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Conformal symmetry in various dimensions

e In the extreme infrared or ultraviolet regime, physics
is described by a fixed point of the renormaliza-
tion group, most often trivial, sometimes not: in-
variance under the Lorentz (super)group SO(1,d —
1) is then promoted to an invariance under the
(super)conformal group SO(2,d), including dilation

and special conformal generators.

e T his is especially powerful in study of critical phe-
nomena in 2 dimensions, where the infinite dimen-
sional Virasoro extension of SO(2,2) often allows
to determine critical exponents valid within univer-

sality classes of theories.

e Conformal invariance also occurs in a number of 4-
dimensional gauge theories such as N =4 SYM or
softly broken versions thereof, which remain con-

formal quantum mechanically at high energy;
embodied in the AdS/CFT correspondence.

e Non-trivial conformal fixed points can also surpris-
ingly be found in gauge theories in higher dimen-
sions: the UV behaviour of D =5 SYM is described

by (2,0) theory in D =54 1, etc



Conformal symmetry in one dimension

The conformal group in D = 04+ 1, SO(2,1) =
Si(2,R) = Sp(1), corresponds to invariance under
fractional transformations of time, ¢t — (at+b)/(ct+
d), with ad — bc = 1.

The simplest example was introduced by de Alfaro
Fubini Furlan (DFF, 1976) : a 1-dimensional non-
relativistic particle in a 1/:][:2 potential.

The near-horizon geometry of charged (Reissner-
Nordstrom) black holes, AdS> x S>, has isometry
group Si(2) x SU(2). The Si(2) symmetry is real-
ized in the dynamics of test particles through con-
formal transformations of time.

More generally, string theory on AdS> should have
a dual description through a conformal quantum
mechanical “gauge” theory in 1D: AdS fragmenta-
tion,. ..

In this talk, we will consider a different setting
where D = 041 conformal invariance arises: gravity
near a space-like (cosmological) singularity.
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Conformal quantum mechanics

e Conformal quantum mechanics was first introduced
in 1976 by de Alfaro, Fubini and Furlan (DFF) as
an attempt to understand soft breaking of confor-
mal invariance:

1 (dg\° g
===l —= >0
2 (dt> q° J
e T he Lagrangian is invariant under conformal trans-
formations of the time axis (up to total der.),
at + b q(t)
,  q(t) —
ct + d ct + d
e The Noether charges generating these transforma-
tions at ¢t = 0O read
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, ad—bc=1
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e They represent the conformal group SO(2,1) =
SI1(2) in 041 dimensions,
{EL,E.Y=2D, {D,Ei}=+E.

e Upon quantization, p — i9,, conformal invariance
fixes ordering ambiguities:

1 1,

g 1
Ey==(pPP+Z)|=H, D=-=(pg+qp), E_ ==
+ 2(19 q2) 7 (Patap) 54



Mass can preserves conformal invariance !

e The Hamiltonian H = E4 is a parabolic element

of SO(2,1). It has a delta-normalizable continuous
positive spectrum starting at 0, with eigenfunctions

Ye(q) = q1/2J2r—1(va 2F) — q2r_1/2 as E — 0

The spectrum may be ren-
dered discrete by deform-
ing the Hamiltonian into
H = E4 4+ N2E_ where 1/A
iS a new length scale, which
can however be changed by
acting with D. 0 -y

potenti al

The Hamiltonian is now a compact (elliptic) ele-
ment of SO(2,1), with discrete normalizable spec-
trum, generated by the rising and lowering opera-
tors,

Li=Fy—-FE_+iD, [H,Li]=+L4
acting on the vacuum,
Lpo=0 = olq) =g e 7N/?

We thus have an (even) integer spaced spectrum,
with eigenmodes

wn(x) — (q/\)QT—% e_q2/\2/2L?LT_1(q2/\2)
where L, are Laguerre polynomials.



CQRM and RN black holes

e Reissner-Nordstrom black holes have a near-horizon
geometry given by AdS> x So,
ds? —(2M /r)*dt? 4+ (2M /r)?dr? 4+ M2d2?
A (2M /r)2dt

e The Hamiltonian of a free particle of mass m and
charge ¢ in static gauge is, in the limit M — oo with
M?(m — q) fixed,

p?_|_g

H = ,
2m = 2r2

with
g=8M3(m—q)+ 4L+ 1)/m.

