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The man who could walk through walls

Marcel Aymé, Le passe-muraille, 1943

“When Dutilleul was taken inside the La Santé prison, he felt as though
fate had smiled upon him. The thickness of the walls was a veritable
treat for him. ”

“When he left [his mistress’ room], Dutilleul passed through the walls of
the house and felt an unusual rubbing sensation against his hips and
shoulders. He felt as though he were moving through some gel-like
substance that was growing thicker (...) Dutilleul was immobilized
inside the wall. He is there to this very day, imprisoned in the stone.”
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Introduction

Unlike the real world, gauge theories and string vacua with
extended SUSY abound with massless scalar fields / moduli t .
How does the bound state spectrum depend on t ?

More often than not, bound states decay into multi-particle states
across certain codimension-one walls in moduli space: a way to
learn about their elementary constituents !
Using semi-classical methods, one may sometimes determine the
spectrum at weak coupling. Understanding these decays
systematically is important to extrapolate to strong coupling.
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BPS states and BPS index

This can be achieved for BPS states, annihilated by a fraction of
SUSY: their mass is computable exactly and possible decays are
highly constrained.

While the number of BPS states may change erratically, the BPS
index Ω(γ, t) = Tr(−1)F is constant – at least away from the walls.
The jump ∆Ω across the wall is determined by certain universal
wall-crossing formulae, some of which have been discovered
independently in the math literature.

Joyce Song 2008; Kontsevich Soibelman 2008
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Wall-crossing in gauge theories

E.g., in D = 4,N = 2 SQCD with G = SU(2) (Seiberg-Witten) on
the Coulomb branch,

(0,−1)

(2n,1)

(2n+2,−1)

u

(2,−1)

(2,0)

All BPS states in the weak coupling region are bound states of the
magnetic monopole (0,−1) and dyon (2,−1). Those are
immortal, i.e. exist everywhere on the Coulomb branch.

Seiberg Witten 1994; Bilal Ferrari 1996
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Bound states as multi-centered solutions

In the low energy field theory, all
these bound states are described
semi-classically by multi-centered BPS
monopoles/ black holes.

Denef 2000; Denef Moore 2007

Near the wall, the centers become farther apart, and behave like
point particles interacting by (Newton), Coulomb, Lorentz and
scalar forces.
The degeneracy of the bound state (hence the jump in Ω) is
determined by the SUSY quantum mechanics of these point
particles, together with the internal degeneracies carried by each
center.

Denef 2002; Manschot BP Sen 2010; Lee Yi 2011
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Wall-crossing and multi-instantons

Similar wall-crossing phenomena take place for instanton
corrections to certain (BPS, F-term) couplings in the effective
action. One-instanton effects are discontinuous across certain
walls in the one-instanton approximation, but multi-instanton
effects should conspire to ensure continuity of the coupling.

Garcia-Extebarria Uranga 2007

These two phenomena are identical for 4D, N = 2 gauge theories
/ string vacua compactified on a circle: the effective action
receives instanton correction from 4D monopoles / black holes
winding around the circle. The continuity of the effective action is
ensured by the KS wall-crossing formula !

Gaiotto Moore Neitzke 2008; Alexandrov BP Saueressig Vandoren 2008

Such couplings are a very useful book-keeping device for 4D black
hole degeneracies, consistent with wall-crossing and dualities !
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Outline

1 Generalities

2 The Coulomb branch formula

3 The Higgs branch formula

4 The Kontsevich-Soibelman formula

5 Wall-crossing and instantons
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Preliminaries

Supersymmetric gauge theories or supergravity models in 4
dimensions typically include a large number of massless scalars
t ∈M and Abelian gauge fields AΛ

µ.

Bound states are labelled by their electric and magnetic charges
qΛ,pΛ, by their mass M and spin J3.
The charge vector γ = (pΛ,qΛ) takes values in a lattice equipped
with an integer antisymmetric pairing, corresponding to the
angular momentum carried by the electromagnetic field:

〈γ, γ′〉 ≡ qΛ p′Λ − q′Λ pΛ ∈ Z
Dirac 1931; Schwinger 1966; Zwanziger 1968

States with 〈γ, γ′〉 6= 0 are ‘mutually non-local’.
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BPS states and BPS index

In models with N = 2 supersymmetries, the mass of any state is
bounded from below by the BPS bound

M ≥ |Z (γ, t)| , Z (γ, t) = eK/2(qΛX Λ − pΛFΛ)

States saturating the BPS bound are called BPS states. They are
annihilated by half of the supersymmetry, therefore form short
SUSY multiplets.

