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• These results are so far (very) well explained by effective field theoretical inflationary
models, yet their validity is not fool-proof: large potential energy density, transplankian
fluctuations...

• With the expected improved accuracy of cosmological measurements, it is conceivable
that distinctive features of string theory may reveal themselves:
1. UV softness, Regge behavior
2. exponentially large density of states, limiting Hagedorn temperature TH ∼ 1/ls
3. existence of topological excitations, minimal length R ≥ ls or rather R1R2R3 ≥ l3M
4. holographic entropy bounds...

• With LHC still far in the future, understanding StringY Cosmology may be the only way to
make contact with reality...
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around an asymptotically flat coherent background, with a unique stable vacuum.

• In contrast, time dependent backgrounds have no canonical vacuum state, due to particle
production. On-shell S-matrix elements are replaced by off-shell transition amplitudes.

• Closed string field theory would be the natural framework to address these questions,
unfortunately it has remained untractable to this day. Can Bogolioubov transformations
between vacua still be implemented in a first-quantized formalism ?

• Perturbative string theory requires an Euclidean worldsheet, hence Euclidean target
space. The analytic continuation may be ambiguous or ill-defined, Lorentzian observables
may be very different from their Euclidean counterparts.

• String theory is not content on a finite time interval, and one is frequently forced into Big
Bang / Big Crunch singularities, CTC in the process of maximally extending the geometry.
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• We shall focus in particular on the topological excitations which wind around the collapsing
dimension: can the production of winding states resolve the singularity ?
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Outline of the talk

1. Introduction

2. The Lorentzian orbifold and its avatars

Misner, Taub-NUT, Grant...

3. Closed strings in Misner space: first pass

Nekrasov

3. A detour: Open strings in electric fields

Berkooz BP

4. Closed strings in Misner space: second pass

Berkooz BP; Berkooz Durin BP Reichmann Rozali

5. Conclusions, speculations
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• The future (past) regions X+X− > 0 describes a cosmological universe often known as
the Milne universe (1932), linearly expanding (contracting) away from a Big Bang
singularity (toward a Big Crunch singularity):
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This is a (degenerate) Kasner singularity, everywhere flat, but for a delta-function
curvature at T = 0.
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• Finally, the lightcone X+X− = 0 gives rise to non-Hausdorff sets with a degenerate
metric, attached to the singularities.
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• The Misner geometry arose again more recently as the M-theory lift of a simple (ekpyrotic)
cosmological solution of Einstein-dilaton gravity with no potential.

Khoury Ovrut Seiberg Steinhard Turok



IAP - FEB 12, 2004 8

Close relatives of the Misner Universe (cont)
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a bouncing 4-dimensional Universe, with singularities analogous to
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• The Lorentzian orientifold IIB/[(−)Fboost]/[Ω(−)FL] was also recently argued to
describe orientifolds of non-supersymmetric strings with non-vanishing Neveu-Schwarz
tadpoles.

Dudas Mourad Timirgaziu
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G-invariant states. Simple examples are the circle, R/Z, and the rotation orbifold R2/Zk.

• The spectrum of the quotient theory contains closed string states of the parent theory
which are invariant under G: untwisted states.
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• One way to obtain non-trivial yet solvable backgrounds in string theory is the orbifold
construction: to a CFT with a discrete global symmetry G, associate a CFT’ with only
G-invariant states. Simple examples are the circle, R/Z, and the rotation orbifold R2/Zk.

• Twisted sectors are labelled by conjugacy classes of G. Higher twisted sectors correspond
to multiply wound states

.

• When G acts non-freely, the twisted sector states are localized at the fixed points. They
yield new localized degrees of freedom, which ensure the consistency of the background:
anomaly free, divergence free...

