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Goal and Motivations

@ Goal: perform a radial quantization of stationary, spherically
symmetric, BPS solutions of N’ = 2, D = 4 supergravity;

@ Main motivation: evaluate (and improve on) OVV’s holographic
interpretation of the OSV conjecture

Ooguri Strominger Vafa; Ooguri Vafa Verlinde

@ Second motivation: set up a general framework for constructing
automorphic functions generating exact BH degeneracies as their
Fourier coefficients, in the spirit of the DVV formula for ' = 4;

@ Instill supersymmetry and holography into early discussions:
Breitenlohner Gibbons Maison (1988), Cavaglia de Alfaro Filippov (1995), Breitenlohner Hellmann (96)

@ Work in collaboration with Giinaydin, Neitzke, Waldron and more
recently Rocek, Vandoren;

hep-th/0512296,hep-th/0607227, hep-th/0612xxx
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Introduction

BPS black holes in type |l string theory compactified on CY3 enjoy
simplifying properties:

@ By the attractor phenomenon, the near-horizon solution, hence
the Bekenstein-Hawking entropy, depends only on the conserved
charges;

@ Being supersymmetric, they are expected to correspond to exact
ground states of the quantum Hamiltonian at fixed charges, with
an arbitrarily large degeneracy;

@ The string coupling can be made arbitrary small throughout the
geometry, allowing a description as a gas of weakly interacting
open strings in the presence of D-branes.

Strominger Vafa; Johnson Khuri Myers; Maldacena Strominger Witten
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AdS32/CFT; 1

@ The modern understanding relies on AdS/CFT in the near horizon
geometry AdS; x S2 x CYj3. The central charge of the
two-dimensional SCFT on the boundary, controlling the density of
highly excited states via Cardy’s formula, can be computed on
geometrical grounds.

Brown Henneaux; Carlip; Strominger

@ AdS; is really the near horizon geometry of a 5D black string: if
[D6] # 0 it is not possible to lift the 4D black hole to a black string
in 5D. Moreover, such a lift may seem rather artificial as the
M-theory direction can be made arbitrarily small.

@ Instead, one may hope for a holographic description in terms of a
superconformal quantum mechanics living at the boundary(ies) of
AdS,; no concrete proposal yet, except in some probe
approximations.
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AdS,/SCFTy and channel duality

@ A possible strategy is to indirectly compute the spectrum of the
SQM via channel duality, as in open/closed string duality:

Tre ™ Hopen — (B~ Holosea| B)

Here, H,jpseq is the Hamiltonian for string theory in AdS. in radial
quantization. The real interest is in Hopen.

@ This is hardly doable in general, but becomes tractable in a
mini-superspace approximation, where one keeps only spherically

symmetric SUGRA modes in the bulk. This approximation is hard
to control, but perhaps justified in the BPS sector.
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Topological amplitude and black hole wave function |

@ Recently, OVV suggested that the OSV conjecture
Qe qr) ~ / do! [Wiop(p' + ig')[? €'
can be interpreted just in this way,

Q(p7 Q) ~ <\U;3r,q|w5,q>
where

1 .
Vi (0) = €529 Wige(p! F i)

@ The main goal of this talk will be to perform a rigorous treatment of
radial quantization, and evaluate / improve on OVV'’s proposal.
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o Introduction
e Radial flow and geodesic motion
e BPS black holes and twistors

@ Quantizing the attractor flow
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e Radial flow and geodesic motion
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Stationary solutions and KK* reduction |

@ Stationary solutions in 4D can be parameterized in the form
ds? = —e?V(dt + w)? + e 2Yds2 | A} =(ldt+ AL

where ds;, U,w, A}, ¢! and the 4D scalars z' € M, are
independent of time. In contrast to usual KK ansatz, the Killing
vector is time-like.