Witten Olive 1978

Two short multiplets might combine into a long multiplet and
desaturate the BPS bound, but the index Ω stays constant under
this process:

Ω(γ; t) = TrH′γ(t)(−1)2J3
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Walls of marginal stability

The index Ω(γ; t) may fail to be constant when the single-particle
spectrum mixes with the continuum of multi-particle states, i.e.
when the bound state decays.

The decay of BPS bound states is constrained by the triangular
inequality

M(γ1 + γ2) = |Z (γ1 + γ2)| = |Z (γ1) + Z (γ2)| ≤ M(γ1) + M(γ2)

The decay is energetically possible only when the central charges
are aligned, i.e. on the wall of marginal stability

W (γ1, γ2) = {t / arg[Z (γ1, t)] = arg[Z (γ2, t)]} ⊂ M
Cecotti Vafa 1992; Seiberg Witten 1994
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Primitive wall-crossing from two-centered solutions I

For 〈γ1, γ2〉 6= 0, there exists a two-centered BPS solution of
charge γ = γ1 + γ2:

1

1 2

Denef 2002

The solution exists only on one side of the wall. As t approaches
the wall, the distance r12 diverges and the bound state decays into
its constituents γ1 and γ2.
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Primitive wall-crossing from two-centered solutions

Near the wall, the two monopoles can be treated as pointlike
particles with charge γi and Ω(γi) internal degrees of freedom,
interacting via Newton, Coulomb, etc forces.

The BPS phase spaceM2 for the two-particle system is the
two-sphere, with symplectic form ω = 1

2〈γ1, γ2〉 sin θ dθdφ. The
geometric quantization ofM2 produces a multiplet of spin
j = 1

2(〈γ1, γ2 − 1).

Primitive wall-crossing formula (Denef Moore 2007)

∆Ω(γ1 + γ2) = ± |〈γ1, γ2〉|︸ ︷︷ ︸ × Ω(γ1)︸ ︷︷ ︸ × Ω(γ2)︸ ︷︷ ︸
angular internal internal

momentum states of 1 states of 2
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Multi-centered solutions

On the same wall, many other bound states will decay: those
represented by multi-centered BPS solutions with charges
αi = Miγ1 + Niγ2, with Mi ≥ 0,Ni ≥ 0 and (Mi ,Ni) 6= 0.
Stationary BPS solutions with n centers at ~r = ~ri exist whenever

Denef’s equations (Denef 2000)

∀i :
∑
j 6=i

αij

|~ri −~rj |
= ci(t)

Here αij ≡ 〈αi , αj〉, ci = 2 Im
[
e−iφZ (αi , t)

]
, φ = arg[Z (

∑
i αi , t)].
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BPS phase space

For fixed charges αi and moduli t , the space of solutions modulo
overall translations is a compact symplectic manifoldMn of
dimension 2n − 2, invariant under SO(3):

ω = 1
2

∑
i<j

αij sin θij dθij ∧ dφij , ~J = 1
2

∑
i<j

αij
~rij
|rij |

de Boer El Showk Messamah Van den Bleeken 2008

The solution exists only on one side of the wall. In the vicinity of
the wall, the centers move away from each other, and can again
be treated like point-like particles with

1 Ω(γi ) internal states at each center
2 g({αi}) external states obtained by geometric quantization ofMn
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Non-primitive wall-crossing (naive)

For fixed total charge γ = Mγ1 + Nγ2, the index Ω(γ) includes
contributions from all n-centered solutions with charges
αi = Miγ1 + Niγ2 such that (M,N) =

∑
i(Mi ,Ni). All these

solutions disappear at once across the wall.

Naively, the jump of the index across the wall should be

∆Ω(γ) =
∑
n≥2

∑
γ=α1+···+αn

g({αi})
∏n

i=1
Ω(αi)

where Ω(αi) is the index on the side where the bound state does
not exist.
This however ignores the issue of statistics.
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Non-primitive wall-crossing (correct)

Taking Bose-Fermi statistics into account, the formula for ∆Ω(γ) is
cumbersome (e.g. it involves products of Ω(αi) with γ 6=

∑
αi ).