• The condensation of these twisted states changes the vacuum, and effectively resolves
the singularity: R2/Zk → R2/Zk−1 → . . . (tachyon), R4/Zk → multi-centered
Eguchi-Hanson (massless mode).
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• As usual in standard orbifolds, part of the spectrum involves closed strings on Minkowski
covering space, which are invariant under the orbifold projection. In conformal gauge,

X
±
(σ + 2π, τ) = X

±
(σ, τ) , (∂

2
τ − ∂

2
σ)X

±
= 0

satisfying the Virasoro (physical state) condition (Ẋµ ±X ′µ)2 = 0.
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• The resulting eigenfunctions describe closed strings traveling around the Milne circle with
integer momentum j.
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Quantum fluctuations and backreaction

• In the Minkowski vacuum (inherited from the covering space), the renormalized propagator
can be obtained as a sum over images, e.g in D=4

G(x; x
′
) =

∞∑
n=−∞,n 6=0

[−2(X
+ − e

2πβn
X

+′
)(X

− − e
2πβn

X
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) + (X
i −X

i′
)
2
]
−1
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2 + cosh 2πnβ
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• In the case of the Grant space, the one-loop energy momentum tensor diverges as
1/(R2T 2) on the chronological horizon, and 1/(T − Tn)

3 on the polarized hypersurfaces.
This is at the basis of Hawking’s chronology protection conjecture.
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Scattering of untwisted states

• Scattering amplitudes of untwisted sector states can be computed from those in flat space
by the inheritance principle,

〈V (j1, k1) . . . V (jn, kn)〉Misner =

∫
dv1 . . . dvn e

i(j1v1+···+jnvn)

〈V (e
βv1k

+
1 , e

−βv1k
−
1 , k

i
1) . . . V (e

βvnk
+
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• The integral diverges due to Regge behavior in the large momentum, fixed angle regime.
E.g, the four-tachyon scattering amplitude in bosonic string leads to∫

dv v
−1

2(ki1−k
i
3)2+i(j2−j4)

which diverges if (ki1− k
i
3)

2 ≤ 2. This can be understood as large graviton exchange near
the cosmological singularity.

Berkooz Craps Rajesh Kutasov
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E.g, the four-tachyon scattering amplitude in bosonic string leads to∫

dv v
−1

2(ki1−k
i
3)2+i(j2−j4)

which diverges if (ki1− k
i
3)

2 ≤ 2. This can be understood as large graviton exchange near
the cosmological singularity.

Berkooz Craps Rajesh Kutasov

• The divergence disappears for the Grant space, except for a localized contribution at
ki1 = ki3. The amplitude is also finite for transverse gravitons in type II superstring on
Misner space, but reappears for longitudinal gravitons.

Berkooz Durin Pioline Reichmann, unpublished
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Closed string in Misner space - twisted sectors

• In addition, there is an infinite set of twisted sectors, corresponding to strings on the
covering space that close up to the action of the orbifold group:

X
±
(σ + 2π, τ) = e

±ν
X
±
(σ, τ) , ν = 2πwβ
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• There are no translational zero-modes, instead two pairs of quasi zero-modes which are
canonically conjugate real operators:

[α
+
0 , α

−
0 ] = −iν , [α̃

+
0 , α̃

−
0 ] = iν
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Physical states (absence thereof)

• A natural way to quantize the system is to represent the oscillators on a Fock space with
vacuum |0〉 annihilated, e.g., by

α
±
n>0 , α̃

±
n>0 , α

−
0 , α̃
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0
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iν(1− iν)− 1 + Lint

with a similar answer for L̃0.

• This is the familiar result for the vacuum energy 1
2θ(1− θ) a rotation orbifold, after analytic

continuation θ → iν...

• Due to the iν/2 term in the ground state energy, all states obtained by acting on |0〉 by
creation operators α±n<0 and by α+

0 will have imaginary energy, hence the physical state
condition L0 = 0 has no solutions.

Nekrasov
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One-loop amplitude

• Independently of this fact, one may compute the one-loop (Euclidean ws, Minkowskian
target) free energy using path integral methods:

Abos =

∫
F

∞∑
l,w=−∞

dρdρ̄

(2π2ρ2)13

e−2πβ2w2ρ2

|η21(ρ)x θ1(iβ(l + wρ); ρ)|2

where θ1 is the Jacobi theta function,

θ1(v; ρ) = 2q
1/8

sinπv

∞∏
n=1

(1− e
2πiv

q
n
)(1− q

n
)(1− e

−2πiv
q
n
) , q = e

2πiρ
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• In the untwisted sector, this reproduces the integrated vacuum free energy found by the
method of images:

