belinskii Khalatnikov Lifschitz; Misner

• In this limit, a minisuperspace ansatz is legitimate,
ds2 = −α2dt2 + gij(t)dxidxj

with analogous ansatz for gauge �elds. Evaluat-
ing Einstein's action one obtains the motion of a
�ctitious particle on the moduli space of (spatially
constant) metrics and gauge �elds = an constant
negative curvature homogeneous space.

• �Integrating out� o�-diagonal dof yields potential
terms for diagonal radii. They become re�ection
walls towards the singularity: this leads to an hyper-
bolic billiard picture, with chaotic motion consisting
of Kasner �ights separated by bounces.

Damour Henneaux + Nicolai Julia de Buyl Schomblond . . .
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2+1-gravity at a spacelike singularity

• For simplicity, we consider 2+1 dimensional Ein-
stein gravity, dimensionally reduced to 0+1 at a
spacelike singularity:

ds2 = −
[ η

V

]2
dt2 + V

[
(dx1 + U1dx2)2 + U2

2dx2
2

]

U2

where V is the volume and U = U1+iU2 ∈ Sl(2)/U(1)
the �complex structure� of the spatial slice. We re-
frain from integrating U1 out.

• The Einstein-Hilbert action becomes, after inte-
grating by part,

S =

∫
dt

[
1

2η

(
−V̇ 2 + V 2U̇2

1 + U̇2
2

U2
2

)
− 2ηΛ

]

This action is invariant by under general time repa-
rameterization, keeping ηdt �xed.

• This is the Lagrangian of a free particle of mass
m2 = 4Λ moving on the Lorentzian cone with met-
ric

ds2 = −dV 2 + V 2dU2
1 + dU2

2

U2
2

Note this is �at R2,1 in polar coordinates. For Λ < 0
the particle is tachyonic.
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Moving on the cone

• The volume V appears with a negative signature:
it can be chosen as a reference time, against which
to measure other phenomena.

DeWitt

• The motion is now easily integrated: in the gauge
η = V 2, the motion of U decouples from V , hence
U follows geodesics in the upper half plane.

• The charge p1 associated to the isometry U1 →
U1+cste is conserved. The motion of U2 e�ectively
receives an harmonic potential p2

1U
2
2 : for p1 6= 0, this

prevents U2 from reaching +∞: trajectories are half
circles centered on the boundary of the upper half
plane.
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Conformal Quantum Cosmology

• Now put V = ρ2. Going to momentum variables
p = −4ρρ̇/η, p1 = ρ4U̇1/(ηU2

2), p2 = ρ4U̇2/(ηU2
2),

we get the Hamiltonian

H =
η

ρ2

[
−p2

8
− ∆

2ρ2
+

1

8
Λρ2

]

• The Hamiltonian constraint δH/δη ≡ 0 reads

HWDW =
1

2
p2 +

2∆

ρ2
− 1

2
Λρ2 ≡ 0

• This is nothing but the Hamiltonian of conformal
mechanics, upon identifying g = 4∆, where ∆ is
the angular momentum on Sl(2)/U(1). The sign
of g depends on boundary conditions on the upper
half plane (square integrable modes have ∆ < 0)

• The quadratic potential is provided by the cosmo-
logical constant. For Λ < 0, we get an operator
with discrete normalizable states.

• Even so, we are looking for a zero energy state,
which will not be normalizable.

• For Λ < 0, we are looking for a state which is invari-
ant under the compact generator E++E−: the wave
function of the Universe is therefore the spherical
vector of the representation.
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DFF vs WDW
Despite formal identity between the two problems, there
are some important di�erences:

• The WDW equation picks out zero-energy states
only. So boundedness from below of H is no longer
a requirement. Indeed, the sign of g depends on
boundary conditions on S (square integrable wave
functions have g < 0), and the sign of m2 depends
on Λ (discrete spectrum for Λ < 0)

• Usual quantum mechanics analysis requires wave
functions to be square integrable. Here ρ should
be thought as a time variable, square integrability
along ρ should not be imposed. Instead perhaps,
use a Klein-Gordon type norm on spacelike slices
(and �third� quantize the system in order to get rid
of negative norm states)

