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Introduction

Precision counting of BPS black hole microstates is an important
challenge, both for physics (probing the consistency of string
theory as a model of quantum gravity) and for mathematics
(uncovering new topological invariants of Calabi-Yau threefolds).
The net number of BPS states with fixed electro-magnetic charge
γ, called BPS index Ω(γ, z), is known exactly in most string
backgrounds with N ≥ 4 supersymmetry in 3 + 1 dimensions. This
is not yet so in N = 2 vacua such as type II on a generic CY3.
The main difficulty is that Ω(γ, z) depends on the moduli z in an
intricate way, due to wall-crossing phenomena associated to BPS
bound states with any number of constituents.
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Introduction

The attractor mechanism selects a particular value zγ of the
moduli, known as the attractor or self-stability chamber, where
most multi-centered bound states (in particular, all two-centered
bound states), have decayed.
The attractor indices Ω?(γ) = Ω(γ, zγ) determine the index Ω(γ, z)
for any z through the attractor flow tree formula. For D4-D2-D0
charges at large volume, they possess interesting (mock) modular
properties. [Alexandrov Banerjee Manschot BP, 2016-19]

In general, at the attractor point there often exist multi-centered
scaling solutions, where the centers can become arbitrarily close
to each other, which contribute to the attractor index Ω?(γ).
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Introduction

There is a conjectural prescription, known as the Coulomb branch
formula, for subtracting the contributions of scaling solutions and
extracting the so called single-centered index ΩS(γ) (aka
pure-Higgs indices). However the latter does not have a first
principle definition yet.
After reviewing aspects of multi-centered solutions, I will present
some recent progress in proving the Coulomb branch formula in
the context of quiver quantum mechanics, using supersymmetric
localization.
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Single-centered black holes in N = 2 supergravity

Recall that N = 2 supergravity admits supersymmetric,
spherically symmetric solutions corresponding to a BPS black
hole of charge γ, with metric

ds2 = −e2U(r)dt2 + e−2U(r)(dr2 + r2dΩ2
2)

with suitable flux and radial profile for the vector multiplet scalars

r2 dU
dr

= eU |Zγ | , r2 dza

dr
= 2 eUgab̄∂z̄ |Zγ |

where Zγ(z) = eK/2(qΛX Λ(z)− pΛFΛ(z)) is the central charge.
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Single-centered black holes in N = 2 supergravity

As r → 0, the moduli z(r) are attracted to a critical point zγ of |Zγ |,
independent of the moduli z∞ at spatial infinity. The geometry
interpolates from R3,1 at r =∞ to AdS2 × S2 at r = 0.

Ferrara Kallosh Strominger 1995

The Bekenstein-Hawking entropy is SBH = π|Zγ(zγ)|2, while the
mass saturates the BPS bound,M = |Zγ(z∞)|.
Since the solution is static, ~J = 0 classically. This remains true
quantum mechanically [Sen 2009].
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Multi-centered black holes in N = 2 supergravity

In addition, there may also exist multi-centered supersymmetric
solutions. Near each center they reduce to the previous solution
with charge γi . Near∞ they look like a black hole of charge
γ =

∑n
i=1 γi and angular momentum ~J = 1

2
∑

i<j κij
~rij
rij

, where
κij = 〈γi , γj〉 is the Dirac pairing.
The distances rij = |~ri −~rj | are constrained by Denef’s equations

∀i = 1 . . . n,
∑
j 6=i

κij

rij
= ζi

where ζi = R Im[e−iϕZγi (z∞)] where ϕ = arg Zγ(z∞) and R > 0
(hence

∑
i ζi = 0). One should also check the absence of closed

timelike curves.
At the attractor point z∞ = zγ , ζi = −R

∑
j κij .
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Multi-centered black holes in N = 2 supergravity

If not empty, the spaceMn({γi , ζi}) of solutions mod translations
has dimension 3n − (n − 1)− 3 = 2n − 2. It carries a symplectic
two-form ω = 1

