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Introduction

A driving force in high energy theory has been the quest for a
microscopic explanation of the Bekenstein-Hawking entropy of
black holes.

SBH = A
4GN SBH

?
= logΩ

As demonstrated by [Strominger Vafa’95,. . . ], String Theory provides a
quantitative description in the context of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold, and can (often) be counted accurately.
Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.
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BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold X , BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DbCohX .
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.

The problem becomes a question in Donaldson-Thomas theory:
for fixed γ ∈ K (X ), compute the generalized DT invariant Ωz(γ)
counting (semi)stable objects of class γ for a Bridgeland stability
condition z ∈ Stab C, and determine its growth as |γ| → ∞.
Physical arguments predict that suitable generating series of rank
0 DT invariants (counting D4-D2-D0 bound states) should have
specific (mock) modular properties. This gives very good control
on their asymptotic growth, and allows to test whether it agrees
with the BH prediction Ωz(γ) ≃ eSBH(γ).
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Introduction

Today, I will explain how to combine knowledge of standard
Gromov-Witten invariants (counting curves in X ) and wall-crossing
arguments to rigorously compute many rank 0 DT invariants, and
check (mock) modularity to high precision.

Conversely, postulating (mock) modularity one can compute an
infinite number of rank 0 DT invariants, and obtain new constraints
on Gromov-Witten invariants, allowing to compute them to higher
genus than ever before.
In this talk, I will restrict to two cases where mock modularity does
not arise, namely

1 I. one-parameter hypergeometric models with [D4] = 1
Alexandrov Klemm Feyzbakhsh BP Schimannek [arXiv:2301.08066]

2 II. vertical D4-D2-D0 invariants in two-parameter K3-fibered models
Doran BP Schimannek [arXiv:2407.nnnnn]

See S. Alexandrov’s talk for discussion of mock modularity.
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Gromov-Witten invariants

Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants n(g)

β count genus g curves Σ with [Σ] = β ∈ Heff
2 (X ,Z).

They depend only on the symplectic structure (or Kähler moduli)
of X and take rational values.

Physically, they determine certain protected couplingsof the form
Fg(t)R2W 2g−2 in the low energy effective action, which depend
only on the complexified Kähler moduli t and receive worldsheet
instanton corrections: Fg(t) =

∑
β n(g)

β e2πit ·β

Antoniadis Gava Narain Taylor’93

The first two F0 and F1 can be computed using mirror symmetry.
Holomorphic anomaly equations along with boundary conditions
near the discriminant locus and MUM points allow to determine
Fg≥2 up to a certain genus gint (= 53 for the quintic threefold X5).

Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm Quackenbush’06
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Gopakumar-Vafa invariants

While GW invariants take rational values, the Gopakumar-Vafa
invariants GV (g)

β defined by the ’multicover’ formula

∞∑
g=0

λ2g−2Fg(t) =
∞∑

g=0

∞∑
k=1

∑
β

GV (g)
β

k

(
2 sin kλ

2

)2g−2
e2πikt ·β

take integer values. For g = 0, n(0)
β =

∑
k |β

1
k3 GV (0)

β/k . Moreover,

GV (g)
β vanishes for large enough g ≥ gmax(β) [Ionel Parker’13]

Physically, GV (0)
β counts BPS bound states of D2-branes with

charge β, and arbitrary number of D0-branes, while GV (g≥1)
β keep

track of their angular momentum (more on this below).
The formula above arises from a one-loop Schwinger-type
computation of the effective action in a constant graviphoton
background W ∝ λ [Gopakumar Vafa’98]
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GV invariants and 5D black holes

Viewing type II string theory as M-theory on a circle, D2-branes lift
to M2-branes wrapped on curve inside X , yielding BPS black
holes in R1,4. These carry in general two angular momenta (jL, jR).

Keeping track of m = jzL only, the number of states is

Ω5D(β,m) =

gmax(β)∑
g=0

(
2g + 2

g + 1 + m

)
GV (g)

β

Amazingly, it appears that Ω(β,m) ∼ e2π
√

β3−m2 for large β
keeping m2/β3 fixed, in agreement with the Bekenstein-Hawking
entropy of 5D black holes ! [Klemm Marino Tavanfar’07].
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GV invariants and D6-brane bound states

Instead of considering M/X × S1 × R4, one may take
M/X × TN × R, where TN is a unit charge Taub-NUT space. This
descends to a D6-brane on X × R3,1.