@ Such solutions can be described by reducing the D=3+1 action to
three Euclidean dimensions. As usual, one-forms (Aé, w) can be

dualized into pseudo-scalars (¢, a), where ais the twist (or NUT)
potential.
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Stationary solutions and KK* reduction Il

@ The result is 3D Euclidean gravity coupled to a non-linear sigma
model on a pseudo-Riemannian space M3,

. . - ~ 2
ds? = dlP + g; dz'dz) + eV (da +clag - g,dg’)
_e2U [,dclde? 4tV (d&, + OpedcK ) (d@ + eJLdgL)}

where gj is the metric on My, and N, := 6 — ity are the
complexified gauge kinetic terms.

@ Mj3 has a 2ny + 3-dimensional Heisenberg algebra of isometries

P'=0:+C0a, q = 0u—G0a. k=0a
Pl = 2k
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Spherically symmetric BH and geodesics |

@ Now, restrict to spherically symmetric solutions, with spatial slices

ds3 = N?(p)dp® + r(p)dQ5

@ The sigma-model action becomes, up to a total derivative,

S- /dp[ (%~ P Gad ¢b)}

where g, is the metric on M3: this describes the
(unparameterized) geodesic motion of a fiducial particle with unit
mass on the cone R x M.
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The Wheeler-DeWitt constraint |

@ The equation of motion of N imposes the Hamiltonian
constraint,or Wheeler-DeWitt equation

1

Hwow = (pr)? — ﬁgabpapb -1=0

@ The gauge choice N = r? allows to separate the problem into

radial motion along r, and affine geodesic motion on M3:

9°°papp = C? (p)z—gz—1=0 - =’
arb n r2 - sinhCp’

@ C = 2THSgy is the extremality parameter: extremal (in particular
BPS) black holes correspond to light-like geodesics.

Boris Pioline ( LPTHE and LPTENS, Paris ) Quantizing BPS Black Holes ISM 2006, Dec 13, India 12/31



Isometries and conserved charges

@ The conserved charges associated to the Heisenberg isometries
correspond to the electric and magnetic charges (qg;, p') and the
NUT charge k.

@ If k # 0, the off-diagonal term in the 4D metric
ds? = —e?Y(dt + kcos 0dp)? + e 2Y[dr? + r?(db? + sin? d¢?)]

implies the existence of closed time-like curves around ¢ direction,

near # = 0. Bona fide 4D black holes arise in the “classical limit”

k — 0. Keeping k # 0 will allow us to greatly extend the symmetry.
@ The conserved charge associated to the extra isometry

oy + C’&CI + C,@C, + 205 is the ADM mass; it does not commute

with p, g, k.
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Conserved charges and black hole potential

@ Setting k = 0 for simplicity, one arrives at the Hamiltonian,
1 ,
H=3 [pﬁ +pig'p; — Y VBH} =C*?
where Vpy is the “black hole potential”,

. 1 _ 1
Veu(Z',p', qi) = E(QI — Nup)) "™ (ak — Niwpt) + EPIT/JPJ

@ The potential V = —e?Y Vg is unbounded from below.
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Quantizing geodesic motion |

@ The classical phase space is the cotangent bundle T*(M3),
specifying the initial position and velocity: non compact.

@ Quantization proceeds by replacing functions on phase space by
operators acting on wave functions in Ly(M3), subject to

AsW(U, 2 ¢ () a) = CPw

where Aj is the Laplace-Beltrami operator on M3.
@ The electric, magnetic and NUT charges may be diagonalized as

WU,z ¢! ¢ a) = V,4(U, 2) gl (ac'+p'¢)

[—86 — Ay — GZUVBH — C2 \Vp7q(U, Z) =0
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Quantizing geodesic motion Il

@ The black hole wave function V,, 4(U, z) describes quantum
fluctuations of the 4D moduli as one reaches the horizon at
U — —oo. Naively, should be peaked at the attractor point.

@ Restoring the variable r, one could also describe the quantum
fluctuations of the horizon area re—2Y, around the classical value
4SpH(p, q)-

@ The natural inner product is the Klein-Gordon inner product at
fixed U, famously NOT positive definite. A standard remedy in
quantum cosmology is “third quantization”, possibly relevant for
black hole fragmentation / multi-centered solutions.
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e BPS black holes and twistors
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Attractor flow in N = 2 supergravity

@ Consider N =2 SUGRA coupled to ny abelian vector multiplets:
the vector multiplet scalars z' take values in a special Kahler
manifold M. Hypers decouple at tree level.

