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Modular integrals and BPS amplitudes I

.

In string theory, an interesting class of terms (often known as
BPS-saturated coupling, topological amplitude or F-term) in the
low energy effective action are given by a modular integral

A =

∫
F

dµΓ(d+k ,d) Φ(τ)

• F = Γ\H : fundamental domain of the modular group Γ = SL(2,Z)
on the Poincaré UHP H;

• dµ = dτ1dτ2/τ
2
2 is the Γ-invariant measure;

• Γ(d+k,d) = τ
d/2
2

∑
q

1
2 p2

L q̄
1
2 p2

R : a theta series for an even self-dual
lattice of signature (d + k ,d), known as the Narain lattice partition
function;

• Φ(τ) : an (almost, weak) holomorphic modular form of weight
w = −k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes II
Such amplitudes arise in a variety of examples:
• Gauge thresholds, R2F 2h−2 in Het/K 3× T 2 at one-loop

Dixon Kaplunovsky Louis; Harvey Moore

• F 4 couplings in Het/T d at one-loop
Bachas Fabre Kiritsis Obers Vanhove

• R4 couplings in type II/T d at one-loop (Φ = 1)
Green Vanhove; Kiritsis BP

• R2 couplings in type II/K 3× T 2 at one-loop (")
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP

• F 4 couplings in type II/T 4/ZN at tree-level (")
Obers BP

• ∇4R4 couplings in M/T d at two-loops (")
Green Vanhove Russo

These amplitudes are strongly constrained by supersymmetry,
and offer precise tests of string dualities.
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Modular integrals and BPS amplitudes III

When A arises at one-loop, and upon choosing F as the standard
‘keyhole’ domain, τ2 can be interpreted as the Schwinger
parameter, while τ1 is a Lagrange multiplier enforcing the
level-matching constraint p2

L − p2
R = N.

B. Pioline (CERN & LPTHE) Rankin-Selberg methods Köln, May 10, 2012 4 / 29



Theta correspondances

From the mathematical point of view, modular integrals give a
theta correspondence

Φ : Γ\H → C ↔ A : O(Γd+k ,d )\Gd+k ,d → C

between modular forms on H and automorphic forms on the
Grassmannian Gd+k ,d , or Narain moduli space

Gd+k ,d =
O(d + k ,d)

O(d + k)×O(d)
3 (gij ,Bij ,Y a

i )

Indeed, SL(2)×O(d + k ,d) forms a dual pair in Sp(d + k ,d), and
the lattice partition function is invariant under Γ×O(Γd+k ,d ).
Theta correspondences are one of the few general ways (together
with Langlands-Eisenstein series) to construct automorphic forms,
and are central in the Langlands programme
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Unfolding trick

In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.

E.g for d = 1, representing Γ(1,1) = R
∑

m,n e−πR2|m−nτ |2/τ2 ,∫
F
Γ(1,1) =

π

3
R +

π

3
R−1

For d = 2, a landmark (lengthy) computation shows∫
F

(
Γ(2,2)(T ,U)− τ2

)
dµ = − log

(
8πe1−γ

3
√

3
T2 U2 |η(T ) η(U)|4

)
Dixon Kaplunovsky Louis

where T ,U parametrize the Grassmannian G2,2 = HT ×HU/Z2.
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Rankin-Selberg method I

The unfolding trick is also at the basis of the Rankin-Selberg
method in analytic number theory: let

E?(τ ; s) ≡ζ?(2s)
∑

γ∈Γ∞\Γ

[Im (γ · τ)]s

=1
2 ζ

?(2s)
∑

(c,d)=1

τ s
2

|c τ + d |2s

be the completed non-holomorphic Eisenstein series, where
ζ?(s) ≡ π−s/2 Γ (s/2) ζ(s) = ζ?(1− s) is the completed zeta
function with simple poles at s = 1,0
E?(τ ; s) = E?(τ ; 1− s) is analytic in s away from s = 0,1,

E?(τ ; s) =
1

2(s − 1)
+ 1

2

(
γ − log(4π τ2 |η(τ)|4)

)
+O(s − 1) ,
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Rankin-Selberg method (cont.)