∫
dx

+
dx

−
G(x, x) =

+∞∑
l=−∞

∫ ∞

0

dρ

ρD/2
e−m

2ρ

sinh2 (πβl)
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• In the twisted sector, the left-moving zero-modes contribute

1

2 sinh(βwρ)]
=

∞∑
n=1

q
i(n+1

2)βw

in accordance with the quantization scheme based on a Fock vacuum annihilated by α−0 .
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• The absence of physical twisted states crushes our hopes for resolving the singularity...
yet it is hard to swallow.
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q
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in accordance with the quantization scheme based on a Fock vacuum annihilated by α−0 .

• The absence of physical twisted states crushes our hopes for resolving the singularity...
yet it is hard to swallow. In particular, α+

0 and α−0 are not hermitian conjugate to each
other, but rather self-hermitian...
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Open strings in electric field vs Lorentzian orbifold

• A very similar puzzle is faced in the case of colliding D-branes, or in the T-dual process of
charged open strings in a constant electric field:

T
E -E
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v -v

0 1

XX +-
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• Recall that for open strings stretched between two D-branes with electromagnetic fields F0

and F1, proper frequencies satisfy
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For F0 6= F1, the open string carries a net electric charge, and the motion of its center of
motion is that of a charged particle.
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and F1, proper frequencies satisfy

e
−2πiωn =

1 + F0

1− F0

·
1− F1

1 + F1

For F0 6= F1, the open string carries a net electric charge, and the motion of its center of
motion is that of a charged particle.

• In the case of an electric field F1 = Edx+ ∧ dx−, F1 = 0, the resulting spectrum is

ωn = n+ iν , ν := ArctanhE = wβ

just as in the Lorentzian orbifold case. More precisely, the charged open string has half as
many excited modes than the twisted closed strings, and isomorphic quasi-zero modes.
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Open string mode expansion

• The light-cone embedding coordinates have the normal mode expansion

X
±

= x
±
0 + i

+∞∑
n=−∞

(−)
n
(n± iν)

−1
a
±
ne

−i(n±iν)τ
cos[(n± iν)σ]

with reality conditions (a±n )∗ = a±−n , (x±0 )∗ = x±0
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X
±

= x
±
0 + i

+∞∑
n=−∞

(−)
n
(n± iν)

−1
a
±
ne

−i(n±iν)τ
cos[(n± iν)σ]

with reality conditions (a±n )∗ = a±−n , (x±0 )∗ = x±0
• The canonical commutation relations read

[a
+
m, a

−
n ] = −(m+ iν)δm+n , [x

+
0 , x

−
0 ] = −

i

E

• In particular, the open and closed strings have isomorphic (quasi) zero-mode structures,
with α±0 ≡ α±0 and α̃±0 ≡ ±

√
νEx±0 .
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• The world-sheet Hamiltonian, normal ordered with respect to the vacuum annihilated by
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n>0, a

−
n>0 and a+

0 , takes the form
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• By the same token, charged open strings should have no physical states...
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One-loop amplitude and Schwinger pair production

• Using this quantization scheme, the one-loop (Euclidean worldsheet, Minkowskian target)
vacuum free energy reads

Abos =
iπV26(e0 + e1)

2

∫ ∞

0

dt

(4π2t)13

e−πν
2t/2

η21(it/2) θ1(tν/2; it/2)
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• Each of the poles at t = 2k/ν contributes to the imaginary part, yielding the production
rate of charged open strings,

W =
1

2(2π)25

(e0 + e1)

ν

∞∑
k=1

(−)
k+1

(|ν|
k

)13 ∞∑
N=−1

cb(N) exp

(
−2πk

N

|ν|
− 2πk|ν|

)
Bachas Porrati

where η−24(q) =
∑∞

N=−1 cb(N)qN . This can be viewed as the sum of the Schwinger
production rates for each state in the spectrum, of mass m2 = 2N + ν2.
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production rates for each state in the spectrum, of mass m2 = 2N + ν2.