The correct formula is obtained by replacing Ω→ Ω̄ where

Ω̄(γ) ≡
∑

d |γ
1

d2 Ω(γ/d)
Joyce Song

and introducing a Boltzmann symmetry factor:

Non-primitive wall-crossing formula

∆Ω̄(γ) =
∑
n≥2

∑
γ=α1+···+αn

g({αi})
|Sym({αi})|

∏n

i=1
Ω̄(αi)

Manschot BP Sen 2010
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Geometric quantization and localization

Given a symplectic manifold (M, ω), geometric quantization
produces a graded Hilbert space H, the space of harmonic
spinors for the Dirac operator D coupled to ω. IfM is compact, H
is finite dimensional.

Working assumption: the index g({αi}) = Tr(−1)2J3 of the SUSY
quantum mechanics is the index of the Dirac operator D.
More generally, the refined index g({αi}, y) ≡ Tr(−y)2J3 in the
SUSY quantum mechanics. is equal to the equivariant index of D.
SinceMn admits a U(1) action, the equivariant index can be
computed by localization:

Ind(D) = lim
y→1

Ind(D, y) , Ind(D, y) =
∑

fixed pts

Jac(p) y2J3(p)

Atiyah Bott, Berline Vergne
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Symplectic volume and equivariant index

In the limit ω � 1, this reduces to the Duistermaat-Heckman
formula for the (equivariant) symplectic volume:

Vol(Mn, y) ≡
∫
Mn

ωn−1 y2J3 =
∑

fixed pts

Jac′(p) y2J3(p)

Each term is singular as y → 1, but the sum is regular.
E.g. for n = 2,M2 = S2, J3 = α12 cos θ:

Vol(M2, y) =
1

2 log y

(
y+α12︸ ︷︷ ︸ − y−α12︸ ︷︷ ︸

North pole South pole

)
y→1−→ α12

Ind(M2, y) =
y+α12 − y−α12

(y − 1/y)
= Tr

j= 1
2 (α12−1)

y2J3
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The Coulomb branch formula

For any n, the fixed points of the action of J3 are collinear
multi-centered configurations along the z-axis:

α1 α3α2

z-axis

∀i ,
∑
j 6=i

αij

|zi − zj |
= ci , J3 =

1
2

∑
i<j

αij sign(zj − zi) .

These fixed points are isolated, and labelled by permutations σ:

Coulomb branch wall-crossing formula

g({αi}, y) = (−1)
∑

i<j αij +n−1

(y−y−1)n−1

∑
σ

s(σ) y
∑

i<j ασ(i)σ(j) , s(σ) = 0,±1

Manschot, BP, Sen 2010
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An example: 3-body decay

E.g. for n = 3 with α12 > α23, there are 4 collinear configurations:

g(αi , y) = (−1)α13+α23+α12

(y−1/y)2 ×[
yα13+α23+α12︸ ︷︷ ︸ − y−α13−α23+α12︸ ︷︷ ︸ − yα13+α23−α12︸ ︷︷ ︸ + y−α13−α23−α12︸ ︷︷ ︸

(123) (312) (213) (321)

]

In the limit y → 1,

g(α1, α2, α3) =(−1)α13+α23+α12 α12 (α13 + α23)

=± 〈α1, α2〉 〈α1 + α2, α3〉

t 1

v1

t

vL



t 2 t 3

v0

A similar formula holds for α12 < α23
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An example: 3-body decay

E.g. for γ = γ1 + 2γ2, three types of bound states contribute:

∆Ω(γ) =(−1)γ12 γ12 Ω̄(γ2) Ω̄(γ1 + γ2) + 2γ12 Ω̄(2γ2) Ω̄(γ1)

+ 1
2(γ12)2 Ω̄(γ2) Ω̄(γ2) Ω̄(γ1)

=(−1)γ12 γ12 Ω(γ2) Ω(γ1 + γ2) + 2γ12 Ω(2γ2) Ω(γ1)

+ 1
2γ12 Ω(γ2) (γ12Ω(γ2) + 1) Ω(γ1)

In Seiberg-Witten theory, Ω(γ1) = Ω(γ2) = 1 in strong coupling
chamber, zero otherwise. Using formula above with γ12 = −2, one
correctly finds Ω(γ1 + 2γ2) = 1 in weak coupling chamber.
This is a somewhat trivial example of ‘semi-primitive wall-crossing’
with γ = γ1 + Nγ2, without genuine 3-body interactions.
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Quiver Matrix Mechanics

In the weak coupling limit, the centers can
be realized as D-branes interacting via open
strings. At low energy, this is described by a
Matrix Quantum Mechanics, with field content
specified by a quiver with n nodes {1 . . . n} of
dimension 1 and 〈αi , αj〉 arrows from i to j .