D6-D2-D0 bound states of charge (1,0, β, n) are described
mathematically by stable pairs E : OX

s→ F where F is a pure
1-dimensional sheaf with ch1 F = β and χ(F ) = n and s has
zero-dimensional kernel [Pandharipande Thomas’07]. The PT invariant
PT (β,n) is defined as the (weighted) Euler characteristic of the
corresponding moduli space.
Since TN is locally flat, one expects the same low energy effective
action as in flat space. This suggests a relation of the form

∑
β,n

PT (β,n)e2πit ·βqn ≃ exp

 ∞∑
g=0

λ2g−2Fg(t)


Dijkgraaf Vafa Verlinde’06
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GV invariants and D6-brane bound states

More precisely, PT invariants are related to GV invariants by [Maulik

Nekrasov Okounkov Pandharipande’06]

∑
β,n

PT (β,n)e2πit ·βqn =
∏
β,g,ℓ

(
1 − (−q)g−ℓ−1e2πit ·β

)(−1)g+ℓ
(

2g − 2
ℓ

)
GV (g)

β

Under this relation, the Castelnuovo bound GV (g≥gmax(β))
β = 0 is

mapped to PT (β,n ≤ −gmax(β)) = 0
For n close to the Castelnuovo bound, one has
PT (β,n) =

∑gmax(β)
g=1

( 2g−2
g−1−n

)
GV (g)

β +O(GV 2), similar to (but

distinct from) Ω5D(β,m) =
∑gmax(β)

g=0

( 2g+2
g+1+m

)
GV (g)

β .
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Generalized Donaldson-Thomas invariants

More generally, D6-D4-D2-D0 bound states are described by
stable objects in the bounded derived category of coherent
sheaves DbCoh(X ) [Kontsevich’95, Douglas’01]. Objects are bounded
complexes E = (· · · → E−1 → E0 → E1 → . . . ) carrying charge
γ(E) =

∑
K (−1)k ch Ek .

Stable objects are counted by the generalized Donaldson-Thomas
invariant Ω̄σ(γ), where γ ∈ K (C) ∼ Z2b2(X)+2 and σ = (Z ,A) is a
stability condition in the sense of [Bridgeland 2007]. In particular,
∀E ∈ A, (i) ImZ (E) ≥ 0 and (ii) ImZ (E) = 0 ⇒ ReZ (E) < 0.
The space of stability conditions Stab C is a complex manifold of
dimension dimKnum(X ) = 2b2(X ) + 2, unless it is empty.
For X a projective CY3, stability conditions are only known to exist
for the quintic threefold X5 and a couple of other examples [Li’18,

Koseki’20, Liu’21]
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Generalized Donaldson-Thomas invariants

Ω̄σ(γ) is roughly the weighted Euler number of the moduli space
of semi-stable objects Mσ(γ), where semi-stability means that
argZ (E ′) ≤ argZ (E) for any subobject E ′ ⊂ E .

Ω̄σ(γ) ∈ Q but conjecturally Ωσ(γ) :=
∑

k |γ
µ(k)
k2 Ω̄σ(γ/k) is integer.

Ω̄σ(γ) may jump on co-dimension 1 walls in Stab C where some
the central charge Z (γ′) of a subobject E ′ ⊂ E of charge γ′

becomes aligned with Z (γ). The jump is governed by a universal
wall-crossing formula [Joyce Song’08, Kontsevich Soibelman’08]

For γ = (0,0, β, n) and γ = (1,0, β, n), Ωσ(γ) coincides with GV (0)
β

and PT (β,n) or DT (β,n) at large volume, respectively.
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D4-D2-D0 indices as rank 0 DT invariants

The main interest in this talk will be on rank 0 DT invariants
Ω(0,p, β, n) counting D4-D2-D0 brane bound states supported on
a divisor D with class [D] = p ∈ H4(X ,Z).