• This seems to support the quantization scheme based on a vacuum, hence the absence of
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Charged particle and open string zero-modes

• Let us recall the quantization of a charged particle in an electric field:

L =
1

2
m
(
−2∂τX

+
∂τX

−
+ (∂τX

i
)
2
)

+
e

2

(
X

+
∂τX

− −X
−
∂τX

+
)
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• The classical trajectories are identical to the open string
zero-mode:

X
±

= x
±
0 ±

1

ν
a
±
0 e

±ντ

±ex±0 is the conserved linear momentum, and a±0 the
velocity.
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• Starting from the canonical equal-time commutation rules

[π
+
, x

−
] = [π

−
, x

+
] = i , [π

i
, x

j
] = iδij

one obtains the open string zero-mode commutation relations (ν = e),

[a
+
0 , a

−
0 ] = −iν , [x

+
0 , x

−
0 ] = −

i

ν
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Charged particle and ppen string zero-modes

• Quantum mechanically, one may represent π± = i∂/∂x∓ hence obtain a±0 , x
±
0 as

covariant derivatives

a
±
0 = i∂∓ ±

ν

2
x
±
, x

±
0 = ∓

1

ν

(
i∂∓ ∓

ν

2
x
±
)

acting on wave functions f(x+, x−).
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ν

(
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ν

2
x
±
)

acting on wave functions f(x+, x−).

• The zero-mode piece of L0, including the evil iν2 ,

L
(0)
0 = −a+

0 a
−
0 +

iν

2
= −

1

2
(∇+

0∇
−
0 +∇−

0∇
+
0 )

is just the Klein-Gordon operator of a particle of charge ν.
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Klein-Gordon and the inverted harmonic oscillator

• Defining α±0 = (P ±Q)/
√

2 and same with tildas, the Klein-Gordon operator can be
rewritten as an inverted harmonic oscillator:

M
2
= a

+
0 a

−
0 + a

−
0 a

+
0 = −

1

2
(P

2 −Q
2
)
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• More explicitely, in terms of u = (p̃+ νx)
√

2/ν,(
−∂2

u −
1

4
u

2
+
M2

2ν

)
ψp̃(u) = 0
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• The latter admits a respectable delta-normalizable spectrum
of scattering states, in terms of parabolic cylinder functions,
e.g:

φ
+
in = D

−1
2+iM

2
2ν

(e
−3iπ

4 u)e
−ip̃t

e
iνxt/2

V

ep
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• These correspond to non-compact trajectories of charged particles in the electric field.
Tunnelling is just (stimulated) Schwinger pair creation,

e
− → (1 + η) e

−
+ η e

+
, η ∼ e

−πM2/ν

Brezin Itzykson; Brout Massar Parentani Spindel
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Lorentzian vs Euclidean states

• Analytic continuation X0 → −iX0 , ν → iν turns an electric field in R1,1 into a magnetic
field in R2. At the same time, one should Wick rotate the worldsheet time.
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continue to non-normalizable states of the stable harmonic oscillator.
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field in R2. At the same time, one should Wick rotate the worldsheet time.

• The discrete spectrum with complex energy comes by analytic continuation of the
normalizable (Landau) states of the (stable) harmonic oscillator.

• Conversely, the physical continuous scattering states of the inverted harmonic oscillator
continue to non-normalizable states of the stable harmonic oscillator.

• The contribution of zero-modes to the one-loop amplitude can be interpreted either way,

1

2i sin(νt/2)
=

∞∑
n=1

e
−i(n+1

2)νt
=

∫
dM

2
ρ(M

2
)e
−M2t/2

The density of states is obtained from the reflection phase shift,

ρ(M
2
) =

1

ν
log Λ−

1

2πi

d

dM2
log

Γ
(

1
2 + iM

2

2ν

)
Γ
(

1
2 − iM

2

2ν

)
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• The physical spectrum can be explicitely worked out at low levels, and is free of ghosts: a

tachyon at level 0, a transverse gauge boson at level 1, . . .
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Physical spectrum at low level