Let F (τ) a modular function of rapid decay at the cusp and
consider the Rankin-Selberg transform

R?(F , s) ≡
∫
F

dµE?(τ ; s) F (τ)

By the unfolding trick, R?(F , s) is proportional to the Mellin
transform of the constant term F0(τ2) =

∫ 1/2
−1/2 dτ1 F (τ),

R?(F ; s) =ζ?(2s)

∫
S

dτ1 dτ2

τ2−s
2

F (τ)

=ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 F0(τ2) ,

B. Pioline (CERN & LPTHE) Rankin-Selberg methods Köln, May 10, 2012 8 / 29



Rankin-Selberg method (cont.)

The analyticity and functional relation for E? implies similar
properties for R?(F ; s). For F = f .g product of two cusp forms,
this is used e.g. to show the analyticity and functional relation of
the L-function L(s) =

∑
n anbnn−s ∝ R?(F ; s).

For us, the main point is that, since the residue of E? at s = 0,1 is
constant, the residue of R?(F ; s) at s = 0 is proportional to the
modular integral of F ,

Res R?(F ; s)|s=1 = 1
2

∫
F

dµF = −Res R?(F ; s)|s=0 .
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Rankin-Selberg-Zagier method I

This was extended by Zagier to the case where F is of moderate
growth F (τ) ∼ φ(τ2) at the cusp (φ(τ2) at most a power): the
renormalized modular integral

R.N.
∫
F

dµF (τ) ≡ lim
T →∞

[∫
FT

dµF (τ)− ϕ̂(T )

]
is related to the Mellin transform of the (regularized) constant term

R?(F ; s) = ζ?(2s)

∫ ∞
0

dτ2 τ
s−2
2 (F0 − ϕ) ,

via
R.N.

∫
F

dµF (τ) = 2 Res [R?(F ; s)]s=1 + δ
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Rankin-Selberg-Zagier method II

The correction δ depends only of the leading behavior φ(τ2), and
is given by

δ = 2 Res [ζ?(2s) hT (s) + ζ?(2s − 1) hT (1− s)]s=1 − ϕ̂(T ) ,

where

hT (s) =

∫ T
0

dτ2 ϕ(τ2) τ s−2
2 , φ̂(T ) = Res

[
hT (s)

s − 1

]
s=1

Other renormalization schemes may give a different constant δ
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Epstein series from modular integrals

The RSZ method applies immediately to modular integrals with
Φ = 1:

R?(Γ(d ,d); s) = R.N.
∫
F

dµ τd/2
2

∑
mi ,ni

q
1
2 p2

L q̄
1
2 p2

R E?(s, τ) ,

= ζ?(2s)

∫ ∞
0

dτ2 τ
s+d/2−2
2

∑
mi ni =0

e−πτ2M2

= ζ?(2s)
Γ (s + d

2 − 1)

πs+
d
2−1

Ed
V (g,B; s + d

2 − 1)

≡ Ed ?
V (g,B; s + d

2 − 1)

where Ed
V (g,B; s) is the constrained Epstein Zeta series

Ed
V (g,B; s) ≡

∑
(mi ,ni )∈Z2d\(0,0)

mi ni =0

M−2s , M2 = p2
L + p2

R
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Epstein series and BPS state sums I

This is identified as a sum over all BPS states of momentum mi
and winding ni along the torus, O(Γd ,d )-invariant mass

M2 = (mi + Biknk )g ij(mj + Bjlnl) + nigijnj

subject to the O(Γd ,d )-invariant BPS condition mini = 0.

The constrained Epstein Zeta series Ed
V (g,B; s) converges

absolutely for s + d
2 − 1 > 1. The RSZ method shows that it

admits a meromorphic continuation in the s-plane satisfying

Ed?
V (g,B; s) = Ed ?