Viewing IIA=M/S1, they arise from M5-branes wrapped on D × S1.
In the limit where S1 is much larger than X , they are described by
a two-dimensional superconformal field theory with (0,4) SUSY.
[Maldacena Strominger Witten’97]

D4-D2-D0 indices (in suitable chamber) occur as Fourier
coefficients in the elliptic genus:

Tr(−1)2J3qL0−
cL
24 q̄L̄0−

cR
24 e2πiqaza

=
∑

µ∈Λ/Λ∗

hp,µ(τ)Θµ(τ, τ̄ , z)

hpa,µa(τ) :=
∑

n

Ω(0,pa, µa,n)qn+ 1
2µaκabµb− 1

2 paµa−χ(D)
24

and Λ = H4(X ,Z) equipped with the quadratic form κabcpc .
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Modularity of rank 0 DT invariants

When D is very ample, there are no walls extending to large
volume, so the choice of chamber is moot. The central charges
are given by [Maldacena Strominger Witten’97]{

cL = p3 + c2(TX ) · p = χ(D) ,

cR = p3 + 1
2c2(TX ) · p = 6χ(OD)

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula

The generating series hpa,µa(τ) should be a vector-valued, weakly
holomorphic modular form of weight w = −1

2b2(X )− 1 in the Weil
representation of the lattice Λ. It is then completely determined by
its polar coefficients, with n + 1

2µaκ
abµb − 1

2paµa < χ(D)
24 .

B. Pioline (LPTHE, Paris) Modularity on CY threefolds BIMSA, 17/7/2024 14 / 45



Modularity of rank 0 DT invariants

When D is very ample, there are no walls extending to large
volume, so the choice of chamber is moot. The central charges
are given by [Maldacena Strominger Witten’97]{

cL = p3 + c2(TX ) · p = χ(D) ,

cR = p3 + 1
2c2(TX ) · p = 6χ(OD)

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula
The generating series hpa,µa(τ) should be a vector-valued, weakly
holomorphic modular form of weight w = −1

2b2(X )− 1 in the Weil
representation of the lattice Λ. It is then completely determined by
its polar coefficients, with n + 1

2µaκ
abµb − 1

2paµa < χ(D)
24 .

B. Pioline (LPTHE, Paris) Modularity on CY threefolds BIMSA, 17/7/2024 14 / 45



Mock modularity of rank 0 DT invariants

When D is reducible, the generating series hpa,µa(τ) of DT
invariants Ω∗(0,p, β, n) in a suitable chamber is expected to be a
vector-valued mock modular form of higher depth (see S.
Alexandrov’s talk and [Alexandrov BP Manschot’16-20])

While it is clear physically, the mathematical origin of this (mock)
modular invariance is obscure in general. Presumably it should
come from the action of some VOA on the cohomology of the
moduli space of stable sheaves, in the spirit of [Nakajima’94].
When X is K3-fibered, modularity is known to hold for vertical
D4-brane charge, using the relation to Noether-Lefschetz
invariants (more on this in part II). In that case, no modular
anomaly due to κabpb = 0. [Bouchard Creutzig Diaconescu Doran Quigley

Sheshmani’16]
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I. Testing modularity for one-parameter models

Our first aim is to test this prediction for CY threefolds with Picard
rank 1, by computing the first few coefficients in the q-expansion
and determine the putative vector-valued modular form.

This was first attempted by [Gaiotto Strominger Yin ’06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for unit D4-brane charge, and find
a unique modular completion.
We shall compute many terms rigorously, using recent results
by[Soheyla Fezbakhsh and Richard Thomas’20-22] relating rank r DT
invariants (including r = 0, counting D4-D2-D0 bound states) to
rank 1 DT invariants, hence to GV invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank 0 DT invariants

The key idea is to use wall-crossing in a family of weak stability
conditions (aka tilt-stability) parametrized by b + it ∈ H, with
central charge1

Zb,t(E) = i
6 t3 chb

0(E)− 1
2 t2 chb

1(E)− it chb
2(E) + 0 chb

3(E)

with chb
k (E) =

∫
X H3−ke−bH ch(E). The heart Ab is generated by

length-two complexes E−1→F0 with (E ,F) slope semi-stable
sheaves with chb

1(E) > 0, chb
1(F) ≤ 0.

The KS/JS wall-crossing formulae hold for this family of weak
stability conditions. In fact, tilt-stability provides the first step in
constructing genuine stability conditions near the large volume
point [Bayer Macri Toda’11]

1related to Z LV(E) = −
∫

X e(b+it)H ch(E) by setting coefficient of chb
3 to 0
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with Gieseker stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in
the Poincaré upper half-plane spanned by z = b + i t√

3
.

