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Modular integrals and BPS amplitudes |

@ In string theory, an interesting class of terms (often known as
BPS-saturated coupling, topological amplitude or F-term) in the
low energy effective action are given by a modular integral

A:/}_dﬂp(d-i-k,d) ®(7)

e F =T\H : fundamental domain of the modular group I' = SL(2,Z)
on the Poincaré UHP #;
o du = dry dTg/’TZ is the -invariant measure;

® ldtka) = 72 Z qul. quR a theta series for an even self-dual
lattice of signature (d + k, d), known as the Narain lattice partition
function;

e ®(7) : an (almost, weak) holomorphic modular form of weight
w = —k/2, known as the elliptic genus
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Modular integrals and BPS amplitudes Il

@ Such amplitudes arise in a variety of examples:
e Gauge thresholds, R?F2"~2 in Het/K3 x T2 at one-loop
Dixon Kaplunovsky Louis; Harvey Moore
F* couplings in Het/ T9 at one-loop
Bachas Fabre Kiritsis Obers Vanhove
R* couplings in type /l/ T9 at one-loop (¢ = 1)
Green Vanhove; Kiritsis BP
R? couplings in type ///K3 x T2 at one-loop (")
Harvey Moore; Gregori Kiritsis Kounnas Obers Petropoulos BP
F* couplings in type I/ T*/Zy at tree-level (")

Obers BP

V*R* couplings in M/ T¢ at two-loops (")
Green Vanhove Russo

@ These amplitudes are strongly constrained by supersymmetry,
and offer precise tests of string dualities.
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Modular integrals and BPS amplitudes Il

@ When A arises at one-loop, and upon choosing F as the standard
‘keyhole’ domain, o can be interpreted as the Schwinger
parameter, while 71 is a Lagrange multiplier enforcing the
level-matching constraint p? — p% = N.
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Theta correspondances

@ From the mathematical point of view, modular integrals give a
theta correspondence

OJ8 F\H —-C < A: O(I’d+k7d)\Gd+k,d —-C

between modular forms on # and automorphic forms on the
Grassmannian Gy 4, or Narain moduli space

G, . __Od+kd)
d+hd = O(d + k) x O(d)

> (gijv Bl'jv Yia)
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Theta correspondances

@ From the mathematical point of view, modular integrals give a
theta correspondence

OJ8 I’\’H —-C < A: O(I’d+k7d)\Gd+k,d —-C

between modular forms on # and automorphic forms on the
Grassmannian Gy 4, or Narain moduli space

G ~ O(d+k,d)
d+hd = O(d + k) x O(d)
@ Indeed, SL(2) x O(d + k, d) forms a dual pair in Sp(d + k, d), and
the lattice partition function is invariant under I' x O(T g4 k,a)-
@ Theta correspondences are one of the few general ways (together

with Langlands-Eisenstein series) to construct automorphic forms,
and are central in the Langlands programme

> (94, By, Y7)
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.

@ E.gford=1,representing I\1 1) =R >, , g~ "R Im—nrZ/mp

T T
Iyyy==R+ =R
/]__ (1,1 3 3
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Unfolding trick

@ In the physics literature, the time-honored way to evaluate such
integrals has been the unfolding trick or orbit method where the
domain of integration F is unfolded by grouping the terms in the
theta series into orbits.

@ E.gford=1,representing I\1 1) =R >, , g~ "R Im—nrZ/mp

3 3
@ For d = 2, alandmark (lengthy) computation shows

/ Faay =R+ 2R
]:

8re!

[ (e (7.0) ) o= —tog (%37 T el W)

3\@ Dixon Kaplunovsky L
where T, U parametrize the Grassmannian G = H1 x Hy/Zo.
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Rankin-Selberg method |

@ The unfolding trick is also at the basis of the Rankin-Selberg
method in analytic number theory: let

E*(r;s)=(C"(2s) Y [m(y-7)°

YEL NI
10 Y
2 (e |CT+d|2S

be the completed non-holomorphic Eisenstein series, where
¢*(s) =752 (s/2) ((s) = ¢*(1 — s) is the completed zeta
function W|th simple polesats =1,0

@ E*(r;8) = E*(r; 1 — s) is analytic in s away from s = 0,1,

E*(1;8) =

557y + (7~ loal@n 2 n(n)}) + 05— 1),
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Rankin-Selberg method (cont.)

