Counting BPS states with scattering diagrams

Boris Pioline

"Geometry meets physics - CY4 and beyond" Woudschoten, Netherlands, 29/1/2025

BPS dendroscopy on local toric CY3

Boris Pioline

"Geometry meets physics - CY4 and below"

Woudschoten, Netherlands, 29/1/2025

Based on 'BPS Dendroscopy on Local \mathbb{P}^2 ' [2210.10712] and 'BPS Dendroscopy on Local \mathbb{F}_0 ' [2412.07680]

with Pierrick Bousseau, Pierre Descombes, Bruno Le Floch and Rishi Raj

2/56

Thanks to my wonderful co-authors

'BPS Dendroscopy on Local \mathbb{P}^2 ' [2210.10712] 'BPS Dendroscopy on Local \mathbb{F}_0 ' [2412.07680]

Pierrick Bousseau, Pierre Descombes, Bruno Le Floch and Rishi Raj

Introduction

- BPS states form a rich and tractable sector in string vacua with *N* = 2 supersymmetry. They saturate the BPS bound
 M(γ) ≥ |Z_z(γ)|, where the central charge Z_z ∈ Hom(Γ, ℂ) is linear
 in the electromagnetic charge, depending on the moduli *z*.
- As a result, BPS states preserve $\mathcal{N} = 1$ supersymmetry, and are robust under variations of *z*. The BPS index $\Omega_z(\gamma)$ provides a microscopic underpinning of the entropy of BPS black holes.
- In type IIA string theory compactified on a CY3-fold X, BPS states are described by stable objects in the derived category of coherent sheaves C = D^bCoh(X), with charge γ = ch E ∈ H_{even}(X, Q).
- The BPS index coincides with the Donaldson-Thomas invariant $\Omega_{\sigma}(\gamma)$ with respect to a stability condition $\sigma \in \text{Stab} \mathcal{C}$, restricted to the 'physical' slice $\sigma(z) \in \Pi \subset \text{Stab} \mathcal{C}$, with $\Pi \sim \widetilde{\mathcal{M}_{K}}$.

Introduction

- Ω_σ(γ) is locally constant on Stab C, but can jump across real codimension one walls of marginal stability W(γ, γ'), where the phases of the central charges Z_σ(γ) and Z_σ(γ') become aligned, making the decay γ → (γ') + (γ γ') energetically possible.
- The jump of $\Omega_z(\gamma)$ across the wall is given by a universal wall-crossing formula [Kontsevich Soibelman'08, Joyce Song'08]. In the simplest 'primitive' case, with $\gamma'' := \gamma \gamma'$,

$$\Omega_+(\gamma) - \Omega_-(\gamma) = \langle \gamma', \gamma'' \rangle \, \Omega(\gamma') \, \Omega(\gamma'')$$

where $\langle -, - \rangle$ is the antisymmetrized Euler form, or Dirac pairing. • When *X* admits a \mathbb{C}^{x} action, one can define refined DT invariants $\Omega_{\sigma}(\gamma, y)$, reducing to usual DT as $y \to 1$. A similar WCF holds,

$$\Omega_{+}(\gamma, \mathbf{y}) - \Omega_{-}(\gamma, \mathbf{y}) = \frac{\mathbf{y}^{\langle \gamma', \gamma'' \rangle} - \mathbf{y}^{-\langle \gamma', \gamma'' \rangle}}{\mathbf{y} - 1/\mathbf{y}} \Omega(\gamma', \mathbf{y}) \, \Omega(\gamma'', \mathbf{y})$$