2 4 6 8
b

1

2

3

4

5

t

3

Importantly, for any νb,w -semistable object E there is a conjectural
inequality on Chern classes Ci :=

∫
X chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 −2C0C2)(

1
2b2 + 1

6 t2)+ (3C0C3 −C1C2)b+(2C2
2 −3C1C3) ≥ 0
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Rank 0 DT invariants from GV invariants

By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas’20-22] show that
D4-D2-D0 indices can be computed from PT invariants, which are
in turn related to GV invariants.

Let (X ,H) be a smooth polarised CY threefold with Pic(X ) = Z.H
satisfying the BMT conjecture. Aim: compute PT (β,m) inductively.
Fix m ∈ Z, β ∈ H2(X ,Z) and define x = β.H

H3 , α = − 3m
2β.H

f (x) :=



x + 1
2 if 0 < x < 1√

2x + 1
4 if 1 < x < 15

8
2
3x + 3

4 if 15
8 ≤ x < 9

4
1
3x + 3

2 if 9
4 ≤ x < 3

1
2x + 1 if 3 ≤ x

1

2
1

15

8

9

4
3 4

x

2

3

4

α
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A new explicit formula (S. Feyzbakhsh’23)

Theorem (wall-crossing for γ = (−1,0, β,−m)):
If α > f (x) then the stable pair invariant PT (β,m) equals

∑
(m′, β′)(−1)χm′,β′χm′,β′PT (β′,m′) Ω

(
0,1, H2

2 − β′ + β , H3

6 + m′ − m − β′.H
)

where χm′,β′ = β.H + β′.H + m − m′ − H3

6 − 1
12c2(X ).H.

The sum runs over (β′,m′) ∈ H2(X ,Z)⊕ H0(X ,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.
Corollary (Castelnuovo bound): PT (β,m) = 0 unless m ≥ − (β.H)2

2H3 − β.H
2
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Modularity for one-modulus compact CY

Using the theorem above and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic X5.

In all cases (except X3,2,2,X2,2,2,2 where current knowledge of GV
invariants is insufficient), we could find a linear combination of the
following vv modular forms matching all computed coeffs:

Ea
4 Eb

6
η4κ+c2

Dℓ(ϑ(κ)
µ ) with ϑ(κ)

µ =
∑

k∈Z+µ
κ
+ 1

2

q
1
2κk2

, κ = H3

where D = q∂q − w
12E2, and 4a + 6b + 2ℓ− 2κ− 1

2c2 = −2.
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Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic X5.
In all cases (except X3,2,2,X2,2,2,2 where current knowledge of GV
invariants is insufficient), we could find a linear combination of the
following vv modular forms matching all computed coeffs:

Ea
4 Eb

6
η4κ+c2

Dℓ(ϑ(κ)
µ ) with ϑ(κ)

µ =
∑

k∈Z+µ
κ
+ 1

2

q
1
2κk2
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Modularity for one-modulus compact CY

X χX κ c2(TX ) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Modular predictions for the quintic threefold

Using known GV (g≤53)
β we can compute more than 20 terms:

h0 =q− 55
24

(
5 − 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h±1 =q− 55
24+

3
5

(
0 + 8625q − 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h±2 =q− 55
24+

2
5

(
0 + 0q − 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)
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Modular predictions for the quintic threefold

The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin’06]

hµ = 1
η70

[
−222887E8

4+1093010E5
4 E2

6+177095E2
4 E4

6
35831808

+
25(458287E6

4 E6+967810E3
4 E3

6+66895E5
6)

53747712 D

+
25(155587E7

4+1054810E4
4 E2

6+282595E4E4
6)

8957952 D2
]
ϑ(5)
µ ,

Assuming this we can in principle compute all GV (g≤69)
β !