Those are problems in any quantum cosmology investi-
gation, so we proceed anyway.
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Reduction of n + 1-dim gravity
• Let us know consider the reduction of n + 1-dim
Einstein gravity: The metric ansatz is

ds2 = −
[

η(t)

V (t)

]2

dt2 + V 2/n(t) ĝij(t) dxidxj ,

where V is the spatial volume and det(ĝ) = 1.
• The Einstein-Hilbert action reduces to∫

dt

{
1

2η

[
−2(n− 1)

n
V̇ 2 + V 2 U̇MGMN U̇N

]
− 2Λη

}

Here UM coordinatize the negative curvature sym-
metric space S = Sl(n)/SO(n) describing all spa-
tially constant unit volume metrics ĝ.

• One recognizes the Lagrangian for a free particle
propagating on the Lorentzian cone

dσ2 = −2(n− 1)

n
dV 2 + V 2dUMGMNdUN .

• Change vars to ρ =
√

8(n− 1)V/n and go to canon-
ical coordinates. The Hamiltonian now reads

H =
η

V

[
1

2
p2 +

4(n− 1)

nρ2
∆− nΛ

4(n− 1)
ρ2

]

The eom for η is again the DFF Hamiltonian, at
zero energy, with g = 8(n − 1)∆/n related to the
Laplacian ∆ on S.

• The conformal symmetry is a direct consequence
of the conical structure of moduli space, hence its
having an closed homothetic Killing vector. 14



Dimensional reduction of supergravity
• In addition to the graviton, supergravity also con-
tains scalar and gauge �elds. Upon dimensional
reduction, we still obtain the geodesic motion of a
free particle on a Lorentzian cone with negatively
curved sections G/K. E.g: gravity+dilaton+B yields
a cone over SO(n, n)/SO(n)× SO(n).

• The positive roots in G correspond to o�-diagonal
metric and gauge �elds; they can be eliminated by
using the associated conserved Noether charges,
producing a potential for the Cartan degrees of
freedom, aka dilatonic scalars: as in the 2+1 case,
these yield re�ection walls keeping R1 ≤ R2 ≤ . . . in
a fundamental chamber.

• In addition, there are potential terms originating
from spatial gradients of the metric; these could
be incorporated using a �dual� description of the
graviton (e.g: in 11 → 3 reduction, gµi are 8 vectors
�elds dual to 8 scalars, hence yield a scalar �eld in
(8,1) Young tableau).

Obers BP Rabinovici;Boulanger et al

• Duality implies an in�nite set of such domain walls,
corresponding to a roots of an hyperbolic Kac-Moody
algebra E10. Upon introducing these new degrees of
freedom, one would expect to still have a conformal
symmetry.

Damour Henneaux Julia Nicolai
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CQM and coadjoint orbits
Let us come back to classical conformal mechanics:

• Since D and E− do not commute with the Hamilto-
nian, they evolve in time, but following the simple
law,

dg/dt = [h, g] ,

g(t) =

(
D E−
−E+ −D

)
(t) ∈ sl(2)∗ ,

h =

(
0 1
0 0

)
∈ Sl(2)

• The motion thus takes place on a coadjoint orbit
of Sl(2), �owing along the action of the nilpotent
generator h = E+,

G(t) = ethG(0)e−th

• Classically, the coupling constant is given by the
invariant of the orbit, ∆ ∼ det(G).
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CQM and coadjoint orbits, in generality

• Let us consider the coadjoint orbit of a generic hy-
perbolic element of sl(2):

Ω =
{
g−1Jg , g ∈ Sl(2)

}
, J =

(
λ

−λ

)

• The orbit Ω can be viewed as Ω = Stab\G where
Stab = {g, g−1Jg = J} is the stabilizer of J. A gauge
slice can be chosen as

Ω = {g =

(
1
γ 1

)
·
(
1 β

1

)
}

G = Sl(2) acts from the right on Ω, hence on (β, γ).

