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Introduction

@ Precision counting of BPS black hole microstates is an important
challenge, both for physics (probing the consistency of string
theory as a model of quantum gravity) and for mathematics
(uncovering new topological invariants of Calabi-Yau threefolds).

@ The net number of BPS states with fixed electro-magnetic charge
~, called BPS index Q(~, ), is known exactly in most string
backgrounds with N > 4 supersymmetry in 3+ 1 dimensions. This
is not yet so in N = 2 vacua such as type Il on a generic CY3.

@ The main difficulty is that Q(~, z) depends on the moduli z in an
intricate way, due to wall-crossing phenomena associated to BPS
bound states with any number of constituents.
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Introduction

@ The attractor mechanism selects a particular value z, of the
moduli, known as the attractor or self-stability chamber, where
most multi-centered bound states (in particular, all two-centered
bound states), have decayed.

@ The attractor indices Q,(v) = Q(~, z,) determine the index Q(~, z)
for any z through the attractor flow tree formula. For D4-D2-D0
charges at large volume, they possess interesting (mock) modular
properties. [Alexandrov Banerjee Manschot BF, 2016-19]

@ In general, at the attractor point there often exist multi-centered

scaling solutions, where the centers can become arbitrarily close
to each other, which contribute to the attractor index Q. (v).
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Introduction

@ There is a conjectural prescription, known as the Coulomb branch
formula, for subtracting the contributions of scaling solutions and
extracting the so called single-centered index Qs(v) (aka
pure-Higgs indices). However the latter does not have a first
principle definition yet.

@ After reviewing aspects of multi-centered solutions, | will present
some recent progress in proving the Coulomb branch formula in
the context of quiver quantum mechanics, using supersymmetric
localization.
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Single-centered black holes in N/ = 2 supergravity

@ Recall that /' = 2 supergravity admits supersymmetric,
spherically symmetric solutions corresponding to a BPS black
hole of charge ~, with metric

ds® = —e?Y(Nd? + 72U (dr? 4 r2d03)
with suitable flux and radial profile for the vector multiplet scalars

24U
dr

U 2dz? U ab
=e |Z,| , rrf—=2e"9g%0|Z)|

r
dr

where Z,(z) = €/2(gnX"\(z) — p"Fa(2)) is the central charge.
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Single-centered black holes in N/ = 2 supergravity

@ As r — 0, the moduli z(r) are attracted to a critical point z, of |Z,|,
independent of the moduli z, at spatial infinity. The geometry
interpolates from R3" at r = oo to AdS, x S? at r = 0.

Ferrara Kallosh Strominger 1995

@ The Bekenstein-Hawking entropy is Sgy = 7|Z,(z,)|?, while the
mass saturates the BPS bound, M = |Z,(z).

@ Since the solution is static, J = 0 classically. This remains true
quantum mechanically /Sen 2009].
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Multi-centered black holes in N' = 2 supergravity

@ In addition, there may also exist multi-centered supersymmetric
solutions. Near each center they reduce to the previous solution
with charge ;. Near oo they look like a black hole of charge

v = >4 i and angular momentum J = 37, m,,% where
rij = (i, ;) is the Dirac pairing.
@ The distances rj = |r; — ;| are constrained by Denef’s equations

vi=1..n, S Mg
Tl
where ¢; = RIm[e"'*Z, (z,,)] where ¢ = arg Z,(z-,) and R > 0
(hence ), (; = 0). One should also check the absence of closed
timelike curves.

@ At the attractor point z., = z,, (; = =R}, kj.
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Multi-centered black holes in N' = 2 supergravity

@ If not empty, the space M,({~;,¢;}) of solutions mod translations
has dimension 3n— (n—1) — 3 =2n — 2. It carries a symplectic
two-form w = 37;_; rj8in 0d6;d¢; such that O(3) rotations are
generated by the moment map J.

de Boer El Showk Messamah van den Bleeken 2008

@ For example, Ms is empty when k12(y < 0 (in particular at the
attractor point (1 = —Rk12). If kK12(4 > 0, My is a two-sphere with
k12 units of flux, corresponding to the dipole orientation.
Wall-crossing takes place when Z,, and Z,, become aligned.

@ Easy fact: If one can split the centers into two sets SU S such that
rj>0forallie S,je S, then M,, is compact away from walls of
marginal stability, and empty at the attractor point {; = —RZ/- Kij.
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Scaling solutions

In general, M, can be non-compact due to some @
scaling regions where the centers become arbitrarily
close to each other.