Claus Derix Kallosh Kumar Townsend Van Proeyen

e At finite M, one has in fact a relativistic general-
ization of DFF. A superconformal version of this
model can also be found by considering a superpar-
ticle on the near-horizon geometry.

Claus Derix Kallosh Kumar Townsend Van Proeyen
de Azcarraga Izquierdo Perez Bueno Townsend



From parabolic to elliptic, how justified

e Instead of working with asymptotic time 9; with
has a degenerate Killing horizon, one may choose

instead a global time, e.g. (v 4+ v) in “Kruskal” co-
ordinates:

)

@

ie] NN

S o

I *~ motion generated by h+k
P
o]
o
=
=
o
O

motion
generated by
h
u*=u- u*=u+m

e The Hamiltonian wrt to the new Killing vector is
just the combination introduced by DFF,

2
P 1 r
Oo+h=FE++FE_ =—Z—+—+ —
2 272 2

yielding a discrete spectrum of normalizable states.
Claus Derix Kallosh Kumar Townsend Van Proeyen; Kallosh
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2. Spacelike singularity and CQM

e As one approaches a cosmological (spacelike) sin-
gularity, the dynamics of points separated by more
than a cosmological horizon ~ ¢I' decouple.

As T — 0, this reduces
to a set of decoupled 0+41-
dimensional (quantum) me- t}
chanical systems at each point

on the spacelike slice ! o

Belinskii Khalatnikov Lifschitz;, Misner

e In this limit, a minisuperspace ansatz is legitimate,
ds® = —a?dt? + g;;(t)dx'dx’

with analogous ansatz for gauge fields. Evaluat-
ing Einstein’s action one obtains the motion of a
fictitious particle on the moduli space of (spatially
constant) metrics and gauge fields = an constant
negative curvature homogeneous space.

e ‘Integrating out” off-diagonal dof yields potential
terms for diagonal radii. They become reflection
walls towards the singularity: this leads to an hyper-
bolic billiard picture, with chaotic motion consisting
of Kasner flights separated by bounces.

Damour Henneaux -+ Nicolai Julia de Buyl Schomblond . ..
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2-41-gravity at a spacelike singularity

e For simplicity, we consider 241 dimensional Ein-
stein gravity, dimensionally reduced to 041 at a
spacelike singularity:

(dz1 + Urdzo)? + Uzzdx%]
Uz

where V is the volume and U = U;+iU, € Si(2)/U(1)
the “complex structure’” of the spatial slice. We re-
frain from integrating U; out.

ds? = — [%rdtz—l—v[

e The Einstein-Hilbert action becomes, after inte-
grating by part,

1 . 72 4 U2
5=/dt (e 2Uit e, 0
2n Uz

This action is invariant by under general time repa-
rameterization, keeping ndt fixed.

e This is the Lagrangian of a free particle of mass
m?2 = 4\ moving on the Lorentzian cone with met-
ric

dU12 + dU22

U3

Note this is flat R>! in polar coordinates. For A < 0

the particle is tachyonic.

ds® = —dV? +V?
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Moving on the cone

e The volume V appears with a negative signature:
it can be chosen as a reference time, against which
to measure other phenomena.

DeWitt

e T he motion is now easily integrated: in the gauge
n = V2, the motion of U decouples from V, hence
U follows geodesics in the upper half plane.

e The charge p; associated to the isometry U; —
U1+ cste is conserved. The motion of Us effectively
receives an harmonic potential p2Us: for p1 # 0, this
prevents Us from reaching 4+oo: trajectories are half
circles centered on the boundary of the upper half

plane.
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Conformal Quantum Cosmology

Now put V = p2 Going to momentum variables

p=—4pp/n, p1=p"U1/(nU3), p2=p*Uz/(nU3),
we get the Hamiltonian

2 A
H=L[ 2 2 15
p 8 2p°
The Hamiltonian constraint 5H/577 = 0 reads
1 2A 1
prw——p —|————/\,02:O
2 02 2

This is nothing but the Hamiltonian of conformal
mechanics, upon identifying g = 4A, where A is
the angular momentum on Si(2)/U(1). The sign
of g depends on boundary conditions on the upper
half plane (square integrable modes have A < 0)

The quadratic potential is provided by the cosmo-
logical constant. For A < 0, we get an operator
with discrete normalizable states.