2
∑

i<j κij sin θijdθijdφij such that O(3) rotations are
generated by the moment map ~J.

de Boer El Showk Messamah van den Bleeken 2008

For example,M2 is empty when κ12ζ1 < 0 (in particular at the
attractor point ζ1 = −Rκ12). If κ12ζ1 > 0,M2 is a two-sphere with
κ12 units of flux, corresponding to the dipole orientation.
Wall-crossing takes place when Zγ1 and Zγ2 become aligned.
Easy fact: If one can split the centers into two sets S ∪ S̄ such that
κij > 0 for all i ∈ S, j ∈ S̄, thenMn is compact away from walls of
marginal stability, and empty at the attractor point ζi = −R

∑
j κij .
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Scaling solutions

In general, Mn can be non-compact due to some
scaling regions where the centers become arbitrarily
close to each other.

Mn

The simplest example occurs for n = 3 and κ12, κ23, κ31 of same
sign (say positive) and satisfy the triangular inequalities

κ12 ≤ κ23 + κ31, κ23 ≤ κ31 + κ12, κ31 ≤ κ12 + κ23

There is a one-parameter family of solutions such that
rij ∼ λκij +O(λ) as λ→ 0, irrespective of the parameters ζi . In
particular, such solutions continue to exist at the attractor point.
Since ~J = 1

2
∑

i ζi~ri and
∑

i ζi = 0, such solutions have ~J ' 0 and
become undistinguishable from single-centered black holes.
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Existence of scaling solutions

The existence of scaling solutions can be analyzed by setting
ζi = 0 in Denef’s equations. By exploiting the geometric
inequalities on the edges of n-gons, one finds necessary
conditions generalizing the ones above to any n ≥ 4. [Beaujard Mondal

BP 2021; Descombes and BP, to appear]

In order to state the conditions, let us introduce a quiver Q with
vertices Q0 = {vi , i = 1 . . . n} and with one arrow vi → vj
whenever κij > 0. Let Q1 be the set of arrows and Q2 the set of
simple oriented cycles. We define a cut as a subset I ⊂ Q1 such
that each cycle C ∈ Q2 contains one and only one arrow.
A necessary condition for existence of a scaling region where all n
centers coalesce is that Q is strongly connected, and for any cut I,∑

(i→j)∈I

κij ≤
∑

(i→j)/∈I

κij
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Existence of scaling solutions

For example, for a cyclic quiver v1 → v2 → · · · → vn → v1, this
requires

κn1 ≤ κ12 + κ23 + · · ·+ κn−1,n

and cyclic permutations thereof. In that case, this follows trivially
from ri,i+1 = λκi,i+1 +O(λ2).
In cases where the quiver admits a cut and a simple oriented
cycle v1 → v2 → · · · → vn → v1 running through all centers, the
condition agrees with the conjecture in our work with Guillaume
and Swapno: ∑

i<j

κij ≥ 0 and cyclic perm.
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Existence of scaling solutions

In cases where no cuts exist (which happens when Q admits no
R-charge), one has similar necessary conditions using a notion of
weak cut.

Remarkably, the same necessary conditions apply for the
existence of multi-centered solutions at the attractor point, and for
the existence of stable representations on the Higgs branch at the
attractor point ! [P. Descombes and BP, to appear]
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Quantizing the space of multi-centered solutions

In the absence of scaling regions, the centers become far
separated as R → 0, so we expect that the internal degrees of
freedom of each black hole decouple from the configurational
degrees of freedom.
The latter are described classically by the BPS phase space
(Mn, ω). Quantum mechanically, they correspond to zero-modes
of the Dirac operator for a charged particle onMn with flux F = ω.
Hence we expect that the total index can be written

Ω(γ, z)
?
=

∑
γ=
∑
γi

g({γi , ζi})
∏

i

Ω?(γi)

where Ω?(γi) are the attractor indices and g({γi , ζi}) is the index of
the Dirac operator on (Mn, ω). This is broadly correct but naive...
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Quantizing the space of multi-centered solutions

First, when some of the charges γi coincide, we must enforce
Bose-Fermi statistics. As argued in [Manschot BP Sen 2010], one can
use the simpler Boltzmann statistics, provided one replaces the
BPS index by the rational index Ω̄(γ, z) =

∑
m|γ

1
m2 Ω(γ/m, z).