For X10 , Gaiotto et al predicted

h1,0
?
= q− 35

24

(
3 − 576q + 271704q2 + 206401533q3 + · · ·

)
whereas the correct result turns out to be

h1,0
!
=

203E4
4+445E4E2

6
216 η35 = q− 35

24

(
3 − 575q + 271955q2 + · · ·

)
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II. Modularity for two-parameter K3-fibered models

A natural next step is to consider two-parameter CY threefolds.
We restrict attention to K3-fibered models X with h1,1(X ) = 2,
whose mirror Y is also K3-fibered. [Doran BP Schimannek, to appear]

On the A-model side, X is fibered by Picard rank 1 K3-surfaces
(Σm,L), polarized by a degree 2m line bundle L. On the B-model
side, Y is fibered by Picard rank 19 K3-surfaces Σ̂m, polarized by
the lattice Mm = U ⊕ E8 ⊕ E8 ⊕ ⟨−2m⟩. The fibers (Σm, Σ̂m) are
related by Dolgachev-Nikulin mirror symmetry.
The moduli space of Mm-polarized K3 surfaces is the modular
curve X0(m)+ = H/Γ0(m)+. The fundamental period of Σ̂m,
holomorphic at λ = ∞, is a weight 2 modular form [Lian Yau’95]

fm(λ) =
∑
d≥0

cm(d)λ−d = E (m)
2 (τ) , λ = J+

m (τ)
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Structure of the modular curve X0(m)+

m Orbifold Type λ1, . . . , λr τ1, . . . , τr
1 (3;2;∞) 1728 i
2 (4;2;∞) 256 i√

2
3 (6;2;∞) 108 i√

3
4 (∞;2;∞) 64 i

2
5 (2;2,2;∞) 22 + 10

√
5,22 − 10

√
5 i√

5
, 4

9 + i
9
√

5
6 (∞;2,2;∞) 17 + 12

√
2,17 − 12

√
2 i√

6
, 2

5 + i
5
√

6
7 (3;2,2;∞) 27,−1 i√

7
, 1

2 + i
2
√

7
8 (∞;2,2;∞) 12 + 8

√
2,12 − 8

√
2 i√

8
,− 2

11 + i
22

√
2

9 (∞;2,2;∞) 9 + 6
√

3,9 − 6
√

3 i
9 ,

1
2 + i

6

10 (∞;2,2,2;∞) 9 + 4
√

5,1,9 − 4
√

5 i√
10
, 1

5 ,
4
7 + i

√
10

70

11 (2;2,2,2;∞) Roots of λ3 − 20λ2 + 56λ− 44 i√
11
, 2

3 + i
√

11
33 , 22

25 + i
√

11
275

X0(m)+ has a cusp at λ = ∞, Z2-orbifold points at λ1, . . . , λr and a cusp or Za-orbifold point at

λ = 0, with a ∈ {2, 3, 4, 6,∞}. J+
m maps τ1, . . . τr , i∞ to λ1, . . . , λr ,∞.
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Generalized invariant map

The fibration Σ̂ → Y → P1 is determined by the generalized
invariant map Λ : P1 → X0(m)+, a branched cover over P1. We
assume that the cover is unramified over the Z2-orbifold points λr .

Possible ramification profiles over λ = 0 leading to a smooth CY3
were classified by [Doran Harder Novoseltsev Thompson’17].

m [y1, y2]

1 [1,1], [1,2], [2,2]
2 [1,1], [1,2], [1,4], [2,2], [2,4], [4,4]
3 [1,1], [1,2], [1,3], [2,2], [2,3], [3,3]

4,5 [1,1], [1,2], [2,2]
6,8,9,11 [1,1]
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Fundamental period

Restricting to CY3 with h1,2(Y ) = 2, we find that the ramification
profile over λ = ∞ must also be of the form [i − s, j + s] with
0 ≤ s ≤ j − s, with two ‘excess ramification points’ away from
Z2-orbifold points. The covering Λ : P1

y → P1
λ is then given by

λ(y) = y−s(1 − y)i(1 − z2/y)j/z1

where z1, z2 are complex structure moduli.

The fundamental period of Y follows by integrating the
fundamental period of Σ̂m along a contour on P1

y ,

ϖ(v ,w) =

∮
fm(λ(y))dy

y(1−y)(1−v/y) =
∑

k ,d≥0

cm(d)
(k+id−is)! (k+jd)!
(id)! (jd)!k!(k−sd)!z

d
1 zk

2

This allows to extract the Picard-Fuchs ideal, and obtain the basis
of periods around the MUM point z1, z2 → 0.
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Mirror symmetry and Tyurin degenerations

The mirror X = X [i,j]
m,s can be guessed from the explicit form of the

period, e.g. for (m, i , j) = (1,1,1)

c1(d) =
(6d)!