@ Let F(7) a modular function of rapid decay at the cusp and
consider the Rankin-Selberg transform

R*(F,s) = /}_dME*(T;S)F(T)

@ By the unfolding trick, R*(F, s) is proportional to the Mellin
transform of the constant term Fy(72) f 172 dry F(7),
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Rankin-Selberg method (cont.)

@ The analyticity and functional relation for E* implies similar
properties for R*(F; s). For F = f.g product of two cusp forms,
this is used e.g. to show the analyticity and functional relation of
the L-function L(s) = ), anbnn—° o<« R*(F; s).

@ For us, the main point is that, since the residue of E*at s = 0,1 is
constant, the residue of R*(F; s) at s = 0 is proportional to the
modular integral of F,

Res R*(F;8)|s_1 = ;/ du F = —Res R*(F; S)|s_g -
f
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Rankin-Selberg-Zagier method |

@ This was extended by Zagier to the case where F is of moderate
growth F(7) ~ ¢(72) at the cusp (¢(m2) at most a power): the
renormalized modular integral

T—o0

R.N. / du F(r) = lim {/ du F(7) — @(T)}
F Fr
is related to the Mellin transform of the (regularized) constant term

R*(F:5) = (*(25) /0 dro 52 (Fo — )

via
RN. / A F(r) = 2Res [R*(F: 8)]o_y + 0
f
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Rankin-Selberg-Zagier method Il

@ The correction ¢ depends only of the leading behavior ¢(72), and
is given by

5 = 2Res [¢*(28) hr(S) + ¢*(2s — 1) hr(1 — 8)]ouy — @(T),

where

T ~
hr(s) = [ amaetm)zs 2 —res | T

@ Other renormalization schemes may give a different constant §
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Epstein series from modular integrals

@ The RSZ method applies immediately to modular integrals with
d=1:
R*(F(d,d); S) = R.N. / dM Td/ Z q2pL qu%? E*(S 7')

mj ,n’

:C*(ZS)/ dmo Ts+d/2 2 Z g2 M
0

mini=
I'is+35—1
= q*(%)%gd(g,/a s+9-1)
S+§—1

=£0%(g,B;s+9—1)

where £9(g, B; s) is the constrained Epstein Zeta series

£)g.Bis)= Y, M, MP=pi+ph
(m;,n")€z?9\(0,0)
m;n'=0
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Epstein series and BPS state sums |

@ Thisis identifie_d as a sum over all BPS states of momentum m;
and winding n' along the torus, O(I'y 4)-invariant mass

M? = (m; + Byn')g"(m; + Byn') + n'gn/

subject to the O(T 4 g)-invariant BPS condition m;n’ = 0.

@ The constrained Epstein Zeta series 53(9, B; s) converges
absolutely for s + ¢ — 1 > 1. The RSZ method shows that it
admits a meromorphic continuation in the s-plane satisfying

£%(9,B;s) =E£3*(g,B;d —1—5),

with a simple pole at s = 0,9 — 1,9, 1 (assume d > 2).
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Epstein series and BPS state sums |l

@ The residue at s = ¢ produces the modular integral of interest:

7w I(d/2) d .
R.N. /fdu Ia.a)(9,B) = 3 dj2 Res £y (9, B: S)‘s:d/Z
rd/2-1
- (7Tc/1/2—1)53(9’3;;d_1)

rigorously proving an old conjecture of Obers and myself.
@ Ford=1ord=2:

V(g Bis — §) =2¢"(28) ("(2s — 1) (A2 4 A>T
EZX(T,U;s) =2 E*(T;s) E*(U; s)

leading immediately to advertized results.
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Relation with other constructions

@ The differential equations

0 = [Aso(a,a) — 2 Asi(z) + 5 d(d — 2)] I(g.a)(g. B)
0= [ASL(2) - %3(3 - 1)] E*(;s),
imply that £2*(s) is an eigenmode of the Laplace-Beltrami

operator on the Grassmannian Gy 4 With eigenvalue s(s — d + 1),
and more generally, of any O(d, d) invariant differential operator.
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e £9%(g, B; s) must be equal to the Langlands-Eisenstein series of
O(d, d) with infinitesimal character p — 2s«4, according to the
Siegel-Weil formula.
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Relation with other constructions

@ The differential equations

0 = [Aso(d,a) — 2As ey + 3 d(d — 2)] I(g.a)(9, B)
0= [ASL(2) - %3(3 - 1)] E*(;s),

imply that £2*(s) is an eigenmode of the Laplace-Beltrami
operator on the Grassmannian Gy 4 With eigenvalue s(s — d + 1),
and more generally, of any O(d, d) invariant differential operator.