V (g,B; d − 1− s) ,

with a simple pole at s = 0, d
2 − 1, d

2 ,1 (assume d > 2).
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Epstein series and BPS state sums II

The residue at s = d
2 produces the modular integral of interest:

R.N.
∫
F

dµΓ(d ,d)(g,B) =
π

3
Γ(d/2)

πd/2 Res Ed
V (g,B; s)

∣∣∣
s=d/2

=
Γ(d/2− 1)

πd/2−1 Ed
V
(
g,B; 1

2 d − 1
)

rigorously proving an old conjecture of Obers and myself.
For d = 1 or d = 2:

E1,?
V (g,B; s − 1

2) =2 ζ?(2s) ζ?(2s − 1)
(

R1−2s + R2s−1
)

E2?
V (T ,U; s) =2 E?(T ; s) E?(U; s)

leading immediately to advertized results.
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Relation with other constructions

The differential equations

0 =
[
∆SO(d ,d) − 2 ∆SL(2) + 1

4 d(d − 2)
]
Γ(d ,d)(g,B)

0 =
[
∆SL(2) − 1

2 s(s − 1)
]

E?(τ ; s) ,

imply that Ed?
V (s) is an eigenmode of the Laplace-Beltrami

operator on the Grassmannian Gd ,d with eigenvalue s(s − d + 1),
and more generally, of any O(d ,d) invariant differential operator.

Ed?
V (g,B; s) must be equal to the Langlands-Eisenstein series of

O(d ,d) with infinitesimal character ρ− 2sα1, according to the
Siegel-Weil formula.
The residue at s = d

2 is the minimal theta series, attached to the
minimal representation of SO(d ,d) (functional dimension 2d − 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Modular integrals with unphysical tachyons I

For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.
In mathematical terms, Φ(τ) ∈ C[Ê2,E4,E6,1/∆] is a weak almost
holmorphic modular form with weight w = −k/2 ≤ 0.
The RSZ method fails, however the unfolding trick could still work
provided Φ(τ) had a uniformly convergent Poincaré representation

Φ(τ) =
∑

γ∈Γ∞\Γ

f (τ)|wγ

where the seed f (τ) is invariant under τ → τ + 1 and

(f |wγ) (τ) = (cτ + d)−w f (γ · τ) , γ · τ =
aτ + b
cτ + d

.
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Various Poincaré series representations I

Naively, one requires f (τ) = 1/qκ (κ = 1 for physics applications),

however convergence requires f (τ)� τ
1−w

2
2 as τ2 → 0. This is OK

for w > 2 but fails for w ≤ 0. We need to regularize.
Any weak holomorphic modular form can be represented as a
linear combination of regularized holomorphic Poincaré series

P(κ,w) = 1
2

!∑
(c,d)=1

(cτ + d)−w e−2πiκ aτ+b
cτ+d Rw

(
2πiκ

c(cτ + d)

)
,

where Rw (x) ∼ x1−w/Γ (2− w) as x → 0 and approaches 1 as
x →∞. However this is only conditionally convergent, and
P(κ,w) in general has modular anomalies.

Niebur; Knopp; Manschot Moore
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Various Poincaré series representations II

Another option is to insert a non-holomorphic convergence factor
à la Hecke-Kronecker, i.e. choose f (τ) = τ

s−w
2

2 q−κ

E(s, κ,w) ≡ 1
2

∑
(c,d)=1

τ
s−w

2
2

|cτ + d |2s−w (cτ + d)−w e−2πiκ aτ+b
cτ+d

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but the analytic
continuation to s = w

2 is tricky (no modular anomaly, but in general
holomorphic anomalies).
Moreover, E(s, κ,w) is not an eigenmode of the Laplacian, rather[

∆w + 1
2 s(1− s) + 1

8 w(w + 2)
]

E(s, κ,w) = 2πκ (s − w
2 ) E(s+1, κ,w)
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Niebur-Poincaré series I

There exist yet another regularization which does not require
analytic continuation and is still an eigenmode of the Laplacian:
the Niebur-Poincaré series