Hence a better guess is

Ω̄(γ, z)
?
=

∑
γ=
∑
γi

g({γi , ζi})
|Aut({γi})|

∏
i

Ω̄?(γi)

Second, in the presence of scaling regions, the phase spaceMn
is non-compact and the Dirac operator is not self-adjoint (unless
one specifies appropriate conditions at the boundary). Moreover it
is unclear whether each center contributes Ω̄?(γi) or Ω̄S(γi).
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Flow tree formula

One way to proceed is to insist that each center contributes
Ω̄?(γi). The prefactor g({γi , ζi}) then arises as a sequence of
wall-crossings, leading to the attractor flow tree formula

Ω̄(γ, z) =
∑

γ=
∑
γi

gtr({γi , ζi})
|Aut({γi})|

∏
i

Ω̄?(γi)

where gtr({γi , ζi}) is given by a sum over stable flow trees:

gtr({γi , ζi}) =
∑

T

∏
v∈VT

〈γL(v), γR(v)〉

corresponding to multi-centered solutions with nested structure:

5

γ1

γ

γ

γ4

γ
3

2
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Flow tree formula

Each vertex v carries different ζv , obtained from the value at the
parent vertex ζp(v) by evolving the attractor flow equations until it
crosses the wall of marginal stability for γp(v) → γL(p(v)) + γR(p(v)).
Up to rescaling, one has

ζv = ζp(v) +
〈γv ,−〉

〈γL(v), γR(v)〉
ζp(v)(γL(v))

The flow tree contributes only if 〈γL(v), γR(v)〉 × ζv (γL(v)) > 0 for all
vertices [Manschot’10, Alexandrov BP ’18; CoulombHiggs Mathematica package]

For this we need to assume that the flow never crosses fake walls
where the central charges ZγR and ZγL are anti-aligned; moreover
in case some of the γi ’s coincide one needs to perturb ζ∞ at the
root vertex to avoid non-primitive wall-crossings.
This formula is now a mathematical theorem in the context of DT
invariants for quivers. [Argüz Bousseau ’21]
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Coulomb branch formula

The other way is to include only the bulk contribution to Dirac
index g({γi , ζi}), but assign the boundary contributions to the
indices carried by each center:

Ω̄(γ, z) =
∑

γ=
∑
γi

gC({γi , ζi})
|Aut({γi})|

∏
i

Ω̄tot(γi)

Manschot BP Sen 2011; CoulombHiggs Mathematica package

where Ω̄tot(γi) includes contributions from single-centered black
holes and scaling configurations thereof:

Ωtot(α) = ΩS(α) +
∑
m≥3

∑
α=
∑m

i=1 βi

H({βi})
m∏

i=1

ΩS(βi)

The coefficient H({βi}) comes from the boundary contribution to
the Dirac index on the non-compact phase spaceMm({βi , ζi})
Evaluating the Coulomb branch formula at zγ allows to express
Ω?(γ) in terms of ΩS(γ).
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Coulomb index

The bulk contribution to the Dirac index can be computed by
localization with respect to rotations J3. The fixed points
correspond to collinear configurations satisfying a 1D version of
Denef’s equations [Manschot BP Sen 2010]:

∀i = 1 . . . n,
∑
j 6=i

κij

|xi − xj |
= ζi

α1 α3α2

z-axis

Solutions (when they exist) are isolated, and labelled by the order
σ in which centers appear along the axis. Each such solution
contributes ±y2J3 to the equivariant Dirac index:

gC({γi , ζi}, y) =
(−1)n−1+

∑
i<j κij

(y − 1/y)n−1

∑
σ∈Sn

ε(σ) y
∑

i<j κσ(i)σ(j)

WhenMn is compact, this produces a symmetric Laurent
coefficient with integer coefficients, with a smooth limit as y → 1.