° 55*(9, B; s) must be equal to the Langlands-Eisenstein series of
O(d, d) with infinitesimal character p — 2s«4, according to the
Siegel-Weil formula.

@ The residue at s = g is the minimal theta series, attached to the
minimal representation of SO(d, d) (functional dimension 2d — 3).

Ginzburg Rallis Soudry; Kazhdan BP Waldron; Green Vanhove Miller
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Modular integrals with unphysical tachyons |

@ For many cases of interest, the integrand is NOT of moderate
growth at the cusp, rather it grows exponentially, due to the
heterotic unphysical tachyon.

@ In mathematical terms, ®(7) € C[E», E4, Eg, 1/A] is a weak almost
holmorphic modular form with weight w = —k /2 < 0.

@ The RSZ method fails, however the unfolding trick could still work
provided ®(7) had a uniformly convergent Poincaré representation

o= D )y
YETN\T
where the seed f(r) is invariant under  — 7 + 1 and

_ar+b
er+d’

(flwy) (1) = (eT + ) f(y-7), 77
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Various Poincaré series representations |

@ Naively, one requires f(t) = 1/9" (x = 1 for physics applications),
however convergence requires f(7) < 721_? as m» — 0. This is OK
for w > 2 but fails for w < 0. We need to regularize.

@ Any weak holomorphic modular form can be represented as a
linear combination of regularized holomorphic Poincaré series

ar+b

|
: ; 2mik
Praw)=3 > (cr+d) e ?"eria R <> :
(r, W) =3 (C7d)_1( ) "\ c(er + d)

where Ry (x) ~ x'=%/I'(2 — w) as x — 0 and approaches 1 as
Xx — oo. However this is only conditionally convergent, and
P(x, w) in general has modular anomalies.

Niebur; Knopp; Manschot Moore
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Various Poincaré series representations Il

@ Another option is to insert a non-holomorphic convergence factor
a la Hecke-Kronecker, i.e. choose f(7) = 723_5 qg*r

ar+b

2
1 Z T2 —w —2rir
E(S7 K, W) =3 7|CT i d|2$—W (CT + d) e cr+d
(c,d)=1

Selberg;Goldfeld Sarnak; Pribitkin

This converges absolutely for Re(s) > 1, but the analytic
continuation to s = ¥ is tricky (no modular anomaly, but in general
holomorphic anomalies).

@ Moreover, E(s, k, w) is not an eigenmode of the Laplacian, rather

(A + 3 s(1—58)+ gw(w+2)] E(s,k,w) =2rk(s— %) E(s+1,5,w)
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Niebur-Poincaré series |

@ There exist yet another regularization which does not require
analytic continuation and is still an eigenmode of the Laplacian:
the Niebur-Poincaré series

,7:(3 K: W Z MSW K;Tz) 27‘(’1!{7’1 |ny
'YEF o\l Niebur; Hejhal; Bruinier Ono Bringmann...
where M; »(y) is proportional to a Whittaker function, so that

[Ay+ 3 s(1—58)+ 3 w(w+2)] F(s,k,w)=0
@ The seed f(7) = Msw(—kTo) €27 gatisfies

I'(2s)

Re(s)— R q
2 I'(s+ %)

(7)o 3 2072 () ~

—K

hence F(s, k, w) converges absolutely for Re(s) > 1.
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Niebur-Poincaré series |l

@ For s =1 — 7 the eigenvalue coincides with that of a holomorphic
modular form, and the seed simplifies to

— (4rkp)t
f(r) =12 - w) (q”" g > i >
=0
@ For w < 0, the value s =1 — 7 lies in the convergence domain.
F(1— %, r,w)isin general NOT holomorphic, but rather a weak
harmonic Maass form.
@ Fors= % and w' > 0, F(%, s, w') IS weakly holomorphic. For
w' =2 — w, it is the Farey transform (or the 'ghost’) of the weak
harmonic Maass form F(1 — 4, x, w).
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Niebur-Poincaré series Il

w | FO -4, 1,w) | F(1 - 4,1,2—w)
0 j+24 EZEs A~°
—2 | BIEEsAT E4(j — 240)
—4 51 E2 A~ Es(j +204)
-6 71 Eg A~ E2(j — 480)
-8 91 E, A~ E4Es(j + 264)
-10 111d_q9 (mess)
12 131A-1 E2Es(j + 24)
—14 151 d_q4 (mess)
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Niebur-Poincaré series |V

@ Indeed, for w = —10, there does not exist any weak holomorphic
modular form with a simple pole at the cusp. Rather, there exist a
weak harmonic Maass form

® 19 =q ' — 3520 _ 1842.89 q — 23274.08% + ...