@ After reduction to 3 dimensions, the vector multiplet scalars take
value in a quaternionic-Kahler space Mgj, known as the ¢ — map
of the special Kahler space Mg.

Ferrara Sabharwal; de Wit Van Proyen Vanderseypen

@ The black hole potential splits into two pieces,
Vau(p.q: 2, 2') = |2 + 012 g 9,12

where Z is the central charge Z = /(g X! — p'F)).

Boris Pioline ( LPTHE and LPTENS, Paris ) Quantizing BPS Black Holes ISM 2006, Dec 13, India 18/31



Conserved charges and black hole potential |

@ Supersymmetric solutions are obtained by cancelling each term in
the kinetic energy against the corresponding term in the potential,
leading to the attractor flow equations:

du U az' U

@ The 4D moduli are attracted towards the horizon to the value z; ,
minimizing |Z| at fixed values of the charges:

RexX'=p', ReF =g

The attractor point is a local maximum of the potential: BPS
trajectories are extremely fine-tuned !

@ If |Z.| # 0, this is an AdS, x S, throat, with Sgy = 7| Z,|2.
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Attractor flow and SUSY geodesic motion |

@ The above Bogomolny-type argument does not fix the phase in
the second attractor equation, and does not guarantee that the
solution is supersymmetric.

@ A more rigorous procedure is to reduce the full D = 4 SUGRA
including fermions, and look at BPS solutions of the resulting
SUSY mechanics. Shortcut: consider domain walls in N=2
SUGRA + hypers.

@ Using the restricted holonomy Sp(2) x Sp(2ny + 2), one may
show that SUSY trajectories occur when the quaternionic vielbein
VA (a =1,2, A=1,...,2ny + 2) obtains a null eigenvector:

Jea | VP ea=0 « VArVAB=0
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Improved SUSY mechanics - HKC and twistors |

@ This SUSY mechanics is rather unusual, insofar as the SUSY
comes from a triplet of non-integrable complex structures.

@ Itis possible to remedy this problem by adding 4 real scalar
degrees of freedom, extending the QK manifold to its Hyperkahler
cone (HKC), or Swann bundle,

Rt x S® — HKC — QK

The spin connection on S? is such that the three almost complex
structures become integrable. Geodesics on QK lift to SU(2)
invariant geodesics on HKC.

@ This construction is very natural in the conformal approach to
N = 2 supergravity.

De Wit Rocek Vandoren
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The twistor space

@ The relevant information is captured by the twistor space Z, a
two-sphere bundle over QK with a Kahler-Einstein metric. The
sphere coordinate z keeps track of the Killing spinor, z = ¢ /ez.

@ In the presence of triholomorphic isometries, the geometry of HKC
is controlled by a generalized prepotential G(nt),

_ _ _ d
(KA T+ ) X+ W) = o GO
where 7t is the “projective multiplet”

0t = v+ Xt =i

Hitchin Lindstrom Rocek; De Wit Rocek Vandoren
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Twistor space for the c-map

@ When HKC is the Swann bundle of the c-map of a SK manifold,
the generalized prepotential is simply obtained from the
prepotential F,

G(n".¢) = F(n') /'

@ The inhomogeneous coordinates ¢/ = v//v*, &, = w; /v,
o = w,/v’ are complex coordinates on Z, adapted to the
Heisenberg symmetries:

Rocek Vafa Vandoren

5/ _ C/ 4 j eUtK(X)/2 (z )_(’+z*1X’)

£ = 5/+ i gUTK(X)/2 (z ,—_-I+Z_1 F/)
a = a+ &g

@ The coordinates on the base M3 are SU(2) invariant
combinations of ¢/, &}, a.

Neitkze, Pioline, Rocek, Vandoren, to appear
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BPS black holes and holomorphic curves

@ Upon lifting the geodesic motion to Z, SUSY is preserved iff the
momentum is holomorphic in the canonical complex structure on
Z, at any point along the trajectory: 1st class constraints !