@ The simplest example occurs for n = 3 and k12, k23, k31 Of same
sign (say positive) and satisfy the triangular inequalities

K12 < Kog + K31, ko3 < K31 + K12, K31 < K2 + Kog

There is a one-parameter family of solutions such that

rj ~ Akj +O(X) as A — 0, irrespective of the parameters ;. In

particular, such solutions continue to exist at the attractor point.
@ Since J = % > ¢ifiand >~; ¢; = 0, such solutions have J ~ 0 and

become undistinguishable from single-centered black holes.
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Existence of scaling solutions

@ The existence of scaling solutions can be analyzed by setting
¢; = 0 in Denef’s equations. By exploiting the geometric
inequalities on the edges of n-gons, one finds necessary
conditions generalizing the ones above to any n > 4. [Beaujard Mondal
BP 2021; Descombes and BF, to appear]

@ In order to state the conditions, let us introduce a quiver Q with
vertices Qy = {v;,/ = 1...n} and with one arrow v; — v;
whenever xj; > 0. Let Q4 be the set of arrows and Q» the set of
simple oriented cycles. We define a cut as a subset / € Q; such
that each cycle C € Q, contains one and only one arrow.

@ A necessary condition for existence of a scaling region where all n
centers coalesce is that Q is strongly connected, and for any cut /,

ZH//S Z"ﬂf/

(i—j)el (i—j)¢!
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Existence of scaling solutions

@ For example, for a cyclic quiver vi — vo — -+ — v — vy, this
requires
Km < K12 +KReg + -+ Kp—1n

and cyclic permutations thereof. In that case, this follows trivially
from ri 1 = ki1 + O(N2).

@ In cases where the quiver admits a cut and a simple oriented
cycle vi — vo — --- — v, — v4 running through all centers, the
condition agrees with the conjecture in our work with Guillaume
and Swapno:

> k>0 and cyclic perm.

i<j
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Existence of scaling solutions

@ In cases where no cuts exist (which happens when Q admits no
R-charge), one has similar necessary conditions using a notion of
weak cut.

@ Remarkably, the same necessary conditions apply for the
existence of multi-centered solutions at the attractor point, and for
the existence of stable representations on the Higgs branch at the
attractor point ! /P Descombes and BP, to appear]
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Quantizing the space of multi-centered solutions

@ In the absence of scaling regions, the centers become far
separated as R — 0, so we expect that the internal degrees of
freedom of each black hole decouple from the configurational
degrees of freedom.

@ The latter are described classically by the BPS phase space
(Mp,w). Quantum mechanically, they correspond to zero-modes
of the Dirac operator for a charged particle on M, with flux F = w.

@ Hence we expect that the total index can be written
?
= Z g9 {’Y/?CI HQ 'Y/
V=22

where Q,(v;) are the attractor indices and g({~;, ¢;}) is the index of
the Dirac operator on (Mp,w). This is broadly correct but naive...
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Quantizing the space of multi-centered solutions

@ First, when some of the charges ~; coincide, we must enforce
Bose-Fermi statistics. As argued in [Manschot BP Sen 2010], One can
use the simpler Boltzmann statistics, provided one replaces the
BPS index by the rational index Q(~, z) = th = Q(y/m, ).
Hence a better guess is

? {r)/la (/
=227
@ Second, in the presence of scaling regions, the phase space M,
is non-compact and the Dirac operator is not self-adjoint (unless
one specifies appropriate conditions at the boundary). Moreover it
is unclear whether each center contributes Q,(7;) or Qs(v;).
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Flow tree formula

@ One way to proceed is to insist that each center contributes
Q,(vi)- The prefactor g({~;, ¢;}) then arises as a sequence of
wall-crossings, leading to the attractor flow tree formula

S _ 9u {’YIaC/
Q('yvz)_’y Z |Aut {'Y HQ

where g.({~i, ¢;}) is given by a sum over stable flow trees:
({71, Gi}) Z H 'YL(V ’YF:’(V
T veVr
corresponding to multi-centered solutions with nested structure:
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Flow tree formula

@ Each vertex v carries different ¢, obtained from the value at the
parent vertex (y(y) by evolving the attractor flow equations until it
crosses the wall of marginal stability for v,y — v1(p(v)) + YR(p(v))-
Up to rescaling, one has

Cv= Cp(v) + MCp(v)(VL(V))
The flow tree contributes only if (v.(v), 7aw)) * Cv(vL(v)) > 0 for all
vertices [Manschot’10, Alexandrov BP ’'18; CoulombHiggs Mathematica package]

@ For this we need to assume that the flow never crosses fake walls
where the central charges Z,, and Z,, are anti-aligned; moreover
in case some of the v;’s coincide one needs to perturb (., at the
root vertex to avoid non-primitive wall-crossings.