The Matrix Quantum Mechanics admits a Coulomb branch where
the D-branes are well-separated, described by Denef’s equations
above. It also has a Higgs branch where all D-branes coincide.
If all αi lie on a 2-dimensional lattice spanned by γ1, γ2, the quiver
has no oriented closed loop, and one expects a 1-1 map between
states on the Higgs branch and on the Coulomb branch.
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Higgs branch formula

One can use mathematical results on the moduli space of quivers
and compute the refined index of the external degrees of freedom:

Higgs branch wall-crossing formula

g({αi}, y) =
±1

(y − 1/y)n−1

∑
σ

N({αi}, σ) y
∑

i<j ασ(i)σ(j)

N({αi}, σ) =
∏

k=2...n
σ(k)<σ(k−1)

Θ(〈γ,
n∑

i=k

ασ(i)〉)
∏

k=2...n
σ(k)>σ(k−1)

Θ(〈
n∑

i=k

ασ(i), γ〉)

Reineke 2003; Manschot BP Sen 2010

Amazingly, this agrees with the Coulomb branch formula ! Using
the Boltzmann trick Ω→ Ω̄, non-Abelian quivers are reduced to
Abelian ones !
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The Kontsevich-Soibelman algebra

Consider the Lie algebra A spanned by abstract generators
{eγ , γ ∈ Γ}, satisfying the commutation rule

[eγ1 ,eγ2 ] = (−1)〈γ1,γ2〉 〈γ1, γ2〉eγ1+γ2 .

For a given charge vector γ and moduli t , consider the operator
Uγ(t) in the Lie group exp(A)

Uγ(t) ≡ exp

(
Ω(γ; t)

∞∑
d=1

edγ

d2

)
= exp

( ∞∑
n=1

Ω̄(nγ; t) enγ

)
The operators eγ / Uγ can be realized as Hamiltonian vector fields
/ symplectomorphisms of a twisted torus.
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The Kontsevich-Soibelman formula

The ordered product
x∏
γ Uγ(t) must be constant, hence the

Kontsevich-Soibelman wall-crossing formula
x∏

M,N
U+

Mγ1+Nγ2
=

y∏
M,N

U−Mγ1+Nγ2
,

Starting from the l.h.s and reordering the product using the
Baker-Campbell-Hausdorff (BCH) formula, one may express
Ω−(γ) in terms of Ω+(γ).
Both sides may be infinite, but only a finite number of factors
contribute to ∆Ω(Mγ1 + Nγ2) for fixed M,N.
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Primitive wall-crossing from the KS formula

For example, the primitive wall-crossing formula follows from

Z(Γ
1
,t) Z(Γ

2
,t)

C

Z(Γ
1
+Γ

2
,t)

Z(Γ
2
,t') Z(Γ

1
,t')

C

Z(Γ
1
+Γ

2
,t')

U+
γ1
· U+

γ1+γ2
· U+

γ2
= U−γ2

· U−γ1+γ2
· U−γ1

using eX eY = eX+Y + 1
2 [X ,Y ]+...

Wall-crossing in Seiberg-Witten theory is summarized by

U2,−1 · U0,1 = U0,1 · U2,1 · U4,1 . . .U
(−2)
2,0 . . .U4,−1 · U2,−1

Denef Moore; Dimofte Gukov Soibelman
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Refined wall-crossing formula

The KS formula admits a quantum deformation which determines
the wall-crossing of the refined index Ω(γ, y).

It makes it clear why the jump is of the form

∆Ω̄(γ, y) =
∑
n≥2

∑
γ=α1+···+αn

gKS({αi}, y)

|Sym({αi})|
∏n

i=1
Ω̄(αi , y) ,

for some universal coefficients gKS({αi}, y).
The fact that gKS({αi}, y) is also given by the Coulomb or Higgs
branch formula is non-trivial, but has recently been shown by
induction.