Even so, we are looking for a zero energy state,
which will not be normalizable.

For A < O, we are looking for a state which is invari-
ant under the compact generator E4+FE_: the wave
function of the Universe is therefore the spherical
vector of the representation.
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DFF vs WDW

Despite formal identity between the two problems, there
are some important differences:

e The WDW equation picks out zero-energy states
only. So boundedness from below of H is no longer
a requirement. Indeed, the sign of g depends on
boundary conditions on S (square integrable wave
functions have g < 0), and the sign of m? depends
on A (discrete spectrum for A < 0)

e Usual quantum mechanics analysis requires wave
functions to be square integrable. Here p should
be thought as a time variable, square integrability
along p should not be imposed. Instead perhaps,
use a Klein-Gordon type norm on spacelike slices
(and “third” quantize the system in order to get rid
of negative norm states)

Those are problems in any quantum cosmology investi-
gation, so we proceed anyway.

13



Reduction of n + 1-dim gravity

Let us know consider the reduction of n 4+ 1-dim
Einstein gravity: The metric ansatz is

2
n(t) p) 2 ~ 7.7
ds? = — |—2| dt? + V2/"(#) §;;(¢t) dz'da? ,
2 = = [ T2 a4 V2 (1) 3,0 o'
where V is the spatial volume and det(g) = 1.
The Einstein-Hilbert action reduces to

/ dt{i ~2(n—1)
2n

n
Here UM coordinatize the negative curvature sym-
metric space S = Si(n)/SO(n) describing all spa-
tially constant unit volume metrics g.

One recognizes the Lagrangian for a free particle
propagating on the Lorentzian cone

_2(n —1)

n

72 42 UMGMNUN] _ 2/\77}

do? = dV? 4+ V2dUMG ynvdU" .

Change vars to p = 1/8(n — 1)V/n and go to canon-
ical coordinates. The Hamiltonian now reads
nll, 4(n-—1) n/\ 5
H=-1|Z I A\ —
v 2P + np? 4(n — 1)/0
The eom for n is again the DFF Hamiltonian, at
zero energy, with ¢ = 8(n — 1)A/n related to the
Laplacian A on S.

The conformal symmetry is a direct consequence
of the conical structure of moduli space, hence its
having an closed homothetic Killing vector. 4



Dimensional reduction of supergravity

In addition to the graviton, supergravity also con-
tains scalar and gauge fields. Upon dimensional
reduction, we still obtain the geodesic motion of a
free particle on a Lorentzian cone with negatively
curved sections G/K. E.g: gravity+dilaton+4B yields
a cone over SO(n,n)/SO(n) x SO(n).

The positive roots in G correspond to off-diagonal
metric and gauge fields; they can be eliminated by
using the associated conserved Noether charges,
producing a potential for the Cartan degrees of
freedom, aka dilatonic scalars: as in the 241 case,
these yield reflection walls keeping R < R> < ... in
a fundamental chamber.

In addition, there are potential terms originating
from spatial gradients of the metric; these could
be incorporated using a “dual”’ description of the
graviton (e.g: in 11 — 3 reduction, g,; are 8 vectors
fields dual to 8 scalars, hence yield a scalar field in
(8,1) Young tableau).

Obers BP Rabinovici;Boulanger et al

Duality implies an infinite set of such domain walls,
corresponding to a roots of an hyperbolic Kac-Moody
algebra E1g9. Upon introducing these new degrees of
freedom, one would expect to still have a conformal
symmetry.

Damour Henneaux Julia Nicolai
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CQRM and coadjoint orbits

Let us come back to classical conformal mechanics:

e Since D and E_ do not commute with the Hamilto-

nian, they evolve in time, but following the simple
law,

dg/dt

(7, 9]
o0 = (B, Fp)wesr.