F(s, κ,w) = 1
2

∑
γ∈Γ∞\Γ

Ms,w (−κτ2) e−2πiκτ1 |w γ
Niebur; Hejhal; Bruinier Ono Bringmann...

whereMs,w (y) is proportional to a Whittaker function, so that[
∆w + 1

2 s(1− s) + 1
8 w(w + 2)

]
F(s, κ,w) = 0

The seed f (τ) =Ms,w (−κτ2) e−2πiκτ1 satisfies

f (τ) ∼τ2→0 τ
Re(s)−w

2
2 e−2πiκτ1 f (τ) ∼τ2→∞

Γ (2s)

Γ (s + w
2 )

q−κ

hence F(s, κ,w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series II
For s = 1− w

2 the eigenvalue coincides with that of a holomorphic
modular form, and the seed simplifies to

f (τ) = Γ (2− w)

(
q−κ − q̄κ

−w∑
`=0

(4πκτ2)`

`!

)
For w < 0, the value s = 1− w

2 lies in the convergence domain.
F(1− w

2 , κ,w) is in general NOT holomorphic, but rather a weak
harmonic Maass form.
For s = w ′

2 and w ′ > 0, F(w ′

2 , κ,w
′) IS weakly holomorphic. For

w ′ = 2− w , it is the Farey transform (or the ’ghost’) of the weak
harmonic Maass form F(1− w

2 , κ,w).
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Niebur-Poincaré series III

w F(1− w
2 ,1,w) F(1− w

2 ,1,2− w)

0 j + 24 E2
4 E6∆

−1

−2 3! E4E6∆
−1 E4(j − 240)

−4 5! E2
4 ∆
−1 E6(j + 204)

−6 7! E6∆
−1 E2

4 (j − 480)

−8 9! E4∆
−1 E4E6(j + 264)

−10 11! Φ−10 (mess)

−12 13!∆−1 E2
4 E6(j + 24)

−14 15! Φ−14 (mess)
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Niebur-Poincaré series IV
Indeed, for w = −10, there does not exist any weak holomorphic
modular form with a simple pole at the cusp. Rather, there exist a
weak harmonic Maass form

Φ−10 =q−1 − 65520
691 − 1842.89 q − 23274.08 q2 + . . .

+
∞∑

m=1

m−11 b̄m Γ (11,4πmτ2) q−m

Ono

with shadow
∑

bmqm proportional to the cusp form ∆.
Theorem (Bruinier) : any weak holomorphic modular form of
weight w ≤ 0 with polar part Φ =

∑
−κ≤m<0 am qm +O(1) can be

represented as a linear combination of Niebur-Poincaré series

Φ =
1

Γ (2− w)

∑
−κ≤m<0

am F(1− w
2 ,m,w) + a′0 δw ,0
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Niebur-Poincaré series V

Almost weak holomorphic modular forms can be reached by
raising and lowering operators

Dw =
i
π

(
∂τ −

iw
2τ2

)
, D̄w = −iπ τ2

2∂τ̄ ,

under which

Dw · F(s, κ,w) = 2κ (s + w
2 )F(s, κ,w + 2) ,

D̄w · F(s, κ,w) =
1

8κ
(s − w

2 )F(s, κ,w − 2) .

The relevant values of s are s = 1− w
2 + n with n ≥ 0. E.g.

Ê2E4E6

∆
= F(2,1,0)− 5F(1,1,0)− 144
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Niebur-Poincaré series VI

-

6

-�

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

w

s

2 4−2−4

1

2

3

DD̄

j + 24 E2
4 E6/∆

weak almost harmonic

s =
w

2
: wea

k ho
l. (g

ho
st)wea

k alm
os

t h
ol.

s
=
− w

2 : τ 2−w2
×

anti-hol. (shadow)

s
=

1−
w

2 : weak harmonic

Figure: Phase diagram for the Niebur-Poincaré series F(s, κ,w) for
integer values of ( w