@ This formula is now a mathematical theorem in the context of DT
invariants for quivers. [Argiiz Bousseau '21]
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Coulomb branch formula

@ The other way is to include only the bulk contribution to Dirac
index g({i, ¢;}), but assign the boundary contributions to the
indices carried by each center:

= B gc({i: Gi})
Qvy,2) = = Aut({7:)) HQtot Vi)

Manschot BP Sen 2011; CoulombHiggs Mathematica package
where Qi((7;) includes contributions from single-centered black
holes and scaling configurations thereof:

Qo) =Qs(e)+ > > H{BY Hﬂs(ﬁ,

m>3a Z/ 1 6’

@ The coefficient H({5;}) comes from the boundary contribution to
the Dirac index on the non-compact phase space Mn,({8i,¢})

@ Evaluating the Coulomb branch formula at z, allows to express
Q,(7) in terms of Qg(v).
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Coulomb index

@ The bulk contribution to the Dirac index can be computed by
localization with respect to rotations Js. The fixed points
correspond to collinear configurations satisfying a 1D version of
Denef’s equations [Manschot BP Sen 2010J:

Vi=1...n, Z]x
I

® P axis

o a, s

- l

@ Solutions (when they exist) are isolated, and labelled by the order
o in which centers appear along the axis. Each such solution
contributes +y2% to the equivariant Dirac index:

()T ST
QC({WhCi},}/) - = Z e(g)y i<jFo(i)o()
(y_ 1/y)n O'GSn

@ When M, is compact, this produces a symmetric Laurent
coefficient with integer coefficients, with a smooth limitas y — 1.
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Coulomb index (continued)

@ In presence of scaling regions, gc({~;, ¢;}, ¥) is singular in the limit
y — 1. We can repair this by adjusting H({g3;}, y). Since scaling
solutions have J ~ 0, we postulate that H({Bi},y) introduces
contributions y2% with smallest possible Js.

@ Specifically, H({g;i}, y) is determined recursively by requiring

@ i) H({Bi},y) is invariant under y — 1/y
Q i) H({Bi}.y) »0asy — o
© iii) in the expression for Q(v, z) in terms of single-centered
invariants, the coefficient of the monomial [ [, Qs(5;) — denoted by
9({Bi, (i}, y) — is a symmetric Laurent polynomial in y.
@ Since H({p;}, y) does not depend on ¢, it can be evaluated at any
point, e.g. at the attractor point.

Zoom@Lisbon, 22/09/2021 19/34
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Coulomb index (continued)

@ As an example, for n = 3 centers satisfying triangular inequalities,
the Coulomb branch formula for v = +1 + v + ~3 at the attractor
point gives

Qu(7) = Qs(v) + [9¢ + H] Q2s(71)2s(72)2s(73)

where (assuming that k12 > ko3, k31 and k12 + ko3 + K31 IS €ven)

yR23+H31*H12 + y s th12 I _2

(y—1/y)? L (v =1y)?
such that g¢ + H is a symmetric Laurent polynomial, with a finite,
integer limit J(kos + K31 — k12)2 as y — 1.

@ Our aim will be to derive this apparently ad hoc prescription in the
framework of quiver quantum mechanics.

g9 =
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Quiver quantum mechanics

@ Consider a SUSY quantum mechanics in 0 + 1 dimensions,
obtained by reducing ' = 1 gauge theory in 3 + 1 dimension, with
matter content encoded in a quiver: each node £ = 1...K
represents a U(N,) vector multiplet (VM), each arrow k — ¢
represents a chiral multiplet (CM) Py in (N,, Ni) representation of
U(Ny) x U(Ny).

@ In addition, one must specify Fayet-lliopoulos terms ¢, € R and (in
presence of closed oriented loops) a superpotential W(®). We
assume that one can assign R-charge Ry, to ®§ , such that W has
R-charge 2.