B o= (8 é)esuz)

e [he motion thus takes place on a coadjoint orbit
of SI(2), flowing along the action of the nilpotent
generator h = E,

G(t) = e"G(0)e "

e Classically, the coupling constant is given by the
invariant of the orbit, A ~ det(G).
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CQRM and coadjoint orbits, in generality

Let us consider the coadjoint orbit of a generic hy-
perbolic element of sl(2):

Q={g'Jg,geSU2)} , J= (A _A)

The orbit €2 can be viewed as 2 = Stab\G where
Stab = {g,g 1Jg = J} is the stabilizer of J. A gauge
slice can be chosen as

== ) 9)

G = SI(2) acts from the right on €2, hence on (83, ~).
A coadjoint orbit has a canonical invariant symplec-
tic form, the Kirillov-Kostant symplectic form,

w=4dl, 60=Tr(Jdgg ) = —2\Bdy

The right action of h € G preserves w, hence can
be represented by its moment map Ej such that
1w = dFEy,. h then acts by Poisson bracket with Ej,
on functions of (3,v). Here:

Er =2X\y, D=2X1+428y) E-=-2X8(1+87)
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Coadjoint orbits and unireps

e T his can be recast in the conformal quantum me-
chanics form through a canonical transformation,
1

Ei=y*, D=2y, E_ 2

A
2 —_—
p +2y2

e Note that this construction is purely classical: the
non-trivial part is to quantize the coadjoint orbit.
This can be done by induced representation meth-
ods.

e One could have started from a nilpotent element of
S1(2) instead:

= o) o= (" ) ()

6=td3, Ey=t, D=2pt, E_=p3%
Redefining t = y? and B8 = p/(2y) we get

2 12
Ey =y, D=py, E—=Zp

This is the usual harmonic oscillator. Its quantiza-
tion gives the metaplectic representation of Si(2).
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CAM from nilpotent orbits

Quantization of coadjoint orbit of any group con-
taining Si(2) will yield a conformal quantum me-
chanical model: simply need to find the right vari-
ables such that D = pq etc.

Generic coadjoint orbits have (even) dimension n =
dimG —RankG. Non-generic ones have a bigger sta-
bilizer, hence correspond to a phase space of smaller
dimension. They also have fewer parameters.

The smallest coadjoint orbit is that of a minimal
nilpotent element, ie the orbit of any root (for
Si(n): only one 2x2 Jordan block). Its quantization
leads to the minimal representation of G, analogous
to the metaplectic representation of SI(2).

Motivated by a conjecture about the BPS quantum
supermembrane, we have constructed the minimal
nilpotent orbit of ADE groups: this yields a family
of g-mechanical systems where the conformal group
is enhanced to any ADE group.

Kazhdan BP Waldron

The simplest non-trivial model, based on D4, turns
out to be equivalent to the reduction of 241 grav-
ity: this model thus exhibits hidden Ds symmetry,
which allows to get at the spherical vector.
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Summary

Conformal symmetry arises in many different prob-
lems where a universal regime is reached: non-
trivial infrared dynamics of field theories, near hori-
zon limit of black holes, and here: gravity near a
Spacelike singularity.

The appearance of conformal symmetry here is per-
haps not surprising, since we are expanding around a
solution with power-like behavior, g,. (¢, z) = t*g5, (x):
at least scaling symmetry is guaranteed.

From a mathematical viewpoint, conformal quan-
tum mechanics can be understood as free motion
on a coadjoint orbit of SI(2). It can be generalized
to any group G containing an Si(2). This allows
for a general quantization of these models.

Nilpotent orbits are particularly interesting, since
they have the smallest phase space and parameter
space: the minimal orbit has no parameter at all.

We have identified the minimal orbit of D4 with the
dimensional reduction of 241 gravity. How about
other ADE groups 7 Eip0 7
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Poetry: gravity and fluid mechanics

e The dynamics of gravity at a spacelike singularity
has a strong flavor of fully developped turbulency
in fluid mechanics. Indeed, one may think of each
of the fictitious particles as fluid elements moving
on the moduli space, with the spatial position play-
ing the role of the particle label in a Lagrangian
description.

e Recall that Euler's perfect fluid equations can be
thought of as a geodesic motion on the coadjoint
orbit of volume preserving diffeomorphisms (V.I.
Arnold) . Is there a similar picture for gravity ?

e [ he chaotic behavior is reminiscent of the energy
cascade in turbulency. The conformal symmetry
that we argued for may correspond to Kolmogorov's
“Inertial range”. Do quantum fluctuations and par-
ticle production provide a dissipation cut-off 7
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