2 , s) with s ≥ 1. For low negative values of w ,
F(s, κ,w) reduces to an ordinary weak almost holomorphic Maass form,
see Table ??.
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Unfolding the modular integral

Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Id+k ,d (s, κ; ) = R.N.
∫
F

dµΓd+k ,d (G,B,Y )F(s, κ,−k
2 )

Using the unfolding trick, one arrives at the BPS state sum

Id+k ,d (s, κ) =(4πκ)1− d
2 Γ (s + 2d+k

4 − 1)

×
∑
BPS

2F1

(
s − k

4 , s + 2d+k
4 − 1 ; 2s ; 4κ

p2
L

) (p2
L

4κ

)1−s− 2d+k
4

Bruinier; Angelantonj Florakis BP

where
∑

BPS ≡
∑

pL , pR
δ(p2

L − p2
R − 4κ). This converges absolutely

for Re(s) > 2d+k
4 and can be analytically continued to Re(s) > 1

with a simple pole at s = 2d+k
4 .
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Unfolding the modular integral

Using Bruinier’s thm, any modular integral can be expressed as a
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Id+k ,d (s, κ; ) = R.N.
∫
F

dµΓd+k ,d (G,B,Y )F(s, κ,−k
2 )

Using the unfolding trick, one arrives at the BPS state sum
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Unfolding the modular integral

The result is manifestly T-duality invariant, and requires no choice
of chamber in Narain modular space. Singularities on Gd+k ,d arise
when p2

L = 0 for some lattice vector.
For the relevant values s = 1− w

2 + n, the result can be written
using elementary functions, e.g.

I1,1(1 + n, κ) =1
2
√
π (16κ)1+n Γ (n + 1

2)

×
∑

p,q∈Z
pq=κ

(∣∣∣p R + q R−1
∣∣∣+
∣∣∣p R − q R−1

∣∣∣)−1−2n

I2+k ,2(1 + k
4 , κ) =− Γ (2 + k

2 )
∑
BPS

log
(

p2
R

p2
L

)
+

k/2∑
`=1

1
`

(
p2

L
4κ

)−`
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One example

Consider Het/T 2 × K 3 at Z2 orbifold point with gauge group
broken to E8 × E7 × SU(2). The gauge threshold for E7 is

∆E7 = − 1
12

∫
F

dµΓ2,2
Ê2 E4 E6 − E3

4
∆

Expressing the elliptic genus as a linear combination

Ê2 E4 E6 − E3
4

∆
= F(2,1,0)− 6F(1,1,0)− 864

one arrives at

∆E7 =
∑
BPS

[
1 +

p2
R

4
log

(
p2

R

p2
L

)]
−72 log

(
4π e−γT2 U2 |η(T ) η(U)|4

)
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Conclusion - Outlook

Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ’orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

For application to orbifold models, it would be useful to extend this
method to congruence subgroups of SL(2,Z).
The RSZ method also works at higher genus, at least for g = 2,3
and Φ = 1. It would be useful to derive Poincaré series
representations for Siegel modular forms.
The Niebur-Poincaré series may have useful applications for the
Black Hole Farey Tale...
Automorphic forms for exceptional groups are relevant to physics,
and can be in principle constructed with similar methods, using
other dual pairs such as E6 × SL(3) in E8...

Nicolai Plefka BP Waldron; BP Waldron
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Backup: Niebur-Poincaré vs. Selberg-Poincaré

E(s, κ,w) =
∑
m≥0

b(s, κ,w ,m)F(s + m, κ,w) ,

b(s, κ,w ,m) =
2w−2s (πκ)−s+

w
2 Γ (2s + m − 1)Γ (s + m − w

2 )

m!Γ (2s + 2m − 1)Γ (s − w
2 )

.

In the limit s → w
2 , for w ≤ 0,

E(w
2 , κ,w) =F(w

2 , κ,w) +

−w
2 −1∑

m=1

b′m Ress= w
2 +m F(s, κ,w)

+
1−w∑

m=−w
2 +1

bm F(w
2 + m, κ,w)
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