@ Put differently, the SUSY phase space is the twistor space Z,
equipped with its Kéhler symplectic form. Its dimension is 4ny + 6,
almost half that of the generic phase space T*(M3).

@ BPS solutions correspond to holomorphic curves (), &1(p), alp)
at constant £/, ¢, &, and are algebraically determined by the
conserved charges: integrable system !

Boris Pioline ( LPTHE and LPTENS, Paris ) Quantizing BPS Black Holes ISM 2006, Dec 13, India 24/31



The Penrose Transform

@ At fixed values of U, z/, ¢!, {;, a, the complex coordinates ¢/, &),
on Z are holomorphic functions of the twistor coordinate z: the
fiber over each point is a rational curve in Z.

@ Starting from a holomorphic function ¢ on Z, we can produce a
function ¥ on QK
az
2riz

WU.2.Z (G = § 5 0 [€(2).8(2)a(2)]

satisfying some generalized harmonicity condition:
(€"VaaVas — Rag) W =0

@ This is a quaternionic generalization of the usual Penrose
transform between holomorphic functions on CP® and conformally
harmonic functions on S*.

Salamon; Baston Eastwood
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@ Quantizing the attractor flow
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The BPS Hilbert space |

@ In terms of geodesic motion on the QK base, the classical BPS
conditions VAl* VBB — 0 become a set of 2nd order differential
operators which have to annihilate the wave function V:

(casV VB — RAB) W =0

@ In terms of the twistor space, the BPS condition p; = 0 requires
that W should be a holomorphic function on Z. More precisely,
taking the fermions into account, it should be a section of
H'(Z,0(-2)).

@ The equivalence between the two approaches is a consequence
of the Penrose transform discussed previously.
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The BPS Black Hole Wave-Function |

@ Ignore fermionic subtleties, and go back to the simple-minded
twistor transform

az

v i sl A~ F _ 2U%
(U,Z,Z,{,C/,a) e oriz

@ |€(2),8(2), a(2)

@ Consider a black hole with k = 0: p/ and g can be diagonalized
simultaneously, and completely determine (up to normalization)
the wave function as a coherent state on Z:

o = exp|i(p'é - q)
= exp [i(Plfl — qi¢’) + iV (2 W, o(X) + 27 Wp,q(X))]
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The BPS Black Hole Wave-Function Il

@ The integral over z is of Bessel type, leading to
V=& Ko (20 6”2yl ) &)

This is peaked around the classical attractor points, with slowly
damped, increasingly faster oscillations away from them.

@ We could have reached this result 36 mins ago, by naively
quantizing the attractor flow:

pu = -—eYZ| U
{p? _ _2eUsZ] = WV ~ exp [2/6 |Z|]

@ Contrary perhaps to expectations, the wave flattens out towards
the horizon ! This is because of the large fine-tuning needed to
produce a BPS solution.
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Relation to the topological amplitude ?

@ Before integrating along the fiber, we found that
W, g ~ explieVtK/2(zW + z="W)], in “rough” agreement with
OVV’s answer V;, 5 ~ exp(W).

@ ltis unlikely that W, can be identified as a black hole wave
function: it naturally depends on ny + 1 variables, while ¥y
depends on 2ny + 3 variables.

@ Instead, the “super-BPS” Hilbert space of tri-holomorphic
functions on HKC is the natural habitat of a one-parameter
generalization of the topological string amplitude...

Gunaydin Neiztke BP
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@ Higher derivative corrections remain to be incorporated: higher
derivative scalar interactions on QK space.

@ Multi-centered configurations can be described by certain
harmonic maps from R® to QK does that correspond to “second
quantization”, i.e. including vertices ?

@ For N > 4, this suggests that the 3D U-duality group controls the
BH spectrum: can one obtain the exact degeneracies as Fourier
coefs of some “BPS automorphic forms” ? Improve on DVV.

@ The equivalence between BH attractor flow and geodesic flow on
QK is a reflection of mirror symmetry. Can this be used to
compute instanton corrections on hypermultiplet moduli space ?
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