@ The quantum mechanics admits two branches: the Higgs branch,
where the gauge group G = Hﬁ; U(N,) is completely broken by
vevs of chiral multiplet scalars, and the Coulomb branch where G
is broken to its Cartan torus by vevs of vector multiplet scalars.
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Quiver quantum mechanics: Higgs branch

@ On the Higgs branch, VM are massive and can be integrated out.
Classically, SUSY vacua My(~, ¢) correspond to solutions of the
F-term and D-term equations modulo the action of G,

Ve : E cDZk Té q)ék — E (Dh Té q)kg = Cg Tr( Ta)
Yek>0 Yke>0
Vk, b o O, W =0

@ Mathematically, My is the moduli space My(~, ¢) of stable quiver
representations with dimension vector v = (Ny, ..., Nk) and
stability condition (.
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Quiver quantum mechanics: Higgs branch

@ BPS states correspond to Dolbeault conomology classes of
degree (p, g) on in My(~,¢), counted by the Hodge polynomial

2d

9(77}/71. C Z hpq MH('Y C))( )p+q dtp q
p,q=0

The fugacity y keeps track of angular momentum J<, while t is
conjugate to JJ inside R-symmetry group SU(2), x SU(2)z.

@ The refined BPS index is the special value at t = 1/y, known as
xy2-genus. When Dolbeault conomology is supported in degree
p = q, it coincides with the Poincaré polynomial. In either case, it
reduces to the Euler number in the unrefined limit y — 1.
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Quiver quantum mechanics: Coulomb branch

@ On the Coulomb branch, after integrating out CM and off-diagonal
VM, the remaining VM scalars 7; for the Cartan torus satisfy
Denef’s equations for n = 2511 N, centers,

. Kjj

Vi=1...n, — =
where xj; is the (signed) number of arrows k — ¢ whenever
i€ U(k),j € U(¢) (or zero when k = /).

@ When the phase space has no scaling regions, the distances r;
are bounded from below and it is legitimate to integrate out the
CM and off-diagonal VM. The equivariant Dirac index of (M, w)
is then expected to agree with the x,2-genus of the Higgs branch.

@ In the presence of scaling solutions, one may hope to restore
agreement for appropriate values of single-centered indices Qg().

Manschot BP Sen 2012, Lee Wang Yi 2012
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Witten index from localization

@ Using supersymmetric localization, one may reduce the functional
integral computing the Witten index (i.e. the x,2-genus of the
Higgs branch) to a finite dimensional integral. For Abelian quivers,

2 n—1
Q(v,¢) = / <é63»dudDdD82 g(u, D) det h(u, D) e #5(P:€)
g Benini Eager Hori Tachikawa 2013; Hori Kim Yi 2014

where u; = %(A,- — ix;) are the complexified gauge fields (subject
to >, u; = 0), D; are the auxiliary fields with action

1T & o
S(D) = TegzD/?—IZCiDi,
i1 i=1

and det h(u, D) comes from saturating fermionic zero-modes.
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Witten index from localization

@ g(u, D) is a one-loop fluctuation determinant (with y = &'™?):

- - Kij
) m+U;— T+ 3 Ry z) <m+u,-fuf+(1R,jf1)z>
u, D) = (sinzz)"! ( 12 B BAL
g( ) ) ( ) H [H |m+Ui—Uf+%RijZ|2—ﬁ22(D/—D/{)

i—j LmeZ

@ Upon using the key identity
i32 .
al_l,'g(ua D) = _? h/j(“? D) D g(U, D)
the integral over u, u can be cast into a contour integral in the
u-plane, and the integral over D evaluated by computing the
residue at D = 0. This leads to the Jeffrey-Kirwan residue formula
for the index. [Hori Kim Yi 2014]

@ Instead, we shall perform the integral using saddle point methods,
which are exactas e — 0, 8 — oc.