B. Pioline (LPTHE, Paris) Attractor vs single-centered indices Zoom@Lisbon, 22/09/2021 18 / 34



Coulomb index (continued)

In presence of scaling regions, gC({γi , ζi}, y) is singular in the limit
y → 1. We can repair this by adjusting H({βi}, y). Since scaling
solutions have ~J ∼ 0, we postulate that H({βi}, y) introduces
contributions y2J3 with smallest possible J3.

H gC

Specifically, H({βi}, y) is determined recursively by requiring
1 i) H({βi}, y) is invariant under y → 1/y
2 ii) H({βi}, y)→ 0 as y →∞
3 iii) in the expression for Ω(γ, z) in terms of single-centered

invariants, the coefficient of the monomial
∏

i ΩS(βi ) – denoted by
ĝ({βi , ζi}, y) – is a symmetric Laurent polynomial in y .

Since H({βi}, y) does not depend on ζ, it can be evaluated at any
point, e.g. at the attractor point.
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Coulomb index (continued)

As an example, for n = 3 centers satisfying triangular inequalities,
the Coulomb branch formula for γ = γ1 + γ2 + γ3 at the attractor
point gives

Ω?(γ) = ΩS(γ) + [g?C + H] ΩS(γ1)ΩS(γ2)ΩS(γ3)

where (assuming that κ12 > κ23, κ31 and κ12 + κ23 + κ31 is even)

g?C =
yκ23+κ31−κ12 + y−κ23−κ31+κ12

(y − 1/y)2 , H =
−2

(y − 1/y)2

such that g?C + H is a symmetric Laurent polynomial, with a finite,
integer limit 1

4(κ23 + κ31 − κ12)2 as y → 1.
Our aim will be to derive this apparently ad hoc prescription in the
framework of quiver quantum mechanics.
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Quiver quantum mechanics

Consider a SUSY quantum mechanics in 0 + 1 dimensions,
obtained by reducing N = 1 gauge theory in 3 + 1 dimension, with
matter content encoded in a quiver: each node ` = 1...K
represents a U(N`) vector multiplet (VM), each arrow k → `
represents a chiral multiplet (CM) Φα

k ,` in (N`, N̄k ) representation of
U(N`)× U(Nk ).
In addition, one must specify Fayet-Iliopoulos terms ζ` ∈ R and (in
presence of closed oriented loops) a superpotential W (Φ). We
assume that one can assign R-charge Rk` to Φα

k ,` such that W has
R-charge 2.
The quantum mechanics admits two branches: the Higgs branch,
where the gauge group G =

∏K
`=1 U(N`) is completely broken by

vevs of chiral multiplet scalars, and the Coulomb branch where G
is broken to its Cartan torus by vevs of vector multiplet scalars.
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Quiver quantum mechanics: Higgs branch

On the Higgs branch, VM are massive and can be integrated out.
Classically, SUSY vacuaMH(γ, ζ) correspond to solutions of the
F-term and D-term equations modulo the action of G,

∀` :
∑
γ`k>0

Φ∗`k T a Φ`k −
∑
γk`>0

Φ∗k` T a Φk` = ζ` Tr(T a)

∀k , `, α : ∂Φk`,αW = 0

Mathematically,MH is the moduli spaceMH(γ, ζ) of stable quiver
representations with dimension vector γ = (N1, . . . ,NK ) and
stability condition ζ.
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Quiver quantum mechanics: Higgs branch

BPS states correspond to Dolbeault cohomology classes of
degree (p,q) on inMH(γ, ζ), counted by the Hodge polynomial

Ω(γ, y , t , ζ) =
2d∑

p,q=0

hp,q(MH(γ, ζ)) (−y)p+q−d tp−q

The fugacity y keeps track of angular momentum JL
3 , while t is

conjugate to JR
3 inside R-symmetry group SU(2)L × SU(2)R.