• The ground state tachyon
|T 〉 = φ(x

+
, x

−
)|0ex, k〉

should satisfy the Virasoro constraint

L0|T 〉 =

[
−

1

2

(
a

+
0 a

−
0 + a

−
0 a

+
0

)
+

1

2
ν

2 − 1 +
1

2
k

2
i

]
|T 〉

which is the two-dimensional KG equation.
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• Level 1 states consist of

|A〉 =
(
−f+

a
−
−1 − f

−
a

+
−1 + f

i
a
i
−1

)
|0ex, k〉

with the mass shell conditions

[M
2 − k

2
i − ν

2
]f
i
= 0 , [M

2 − k
2
i − ν

2 ∓ 2iν]f
±

= 0

• The L1 Virasoro constraint eliminates one polarization.
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[M
2 − k

2
i − ν

2
]f
i
= 0 , [M

2 − k
2
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2 ∓ 2iν]f
±

= 0

• The L1 Virasoro constraint eliminates one polarization. Despite the non-vanishing
two-dimensional mass k2

i − ν2, the spurious state L−1φ|0〉 is still physical, eliminating an
extra polarization.

• One thus has D − 2 transverse degrees of freedom, ie a massless gauge boson in D
dimensions.
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Charged particle in Rindler space

• For applications to the Milne universe, one should diagonalize the boost momentum J , ie
consider an accelerated observer.

Gabriel Spindel; Mottola Cooper
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y

V

y

V

y

V

• In the Rindler patch R, letting f(r, η) =

e−iJηfJ(r) and r = ey, one gets a Schrödinger
equation for a particle in a potential

V (y) = M
2
e

2y − (J +
1

2
ν e

2y
)
2
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are in the same Rindler quadrant. Tunneling
corresponds to Schwinger particle production.
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2y − (J +
1
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)
2

• If j < 0, the electron and positron branches
are in the same Rindler quadrant. Tunneling
corresponds to Schwinger particle production.

• If 0 < j < M2/(2ν), the two electron branches
are in the same Rindler quadrant. Tunneling
corresponds to Hawking radiation.

• If j > M2/(2ν), the electron branches extend
in the Milne regions. There is no tunneling, but
partial reflection amounts to a combination of
Schwinger and Hawking emission.
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Rindler modes

• Incoming modes from Rindler infinity I−R read, in terms of parabolic cylinder functions:

Vjin,R = e
−ijη

r
−1
M

−i(j2−
m2
2ν ),−ij2

(iνr
2
/2)

Incoming modes from the Rindler horizon H−
R read

U jin,R = e
−ijη

r
−1
W

i(
j
2−

m2
2ν ),

ij
2

(−iνr2
/2)

+−1−1 +1

q2 q1 q4+− q3+−−q3q4

1+−

q1+−2−q+−
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• The reflection coefficients can be computed:

q1 = e
−πj

cosh
[
πM

2

2ν

]
cosh

[
π
(
j − M2

2ν

)] , q3 = e
π

(
j−M

2

2ν

)
cosh

[
πM

2

2ν

]
| sinhπj|

and q2 = 1− q1, q4 = q3 − 1, by charge conservation.
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Global Charged Unruh Modes

• Global modes may be defined by patching together Rindler modes, ie by analytic
continuation across the horizons. Unruh modes are those which are superposition of
positive energy Minkowski modes,

Ω
j
in,+ = Vjin,P = (−iνX+

X
−
)[X
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• Any state in Minkowski space can be represented as a state in the tensor product of the
Hilbert spaces of the left and right Rindler patches. In contrast to neutral fields in Rindler
space, Boulware-Fulling modes that vanish in L or R have positive Minkowski energy.
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Closed string zero-modes

• Let us analyze the classical solutions for the closed string zero modes

X
±
(τ, σ) = e

∓νσ
[
±

1

2ν
α
±
0 e

±ντ ∓
1

2ν
α̃
±
0 e

∓ντ
]
, α

±
0 , α̃

±
0 ∈ R
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We may thus follow the motion of a single point σ = σ0 and obtain the rest of the
worldsheet by acting with the boost.
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• The behavior at early/late proper time now depends on εε̃: For εε̃ = 1, the string
begin/ends in the Milne regions. For εε̃ = −1, the string begin/ends in the Rindler regions.
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Short and long strings ( j = 0)
Choosing j = 0 for simplicity, we have 4 solutions:

• ε = 1, ε̃ = 1:

X
±
(σ, τ) =

M

ν
√

2
sinh(ντ)e

±νσ
, T =

M

ν
sinh(ντ) , θ = νσ

is a short string winding around the Milne circle from T = −∞ to T = +∞.
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r = ∞; σ is now the proper time direction in the induced metric.
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Short and long strings
Closed string trajectories are thus generated by the motion of two decoupled particles in
inverted harmonic oscillators:

R
L
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Relation to open string modes

• Instead of following the motion of a point at fixed σ, one may consider instead a point a
fixed σ + τ : this is precisely the trajectory of the open string zero-mode.

• Using the covariant derivative representation

α
±
0 = i∂∓ ±

ν

2
x
±
, α̃

±
0 = i∂∓ ∓

ν

2
x
±

we observe that x± is the Heisenberg operator corresponding to the location of the closed
string (at σ = 0):

X
±
0 (σ, τ) = e

∓νσ
[
cosh(ντ) x

±
+ i sinh(ντ) ∂∓

]
• The open string global wave functions. . .
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Relation to open string modes

• Instead of following the motion of a point at fixed σ, one may consider instead fixed σ + τ :
these are the trajectories of the open string zero-mode, in Rindler coordinates.

• Using the covariant derivative representation

α
±
0 = i∂∓ ±

ν

2
x
±
, α̃

±
0 = i∂∓ ∓

ν

2
x
±

we observe that x± is the Heisenberg operator corresponding to the location of the closed
string (at σ = 0):

X
±
0 (σ, τ) = e

∓νσ
[
cosh(ντ) x

±
+ i sinh(ντ) ∂∓

]
• The open string global wave functions are also the closed string wave functions. . .
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Quantization in the Rindler patch

• For long strings in conformal gauge, the worldsheet time τ is in fact a spacelike coordinate
wrt to the induced metric. This is also true for short strings: as they wander in the Rindler
patch, the induced metric undergoes a signature flip.

• If so we should quantize the string with respect to the “time” coordinate σ rather than τ .
The canonical generator of time translations

E = −
∫ ∞

−∞
dτ
(
X

+
∂σX

− −X
−
∂σX

+
)

=

∫ ∞

−∞
dτr

2
∂ση

is infinite: long strings carry an infinite Rindler energy.

• Introducing a cut-off −T ≤ τ < T , the Rindler energy

ET ∼ −
e2νT

4ν2

(
α̃

+
0 α

−
0 + α̃

−
0 α

+
0

)
can be understood as the tensive energy of the static stretched string.

• The Rindler energy spectrum is unbounded: long strings (ε = −1) have
ET > e2νTMM̃/(4ν2) unbounded from below, while the short strings (ε = 1) have
ET < −e2νTMM̃/(4ν2) unbounded from above.
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The one-loop amplitude again

• Recall the (Euclidean ws, Minkowskian target) one-loop amplitude:

Abos =

∫
F

∞∑
l,w=0

dρdρ̄

(2π2ρ2)13

e−2πβ2w2ρ2

|η21(ρ) θ1(iβ(l + wρ); ρ)|2
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• As in the open string case, the zero mode contribution 1/ sinh2(πβ(l + wρ)) may be
interpreted either as a sum over (Euclidean) discrete states, or a continuous integral over
the continuous (Lorentzian) modes: there are physical states at each level.
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• In addition, there are poles in the bulk of the moduli space, for

iβ(l + wρ) = m+ nρ , (l, w,m, n) ∈ Z

leading to logarithmic divergences
∫
dρdρ̄/|ρ− ρ0|2 ∼ logε, analogous to the long

strings in AdS3.
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• In addition, there are poles in the bulk of the moduli space, for

iβ(l + wρ) = m+ nρ , (l, w,m, n) ∈ Z

leading to logarithmic divergences
∫
dρdρ̄/|ρ− ρ0|2 ∼ logε, analogous to the long

strings in AdS3.