• A coadjoint orbit has a canonical invariant symplec-
tic form, the Kirillov-Kostant symplectic form,

ω = dθ , θ = Tr(Jdgg−1) = −2λβdγ

• The right action of h ∈ G preserves ω, hence can
be represented by its moment map Eh such that
ihω = dEh. h then acts by Poisson bracket with Eh

on functions of (β, γ). Here:
E+ = 2λγ , D = 2λ(1+2βγ) E− = −2λβ(1+βγ)
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Coadjoint orbits and unireps

• This can be recast in the conformal quantum me-
chanics form through a canonical transformation,

E+ = y2 , D = 2py , E− =
1

4
p2 +

λ

2y2

• Note that this construction is purely classical: the
non-trivial part is to quantize the coadjoint orbit.
This can be done by induced representation meth-
ods.

• One could have started from a nilpotent element of
Sl(2) instead:

J =

(
0
1 0

)
, g =

(√
t

1/
√

t

)
·
(
1 β

1

)

θ = tdβ , E+ = t , D = 2βt , E− = β2t

Rede�ning t = y2 and β = p/(2y) we get

E+ = y2 , D = py , E− =
1

4
p2

This is the usual harmonic oscillator. Its quantiza-
tion gives the metaplectic representation of Sl(2).
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CQM from nilpotent orbits

• Quantization of coadjoint orbit of any group con-
taining Sl(2) will yield a conformal quantum me-
chanical model: simply need to �nd the right vari-
ables such that D = pq etc.

• Generic coadjoint orbits have (even) dimension n =
dimG−RankG. Non-generic ones have a bigger sta-
bilizer, hence correspond to a phase space of smaller
dimension. They also have fewer parameters.

• The smallest coadjoint orbit is that of a minimal
nilpotent element, ie the orbit of any root (for
Sl(n): only one 2×2 Jordan block). Its quantization
leads to the minimal representation of G, analogous
to the metaplectic representation of Sl(2).

• Motivated by a conjecture about the BPS quantum
supermembrane, we have constructed the minimal
nilpotent orbit of ADE groups: this yields a family
of q-mechanical systems where the conformal group
is enhanced to any ADE group.

Kazhdan BP Waldron

• The simplest non-trivial model, based on D4, turns
out to be equivalent to the reduction of 2+1 grav-
ity: this model thus exhibits hidden D4 symmetry,
which allows to get at the spherical vector.
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Summary

• Conformal symmetry arises in many di�erent prob-
lems where a universal regime is reached: non-
trivial infrared dynamics of �eld theories, near hori-
zon limit of black holes, and here: gravity near a
spacelike singularity.

• The appearance of conformal symmetry here is per-
haps not surprising, since we are expanding around a
solution with power-like behavior, gµν(t, x) = tαg0

µν(x):
at least scaling symmetry is guaranteed.

• From a mathematical viewpoint, conformal quan-
tum mechanics can be understood as free motion
on a coadjoint orbit of Sl(2). It can be generalized
to any group G containing an Sl(2). This allows
for a general quantization of these models.

• Nilpotent orbits are particularly interesting, since
they have the smallest phase space and parameter
space: the minimal orbit has no parameter at all.

• We have identi�ed the minimal orbit of D4 with the
dimensional reduction of 2+1 gravity. How about
other ADE groups ? E10 ?
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Poetry: gravity and �uid mechanics

• The dynamics of gravity at a spacelike singularity
has a strong �avor of fully developped turbulency
in �uid mechanics. Indeed, one may think of each
of the �ctitious particles as �uid elements moving
on the moduli space, with the spatial position play-
ing the role of the particle label in a Lagrangian
description.

• Recall that Euler's perfect �uid equations can be
thought of as a geodesic motion on the coadjoint
orbit of volume preserving di�eomorphisms (V.I.
Arnold) . Is there a similar picture for gravity ?

• The chaotic behavior is reminiscent of the energy
cascade in turbulency. The conformal symmetry
that we argued for may correspond to Kolmogorov's
�inertial range�. Do quantum �uctuations and par-
ticle production provide a dissipation cut-o� ?
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