The refined BPS index is the special value at t = 1/y , known as
χy2-genus. When Dolbeault cohomology is supported in degree
p = q, it coincides with the Poincaré polynomial. In either case, it
reduces to the Euler number in the unrefined limit y → 1.
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Quiver quantum mechanics: Coulomb branch

On the Coulomb branch, after integrating out CM and off-diagonal
VM, the remaining VM scalars ~ri for the Cartan torus satisfy
Denef’s equations for n =

∑K
`=1 N` centers,

∀i = 1 . . . n,
∑
j 6=i

κij

rij
= ζi

where κij is the (signed) number of arrows k → ` whenever
i ∈ U(k), j ∈ U(`) (or zero when k = `).
When the phase space has no scaling regions, the distances rij
are bounded from below and it is legitimate to integrate out the
CM and off-diagonal VM. The equivariant Dirac index of (Mn, ω)
is then expected to agree with the χy2-genus of the Higgs branch.
In the presence of scaling solutions, one may hope to restore
agreement for appropriate values of single-centered indices ΩS(γ).

Manschot BP Sen 2012, Lee Wang Yi 2012
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Witten index from localization

Using supersymmetric localization, one may reduce the functional
integral computing the Witten index (i.e. the χy2-genus of the
Higgs branch) to a finite dimensional integral. For Abelian quivers,

Ω(γ, ζ) =

∫ (
β2

8π3 dudūdD
)n−1

g(u,D) det h(u,D) e−βS(D,ζ)

Benini Eager Hori Tachikawa 2013; Hori Kim Yi 2014

where ui = β
2π (Ai − ixi) are the complexified gauge fields (subject

to
∑

i ui = 0), Di are the auxiliary fields with action

S(D) =
1

2e2

n∑
i=1

D2
i − i

n∑
i=1

ζi Di ,

and det h(u,D) comes from saturating fermionic zero-modes.
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Witten index from localization

g(u,D) is a one-loop fluctuation determinant (with y = eiπz):

g(u,D) = (sinπz)n−1
∏
i→j

[∏
m∈Z

(
m+ūi−ū′

j + 1
2 Rij z̄

)(
m+ui−u′

j +( 1
2 Rij−1)z

)
|m+ui−u′

j + 1
2 Rij z|2− iβ2

4π2 (Di−D′
j )

]κij

Upon using the key identity

∂ūi g(u,D) = − iβ2

4π2 hij(u,D) Dj g(u,D)

the integral over u, ū can be cast into a contour integral in the
u-plane, and the integral over D evaluated by computing the
residue at D = 0. This leads to the Jeffrey-Kirwan residue formula
for the index. [Hori Kim Yi 2014]

Instead, we shall perform the integral using saddle point methods,
which are exact as e→ 0, β →∞.
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Witten index from localization

The infinite product can be evaluated explicitly, leading to

g(u,D)

g(u,0)
=
∏
i→j

 coshβΣij − cosβVij

cosh(β
√

Σ2
ij − iDij)− cosβVij

κij

g(u,0) =
∏
i→j

[
sinπ(uj − ui)

sinπ(ui − uj − z)

]κij

where ui − uj +
Rij
2 z = β

2π (Vij − iΣij) and Dij = Di − Dj .
In the limit where β|Σ| � 1 and |D| ≤ |Σ|2, the ratio simplifies to

g(u,D)

g(u,0)
∼
∏
i→j

[
e−β

√
Σ2

ij−iDij +β|Σij |
]κij

∼ e
i
2
∑

i→j κij
Dij
|Σij |
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Witten index from localization

Plugging back into the integral yields

Ω(γ, ζ) =

∫ (
β2

8π3 dudūdD
)n−1

g(u,0) det h(u,D) e−βS(D,Σ,ζ)

with a Σ-dependent action,

S(D,Σ, ζ) =
1

2e2

n∑
i=1

D2
i − i

n∑
i=1

ζi Di −
i
2

∑
i→j

κij
Dij

|Σij |
,

The integral over D is Gaussian, dominated by a saddle point at

D?
i = −i e2

ζi −
∑
j 6=i

κij

2|Σij |


where Σij = Σi − Σj − πImz

β Rij with Σi = −2π
β Imui .
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Witten index from localization