(d!)3(3d)! ⇒ P

(
i j 1 1 1 3 −s 0
0 0 0 0 0 0 1 1

)[
6 i − s j
0 1 1

]

More generally, X [i,j]
m,s can be constructed as a complete

intersection in a projective bundle over a Fano 4-fold V [i,j]
m .

As argued in [Doran-Harder-Thompson’17], the K3-fibration on the
B-model side is reflected by the existence of a Tyurin
degeneration on the A-model side, where X splits into a union of
two Fano threefolds F [i]

m ∪ F [j]
m , each of Picard rank 1, intersecting

over an anticanonical K3 surface Σm.
The K3-fibration on the A-model side requires the existence of a
Tyurin degeneration on the B-model side, which requires s = 0.
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A family of Picard rank 2 K3-fibered threefolds X [i ,j]
m

h1,1 =2

h1,2 =22 + m(i2 + j2)− 2mij

+ h1,2(F
[i]
m ) + h1,2(F

[j]
m )

κ111 =2m
(

1
i
+

1
j

)
, κ112 = 2m,

κ122 =κ222 = 0

c2,1 =2m(i + j) + 24
(

1
i
+

1
j

)
c2,2 =24

GV
(0)
0,1 =2mij , GV

(0)
0,k>0 = 0 .

(m, i) h1,2(F
[i]
m ) Construction of F [i]

m
(1,1) 52 P1,1,1,1,3[6]
(1,2) 21 P1,1,1,2,3[6]
(2,1) 30 P4[4]
(2,2) 10 P1,1,1,1,2[4]
(2,4) 0 P3

(3,1) 20 P5[2,3]
(3,2) 5 P4[3]
(3,3) 0 P4[2]
(4,1) 14 P6[2,2,2]
(4,2) 2 P5[2,2]
(5,1) 10 X 2,5

O(1)⊕2⊕O(2)

(5,2) 0 B5 = X 2,5
O(1)⊕3

(6,1) 7 X 2,5
S(1)∨⊕O(1)

(7,1) 5 X 2,6
O(1)⊕5

(8,1) 3 X 3,6∧2 S∨⊕O(1)⊕3

(9,1) 2 X 2,7
Q∨(1)⊕O(1)⊕2

(11,1) 0 A22 = X 3,7
(
∧2 S∨)⊕3
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Alternative realizations

(m, i , j) χX CICY Transition
(1,1,1) −252 P4

1,1,2,2,6[12] X6,2

(2,1,1) −168 P4
1,1,2,2,2[8] =

(
P4 4 1
P1 0 2

)
7886, 7888 X4,2

(2,4,1) −168
(

P4 4 1
P1 1 1

)
7885 X5

(2,4,4) −168
(

P3 4
P1 2

)
7887 X8

(3,1,1) −132
(

P6 3 2 1 1
P1 0 0 1 1

)
7867, 7869 X3,2,2

(3,2,1) −120
(

P5 2 3 1
P1 1 0 1

)
7840 X3,3

(3,2,2) −108
(

P4 3 2
P1 0 2

)
7806 X4,3

(3,3,1) −140
(

P5 2 3 1
P1 0 1 1

)
7873 X4,2

(3,3,2) −128
(

P4 3 2
P1 1 1

)
7858 X5

(3,3,3) −148
(

P4 3 2
P1 2 0

)
7882 X6,2

(4,1,1) −112
(

P6 2 2 2 1
P1 0 0 0 2

)
7819, 7823 X2,2,2,2

(4,2,1) −112
(

P6 2 2 2 1
P1 0 0 1 1

)
7817 X3,2,2

(4,2,2) −112
(

P5 2 2 2
P1 0 1 1

)
7816, 7822 X4,2
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NL invariants for Picard rank one K3 fibrations

Let Σ → X π→ B be a CY3 fibered by polarized K3 surfaces (Σ,L)
of degree

∫
Σ L2 = 2m. The moduli space of (Σ,L) is

Mm = O(2)× O(19)\O(2,19)/O(Γm)

where Γm = L⊥ = ⟨−2m⟩ ⊕ H ⊕ E8(−1)⊕ E8(−1).