B. Pioline (LPTHE, Paris) Attractor vs single-centered indices Zoom@Lisbon, 22/09/2021 26 /34



Witten index from localization

@ The infinite product can be evaluated explicitly, leading to

g(u.D) cosh 8L — cos 3V U
9(u,0) = | cosh( Y% —iDy) —cos BV

gu.0)=1] { sin(y; — uj) ]ij

sinm(u;i — uj — z)
where u; — uj + 21z = [ (V; — i) and Dj = D; — D.
@ In the limit where 8|X| > 1 and |D| < |X|?, the ratio simplifies to

- Kij i Dy
9((“7 g)) ~T] {e—ﬂ\/ﬁwlzq Tl
g(u,

i—J
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Witten index from localization

@ Plugging back into the integral yields

2 n—1
Q(v,¢) = / <8B 3dududD) g(u,0) det h(u, D) e BS(D:x.0)

with a X-dependent action,

S(D,¥,¢) = 22292 IZC, 22 ’f|z

i—J I]|

@ The integral over D is Gaussian, domlnated by a saddle point at

_ _ig? |- Ry
j#i

where Z,‘j =3;— Zj — ﬂglz R,'j with Y= —%”Imu,-.
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Witten index from localization

@ After integrating over D, the integral over ¥; ~ Imu; is dominated
by configurations such that D7 (%) = 0. This produces a
deformation of the 1D Denef equations:

_ o
Vi=1...n, ) T _lfﬂmZR"| =G (¥
e A

@ Denoting by S the set of solutions for Imu, the Gaussian integral
around S cancels (up to a crucial sign) the factor of det h in the
measure, and one is left with the integral over Reu; € [0, 1],

d"1Re
20.0)=Y /0 sen(deta,9V) g(u (s),O)Wy_y()‘,fL

seS
where W has critical points at solutions of (x),

1 s s
W = _E Zli,'j sgn(Zj—Z,-— Iglsz,') |Og |Z,’—Zj— IEIZRH—ZI: C,‘Z,‘

i<j
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Witten index from localization

@ For quivers without oriented loops, the R-charge Rj; can be
reabsorbed in X ;, and one recovers the standard 1D equations.

@ In the limit 5 — oo, the prefactor g(u;(s),0) becomes independent
of Reu and reduces to the standard angular momentum y2%(S),

, .
I sinm(u —u;) 1™ Ly (—1) SR g2 S i sen(%i )
sinm(u; — uj — 2)

1—J

This reproduces the MPS prescription for the Coulomb index !
Ohta Sasai 2015; Beaujard Mondal BP 2021
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Witten index from localization

@ For quivers with loops, there are two classes of solutions to (*),
differing by their behavior as § — .

@ In the first class, the solution reduces to the usual solution of
undeformed Denef equations and the same result applies. This
produces the bulk part g¢ of the equivariant Dirac index.

@ In the second class, 3|X| stays of order Imz and one cannot neglect
the deformation, but one can set ¢; = 0. This produces the sum
Qior = Qs + H][ Qs of the single-centered index and the boundary
part H of the equivariant Dirac index.

@ Unfortunately, it does not appear to be possible to disentangle the
two separate contributions in Qi = Qs+ H[][ Qs.
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Single-centered invariants vs. stacky invariants

@ For cyclic quivers, we can instead split Qi = Qequal + Qunequal
depending whether the signs o, = sgn(¥, — Y, ¢ — ”Iglz Ry) for
scaling collinear solutions are all equal or distinct.

@ Curiously, Q.qua agrees with the stacky invariant Z() of the
moduli space of quiver representations for trivial stability, {; =0 !
When triangular inequalities are violated, Qcqua aNd Qupequal are
non-zero but cancel in the sum.

@ Since both H and the ‘unequal’ contributions grow polynomially as
rj — 0o, while Qg(y) grows exponentially, one has Qg(v) ~ Z(7)
to exponential accuracy.
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Conclusion

@ We have outlined a derivation of the Coulomb branch formula in
the context of quiver quantum mechanics. Some subtleties remain
to be understood for non-Abelian quivers with loops.

@ A first principle definition of the single-center/pure Higgs invariant
Qs() remains an outstanding problem. With Ashoke and Jan, we
conjectured that Qg(~, y, t) is independent of y (i.e. supported in
middle cohomology), which is a powerful prediction on the
structure of the cohomology of quiver moduli spaces.

@ The Coulomb branch formula and attractor flow formulae should
hold more generally for DT invariants on compact Calabi-Yau
threefolds. Can one compute Qg(v) and Q. (~) for some class of
charges, and perform precision tests of holography ?

@ Tune in for Jan’s talk tomorrow for more on this.
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Conclusion

Thank you for your attention !
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