Sen 2012
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Wall-crossing and instantons

The operators Uγ beg for a physics explanation. One possibility is
to consider the effective action of the N = 2 gauge/string theory
compactified on a circle, i.e. on R3 × S1(R).

At two-derivative order, after dualizing all gauge fields into
pseudo-scalars, the action is a non-linear sigma model with target
spaceM3.
In gauge theories with rank r ,M3 is a 4r -dimensional torus
bundle over the Coulomb branch of the 4D gauge theory. The
fibers of the torus parametrize the holonomies ζΛ, ζ̃Λ of the
Abelian gauge fields AΛ and their magnetic duals ÃΛ along S1.
For R →∞, the metric is ‘semi-flat’, i.e. flat along the torus fibers.
For any R, the metric must be hyperkähler.
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Multi-instanton corrections in gauge theories

For R finite, there are instanton corrections to the semi-flat metric
from four-dimensional BPS states winding around the circle,

g ∼ gsf +
∑
γ

Ω(γ, t) e−R|Z (γ,t)|+i(qΛζ
Λ−pΛζ̃Λ) + multi-instantons

One-instanton contributions are discontinuous across walls of
marginal stability but (provided the KS formula holds)
multi-instanton contributions conspire to ensure a smooth metric.

Gaiotto Moore Neitzke 2008

In this context, the operators Uγ appear as gluing functions for the
twistor space Z ofM3, a complex symplectic manifold which
encodes the HK metric.
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Multi-instanton corrections in string theory

In string theory vacua, the story is similar except thatM3 is a
quaternion-Kähler space which includes the radius R and twist
potential σ. The twistor space Z is a complex contact manifold.

Alexandrov BP Saueressig Vandoren 2008

In addition i) the instanton sum is divergent, due to the large
degeneracy of black holes; and ii) there are additional
O(e−kR2+ikσ) corrections from gravitational instantons.
Nevertheless, the QK metric onM3 is a useful book-keeping
device for BPS black hole degeneracies, which naturally
incorporates wall-crossing phenomena and duality invariance
By T-duality along S1, the problem of computingM3 is mapped to
that of computing the instanton corrected hypermultiplet moduli
space in D = 4. . .
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Conclusion

Wall-crossing phenomena in four-dimensional SUSY gauge
theories and string vacua can be interpreted as the
(dis)appearance of multi-centered solitons.

The wall-crossing formula is universal, and follows from the SUSY
quantum mechanics of point-like particles interacting by
(Newton),Coulomb, Lorentz, and scalar exchange forces.
The wall-crossing formula ensures that instanton corrections to
certain BPS couplings in the effective action on R3 × S1 are
continuous across the wall.
Similar techniques can be used to subtract, at any point in moduli
space, contributions from multi-centered black holes, and zoom in
on elementary, single-centered black holes – for which AdS/CFT
applies.
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Let’s cross the wall !
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Laius I

Today, I would like to teach you - for those who don’t already know -
how to painlessly walk across walls. There is a fastly growing body of
Literature on this important topic, starting with a seminal paper (or
rather a short story) by the french writer Marcel Aymé almost 70 years
ago, entitled "Le passe-muraille", or "The man who could walk through
walls" - from which this picture is taken.

The story is that of an office clerk, named Dutilleul, who discovers at
the age of 42 that he has the ability to walk through walls. At first he
doesn’t quite see what to make out of this skill, but soon enough he
discovers that he can use it to scare his boss to death by popping up
his head through the wall of his office, or to rob any bank or jewelry
that he likes. He may even let himself be caught by the police, the
thickness of the prison wall being all the more enjoyable to him.
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Laius I

Finally he gets caught by love, and after visiting his mistress who was
kept behind closed doors by her jealous husband, his talent suddenly
disappears, and he gets stuck in the wall of his mistress’ house, where
he is imprisoned to this day. This story serves as a warning to all of us
who practice wall-crossing, which is still a risky business.

My goal is that by the end of this seminar, you will all grasp the basics
of wall-crossing, and the more adventurous of you will be able to exit
this room through this wall.

My lecture will be mostly based on 2 papers with Jan Manschot and
Ashoke Sen about a year ago, and a proceedings called ‘Four ways
across the wall’. Four, not three, but as you start practicing
wall-crossing, and other related activies, you quickly get confused
about space, time and even numbers.
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