+ > m by r(11,47mr) g
m=1 Ono
with shadow > b,@™ proportional to the cusp form A.

@ Theorem (Bruinier) : any weak holomorphic modular form of
weight w < 0 with polarpart ® =5" o anq™ + O(1) can be
represented as a linear combination of Niebur-Poincaré series

’
d=—r——" > anF(1-%.mw)+abuo

—k<m<0
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Niebur-Poincaré series V

@ Almost weak holomorphic modular forms can be reached by
raising and lowering operators

_ify W A i 25
DW—W<8T 27_2), Dy = —ir 150z,
under which

Dw - F(s,k,w) =2k(s+ 5) F(S, 5, W+ 2),

= 1
Dy - F(s,k,w) = —(s— %) F(s,k, W — 2).
8k 2

The relevant values of sare s =1 — 3 + nwith n> 0. E.g.

E:EsEs

A F(2,1,0) —5F(1,1,0) — 144
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Niebur-Poincaré series VI

B. Pioline (CERN & LPTHE)

weak almog

5t harmonic

Rankin-Selberg methods
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Unfolding the modular integral

@ Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Torwals.i) = RN. | duTuid(G.B.Y) F(s.r.~)
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Unfolding the modular integral

@ Using Bruinier’s thm, any modular integral can be expressed as a
linear combination of

Laikd(S, #:) = RN. /qu T'yikd(G,B,Y)F(s,k,—%5)
@ Using the unfolding trick, one arrives at the BPS state sum

Takd(S, k) =(4mk)' "2 T(s + 24K — 1)

> 1—s—2dtk
pL 4
XZ 2F1 <S*Z,S+2d+k 1 28 pz)( )
BPS -

Bruinier; Angelantonj Florakis BP
where 3 pps = > e 9(0f — P& — 4r). This converges absolutely
for Re(s) > 2% and can be analytically continued to Re(s) > 1
with a simple poIe at s = 29k,
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Unfolding the modular integral

@ The result is manifestly T-duality invariant, and requires no choice
of chamber in Narain modular space. Singularities on Gg.« ¢ arise
when p? = 0 for some lattice vector.

@ For the relevant values s =1 — g + n, the result can be written
using elementary functions, e.g.

Tia(1 4+ nk) =3 v/ (168)" I(n+ §)

<5 (preanspa-an) "
P,Q€EZ

pg=r
) K2 L o
Torko(1+ 5, 5)=—T(2+%) Z log (Z§> + Z 7 (Z,E)
BPS =1
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One example

@ Consider Het/ T2 x K3 at Z, orbifold point with gauge group
broken to Eg x E7 x SU(2). The gauge threshold for E7 is

1 E,E,Es— E3
AE7: 12 duFZZ*

Expressing the elliptic genus as a linear combination

E,E Es— E3
%:}“(2,1,0)—6}'(1,1,0)—864

one arrives at

A —Z[H—pﬁlo (
Ez — 4 g

BPS

)} ~72log (4r e T2 Uy [n(T)n(U)I*)

lpr\)‘;gr\)
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ’orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.
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Conclusion - Outlook

@ Modular integrals can be efficiently computed using Rankin-
Selberg type methods. While the time-honored ’orbit method’ is
still useful for studying large volume limits, our method makes
T-duality and singularities manifest.

@ For application to orbifold models, it would be useful to extend this
method to congruence subgroups of SL(2,7Z).

@ The RSZ method also works at higher genus, at least forg = 2,3
and ¢ = 1. It would be useful to derive Poincaré series
representations for Siegel modular forms.

@ The Niebur-Poincaré series may have useful applications for the
Black Hole Farey Tale...

@ Automorphic forms for exceptional groups are relevant to physics,
and can be in principle constructed with similar methods, using
other dual pairs such as Eg x SL(3) in Eg...

Nicolai Plefka BP Waldron; BP Waldron
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Backup: Niebur-Poincaré vs. Selberg-Poincaré

E(s,k,w) =Y b(s,k,w,m) F(s+m,k,w),
m>0

ow—2s S+2 (2 —1
b(s. . w, m) — (mr)™ (2s+m—1)1(

s+m—%)
miI'(2s+2m—-1)I'(s— %) '

In the limit s — %, for w <0,

_w_4
2
E(%, kW) =F(§, 5 W)+ > bpResg_u pF(s kW)
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