For any h, µ ≥ 0, let Dh,d ⊂ Mm be the divisor supported on the
locus where

∃β ∈ Pic(Σ) :

∫
Σ
β2 = 2h − 2,

∫
Σ
β · B = µ.

The Noether-Lefschetz number NLh,µ :=
∫

B ιπ[Dh,µ] vanishes
unless h ≤ µ2

4m + 1, and is invariant under spectral (semi-)flow

(h, µ) 7→ (h + kµ+ mk2, µ+ 2km), k ≥ 0
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GV/NL relation for K3-fibered CY threefolds

The vertical GV invariants are related to NL numbers via

GV
(g)
0,d =

∑
h≥g

rg,h NLh,d

where rg,h are the reduced GW invariants of K3, given by

∑
h,g

rg,h

(
2 − y − y−1

)g
qh =

∞∏
n=1

1
(1 − qn)20(1 − yqn)2(1 − qn/y)2 .

Katz Klemm Vafa’99, Maulik Pandharipande’07
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Reduced GW invariants of K3

g\h 0 1 2 3 4 5 6 7
0 1 24 324 3200 25650 176256 1073720 5930496
1 0 −2 −54 −800 −8550 −73440 −536860 −3459456
2 0 0 3 88 1401 15960 145214 1118880
3 0 0 0 −4 −126 −2136 −25750 −246720
4 0 0 0 0 5 168 3017 38328
5 0 0 0 0 0 −6 −214 −4056
6 0 0 0 0 0 0 7 264
7 0 0 0 0 0 0 0 −8
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Modularity of NL invariants

The generating series

Φµ(τ) :=
1
η24

∑
h≤µ2

4m+1

NLh,µ q
µ2

4m+1−h , µ ∈ Z/(2mZ)

is known to transform as a vv modular form of weight −3/2 under
the Weil representation of Z[2m] [Kudla Millson’90, Borcherds’99].

Equivalently,
∑

µΦµ(τ)Θµ(τ̄ , z) is a skew-holomorphic modular
form of weight −1 [Skoruppa Zagier’88].
Physically, the GV/NL correspondance follows from Heterotic-type
II duality: Φd is the new supersymmetric index counting
perturbative (Dabholkar-Harvey) BPS states along T 2.
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Heterotic-type II duality and Borcherds lift

At one-loop on heterotic side, these states contribute to the
prepotential F (S,T ) = −mST 2 + W (T ) +O(e−S) via

∂5
T W =

∫
F

∑
µ∈Z/(2mZ)

Φµ Zµ(τ,T ) =
∑
d≥1

d5 GV (0)
0,d Li−2

(
e2πidT

)

where Li−2(x) =
x(x+1)
(x−1)3 [Antoniadis Gava Narain Taylor’95, Marino

Moore’98,Enoki Watari’19]

∂5
T W is a meromorphic modular form of weight 6 under Γ0(m)+,

with poles at orbifold points in H/Γ0(m)+ . W (T ) itself transforms
as a meromorphic mock modular form of weight −4.
The map Φµ(τ) → W (T ) generalizes the standard
correspondence between (skew) Jacobi forms of index m, weight
w and modular forms of weight 2w − 2 under Γ0(m). [Shintani,

Borcherds,Skoruppa-Zagier]
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GV/NL relation for K3-fibered CY threefolds

The dimension of the relevant space of vv modular forms is
[Bruinier’02, Maulik Pandharipande’07]

m 1 2 3 4 5 6 7 8 9 10 11 12
#pol 2 3 4 5 6 7 8 9 10 11 12 13
dim 2 3 4 4 6 7 7 8 9 10 11 12

For m ≤ 4, an overcomplete basis is again given by

Ea
4 Eb

6
η24 Dℓ(ϑ(2m)

µ ) with ϑ(2m)
µ =

∑
k∈Z+ µ

2m

qmk2

with 4a + 6b + 2ℓ = 10. For m ≥ 5, additional generators can be
obtained via suitable Hecke-type operators.
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Two-parameter K3-fibered models

In the large base limit z2 → ∞, the Yukawa couplings (integrated
once with respect to T ) are given for all models by