Maldacena Ooguri

• In contrast to the open string case, these poles do not yield an imaginary part: the overall
cosmological particle production seems to vanish. This is not to say that there is no
particle production at intermediate stages !
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Wick rotation to a rotation orbifold

• Note first that the (future) Milne region ds2 = −dT 2 + β2T 2dθ2 + dx2
i cannot be directly

Wick-rotated to Euclidean.
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i cannot be directly

Wick-rotated to Euclidean. Instead, the analytical continuation T = ir, θ = η + iπ/(2β)

leads to the (right) Rindler wedge.

• Rotating β = iµ, the Rindler region becomes get indeed an Euclidean metric,
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• The Milne identification η ≡ η + 2π amounts to a rotation identification Z → e2πiµZ.
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• This cannot be the usual rotation orbifold however, because this would imply that the
physics depends on β being rational or not.
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= re
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• The Milne identification η ≡ η + 2π amounts to a rotation identification Z → e2πiµZ.

• This cannot be the usual rotation orbifold however, because this would imply that the
physics depends on β being rational or not. In other words, Z and e2πiZ should not

identified: (Z, Z̄) really take value in R̃2\{0}.

• By the same token, the left Rindler wedge rotates to another copy of the Euclidean plane
with the origin removed: the complete analytic continuation of Misner space is therefore

R̃2\{0}L/e
iµ\R̃2\{0}R

and states of interest are non-normalizable !

D’Appolonio Kiritsis
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Conclusions - speculations

• Winding states in the Milne Universe behave in close analogy with open strings in an
electric field. Using intuition from open strings, we have found that physical states do exist
in the twisted sector of the Lorentzian orbifold, and can be pair produced.
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• In particular, since winding strings are spontaneously produced near the singularity, they
contribute an energy proportional to the radius, hence akin to a two-dimensional positive
cosmological constant: it seems plausible that the resulting transcient inflation may
smooth out the singularity.
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electric field. Using intuition from open strings, we have found that physical states do exist
in the twisted sector of the Lorentzian orbifold, and can be pair produced.

• In view of this analogy, it is natural to ask if the same mechanism (Schwinger production)
which leads in the open string case to the decay of the electric field could “relax the boost
parameter”.

Cooper, Eisenberg, Kluger, Mottola and Svetitsky

• In particular, since winding strings are spontaneously produced near the singularity, they
contribute an energy proportional to the radius, hence akin to a two-dimensional positive
cosmological constant: it seems plausible that the resulting transcient inflation may
smooth out the singularity.

• To demonstrate this, one should take into account the production of (an infinite number) of
twisted sector states are produced in correlated pairs, i.e. squeezed states: non-local
deformations of the worldsheet ? string field theory ?
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Conclusions - speculations (cont.)

• As a less ambitious goal, can one compute scattering amplitudes of twisted states, and
check if they are better behaved than untwisted states. For this, the relation with negative
level Sl(2)/U(1) and double analytic continuation of the Nappi-Witten plane wave may be
useful.

D’Appollonio, Kiritsis; B. Durin, BP
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bulk ? Or do CTC make them unredeemable ?
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cosmological billiard: Do whiskers feature also for more general Kasner-like singularities ?

Damour, Henneaux, Nicolai, Julia, . . .
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• As a less ambitious goal, can one compute scattering amplitudes of twisted states, and
check if they are better behaved than untwisted states. For this, the relation with negative
level Sl(2)/U(1) and double analytic continuation of the Nappi-Witten plane wave may be
useful.

D’Appollonio, Kiritsis; B. Durin, BP

• The “dynamics” of the long strings living in the whiskers is still unclear: what is the proper
way of quantizing them ? Could they perhaps provide a dual holographic dynamics to the
bulk ? Or do CTC make them unredeemable ?

• The closed string orbifold we have discussed are highly non-generic trajectories on the
cosmological billiard: Do whiskers feature also for more general Kasner-like singularities ?

Damour, Henneaux, Nicolai, Julia, . . .

• More generally, we still lack a framework to compute the production of closed strings in
cosmological backgrounds. Those however are likely to lead to large departures from
FRW cosmology, and possibly spectacular effects: cosmological bounce, Hagedorn phase
transition...

Lawrence Martinec, Gubser