After integrating over D, the integral over Σi ∼ Imui is dominated
by configurations such that D?

i (Σ) = 0. This produces a
deformation of the 1D Denef equations:

∀i = 1 . . . n,
∑
j 6=i

κij

|Σi − Σj − πImz
β Rij |

= ζi (∗)

Denoting by S the set of solutions for Imu, the Gaussian integral
around S cancels (up to a crucial sign) the factor of det h in the
measure, and one is left with the integral over Reui ∈ [0,1],

Ω(γ, ζ) =
∑
s∈S

∫
[0,1]`

sgn(det ∂i∂jW) g(ui(s),0)
dn−1Re(u)

(1/y − y)n−1

whereW has critical points at solutions of (∗),

W = −1
2

∑
i<j

κij sgn(Σj−Σi− πImz
β Rji) log |Σi−Σj− πImz

β Rij |−
∑

i

ζiΣi
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Witten index from localization

For quivers without oriented loops, the R-charge Rij can be
reabsorbed in Σi , and one recovers the standard 1D equations.
In the limit β →∞, the prefactor g(ui(s),0) becomes independent
of Reu and reduces to the standard angular momentum y2J3(s),∏

i→j

[
sinπ(uj − ui)

sinπ(ui − uj − z)

]κij

−→ (−1)
∑

i<j κij eiπz
∑

i<j κij sgn(Σi−Σj )

This reproduces the MPS prescription for the Coulomb index !
Ohta Sasai 2015; Beaujard Mondal BP 2021
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Witten index from localization

For quivers with loops, there are two classes of solutions to (*),
differing by their behavior as β →∞.

1 In the first class, the solution reduces to the usual solution of
undeformed Denef equations and the same result applies. This
produces the bulk part gC of the equivariant Dirac index.

2 In the second class, β|Σ| stays of order Imz and one cannot neglect
the deformation, but one can set ζi = 0. This produces the sum
Ωtot = ΩS + H

∏
ΩS of the single-centered index and the boundary

part H of the equivariant Dirac index.

Unfortunately, it does not appear to be possible to disentangle the
two separate contributions in Ωtot = ΩS + H

∏
ΩS.
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Single-centered invariants vs. stacky invariants

For cyclic quivers, we can instead split Ωtot = Ωequal + Ωunequal
depending whether the signs σ` = sgn(Σ` − Σ`+1 − πImz

β R`) for
scaling collinear solutions are all equal or distinct.
Curiously, Ωequal agrees with the stacky invariant I(γ) of the
moduli space of quiver representations for trivial stability, ζi = 0 !
When triangular inequalities are violated, Ωequal and Ωunequal are
non-zero but cancel in the sum.
Since both H and the ‘unequal’ contributions grow polynomially as
κij →∞, while ΩS(γ) grows exponentially, one has ΩS(γ) ∼ I(γ)
to exponential accuracy.
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Conclusion

We have outlined a derivation of the Coulomb branch formula in
the context of quiver quantum mechanics. Some subtleties remain
to be understood for non-Abelian quivers with loops.
A first principle definition of the single-center/pure Higgs invariant
ΩS(γ) remains an outstanding problem. With Ashoke and Jan, we
conjectured that ΩS(γ, y , t) is independent of y (i.e. supported in
middle cohomology), which is a powerful prediction on the
structure of the cohomology of quiver moduli spaces.
The Coulomb branch formula and attractor flow formulae should
hold more generally for DT invariants on compact Calabi-Yau
threefolds. Can one compute ΩS(γ) and Ω?(γ) for some class of
charges, and perform precision tests of holography ?
Tune in for Jan’s talk tomorrow for more on this.
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Conclusion

Thank you for your attention !
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