∂2
T W =− 2m

[
1
i +

1
j − 2r

]
log J+

m (T )− 4m
r∑

k=1

log(J+
m (T )− λk )

− 6m
(

f̃m,i (J+
m )+f̃m,j (J+

m )

fm(J+
m )

)
where f̃m,i(λ) is a variant of the Lian-Yau series

∑
d cm(d)/λd ,

f̃m,i(λ) :=
∑
d≥1

cm(d)Hid λ−d , Hn :=
n∑

k=1

1/k

Inverting the Shintani lift, one obtains the NL generating series Φ.
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Example: X [1,1]
1 = P1,1,2,2,6[12]

χX = −252, κ = (4,2,0,0), c2 = (52,24)

J+
1 = J =

E3
4

η24 , c1(d) =
(6d)!

(d!)3(3d)! , f1 =
√

E4

∂2
T W = −4 log(J − 1728)− 6 f̃1(J)√

E4

∂5
T W =

2E6
4

E3
6
− 23

9
E3

4
E6

+ 5
9E6

= 2496q + 7170048q2 + 9388935936q3 + . . .

Φ =
− 5

3 E4E6ϑ
(2)+8E2

4 Dϑ(2)

η24 = −2
q
+ 252 + 2496q1/4 + · · ·+ . . .

Note the rapid growth of Fourier coefficients in ∂5W , due to pole at
τ = i. [Kaplunovsky Louis Theisen’95, Antoniadis Gava Narain Taylor’95]
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DT/NL relation on K3-fibered threefolds

Under a monodromy T 7→ −1/(mT ) in Kähler moduli space,
vertical D2-D0 bound states turn into vertical D4-D2-D0 bound
states. Under Heterotic/type II duality, these again map to
perturbative DH states.

For vertical D4-brane charge pa = (r ,0), the generating series
hp,q(τ) coincides with the NL generating series Φd , acted upon by
a suitable Hecke operator Hr !

Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16

In particular, mock modularity does not arise in this case, due to
pa being in the kernel of the quadratic form κab = κabcpc .
For non-vertical D4-brane charge pa = (r , s) with s > 0, we expect
a vector-valued (mock) modular form of weight −2.
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Some open questions

We provided overwhelming evidence that D4-D2-D0 indices
exhibit modular properties. Where does it come from
mathematically ? Can one construct some VOA acting on the
cohomology of moduli space of stable objects ?

Can one compute non-vertical D4-D2-D0 invariants in K3-fibered
models, and follow them through the conifold transition to the
one-parameter models ?
Another class of two-parameter CY models with interesting
modular properties are genus one fibrations over P2 with
N-section. Fourier-Mukai duality relates D2-D0 to D4-D2-D0
wrapping the elliptic fiber.
Higher rank DT invariants can also be computed in terms of GV
invariants. Do they define some higher rank version of topological
string theory ?
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Thanks for your attention !
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Back up: a remark on the BMT inequality

(C2
1 − 2C0C2)(

1
2b2 + 1

6 t2) + (3C0C3 − C1C2)b + (2C2
2 − 3C1C3) ≥ 0

Requiring the existence of empty chamber, the discriminant at
t = 0 must be positive:

8C0C3
2 + 6C3

1C3 + 9C2
0C2

3 − 3C2
1C2

2 − 18C0C1C2C3 ≥ 0

In terms of the electric and magnetic charges

p0 = C0/κ, p1 = C1/κ, q1 = −C2−
c2

24κ
C0, q0 = C3+

c2

24κ
C1

and ignoring the c2-dependent terms, this becomes

8
9κp0q3

1 − 2
3κq0(p1)3 − (p0q0)

2 + 1
3(p

1q1)
2 − 2p0p1q0q1 ≤ 0

hence an empty chamber arises when single centered black hole
solutions are ruled out !
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants
to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa
invariants N(g)

β

Pandharipande-Thomas
invariants PT(β,n)

Rank 0 DT-invariants
hN,µ(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X χX κ type ginteg gmod gavail

X5(15) −200 5 F 53 69 64
X6(14,2) −204 3 F 48 57 48
X8(14,4) −296 2 F 60 80 64
X10(13,2,5) −288 1 F 50 70 68
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 22 22
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 66 50
X6,2(15,3) −256 4 C 63 78 49

http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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