Scattering diagrams

- Since BPS indices can only jump when the phases of the central charges of the constituents are aligned, it is convenient to analyze the BPS spectrum for fixed phase $\arg Z_{\sigma}(\gamma)$.
- For this purpose, define the scattering diagram D_ψ = ∪_γ R_ψ(γ) as the union of the codimension 1 loci (or rays) in Stab C

$$\mathcal{R}_{\psi}(\gamma) = \{\sigma \in \operatorname{Stab} \mathcal{C}, \quad \Omega_{\sigma}(\gamma) \neq \mathbf{0}, \quad \arg Z_{\sigma}(\gamma) = \psi + \frac{\pi}{2}\}$$

and equip every point $z \in \mathcal{R}_{\psi}(\gamma)$ with an automorphism of the quantum torus algebra (or a suitable completion thereof),

$$\mathcal{U}_{\sigma}(\gamma) = \mathsf{Exp}\left(rac{\Omega_{\sigma}(\gamma, y)}{y^{-1} - y} \mathcal{X}_{\gamma}
ight) \ , \quad \mathcal{X}_{\gamma} \mathcal{X}_{\gamma'} = (-y)^{\langle \gamma, \gamma'
angle} \mathcal{X}_{\gamma + \gamma'}$$

• Equivalently, take $\overline{\mathcal{U}}_{\sigma}(\gamma) = \exp\left(\frac{\overline{\Omega}_{\sigma}(\gamma, y)}{y^{-1}-y}\mathcal{X}_{\gamma}\right)$ where $\overline{\Omega}_{\sigma}(\gamma) := \sum_{k|\gamma} \frac{y-1/y}{k(y^k-y^{-k})} \Omega_{\sigma}(\frac{\gamma}{k}, y^k)$ are the 'rational' DT invariants.

Consistent scattering diagrams

The WCF ensures that for any closed path σ(t) : [0, 1] → Stab C intersecting the rays R_ψ(γ_i) at t_i, the ordered product is trivial:

$$\prod_{i} \mathcal{U}_{\sigma(t_i)}(\gamma_i)]^{\epsilon_i} = 1 , \quad \epsilon_i = \operatorname{sgn} \operatorname{Re} \left[\boldsymbol{e}^{-\mathrm{i}\psi} \frac{\mathrm{d}}{\mathrm{d}t} Z_{\sigma(t_i)} \right]$$

• The WCF formula determines the BPS indices on outgoing rays $(\epsilon_i = 1)$ in terms of BPS indices on incoming rays $(\epsilon_i = -1)$. Locally, incoming rays 'scatter' to produce outgoing rays:

$$\mathcal{U}(\gamma_1)\mathcal{U}(\gamma_2) = \mathcal{U}(\gamma_2)\mathcal{U}(\gamma_1 + \gamma_2)\mathcal{U}(\gamma_1)$$
$$\Downarrow$$
$$\Omega(\gamma_1 + \gamma_2) = \langle \gamma_1, \gamma_2 \rangle \Omega(\gamma_1)\Omega(\gamma_2)$$

Physics of scattering diagrams

- The rays R_ψ(γ_i) can be understood as walls of marginal stability for framed BPS states attached to an external probe with Z(γ_∞) = iρe^{iψ}, ρ → ∞. The U(γ)'s control jumps of framed DT invariants jumps, but conveniently encode unframed DT invariants.
- Along any two-dimensional slice, rays can be identified with gradient flow lines of |Z_z(γ)| = Im(e^{-iψ}Z_z(γ)), oriented in the direction where |Z(γ)| increases (opposite to attractor flow).
- Any ray $\mathcal{R}_{\psi}(\gamma)$ at any point *z* can be obtained (in multiple ways) by iterated scattering from a set of initial rays $\mathcal{R}(\gamma_i)$, as predicted by the Attractor Flow Tree Conjecture [Denef Green Raugas'01, Denef Moore'07, Alwandray BB'18, Arxia Roundary '00 Magazian''00]

Alexandrov BP'18, Argüz Bousseau '20, Mozgovoy'20]

$$\bar{\Omega}_{z}(\gamma) = \sum_{\gamma = \sum \gamma_{i}} \frac{g_{z}(\{\gamma_{i}\}, \mathbf{y})}{\operatorname{Aut}(\{\gamma_{i}\})} \prod_{i} \bar{\Omega}_{\star}(\gamma_{i}, \mathbf{y})$$

where $g_z({\gamma_i}, y)$ is a sum over attractor flow trees, and $\overline{\Omega}_*(\gamma_i, y)$ are the (rational, refined) attractor invariants.

B. Pioline (LPTHE, Paris)

Scattering diagrams

Outline

- In this talk, I will construct (part of) the scattering diagram for the simplest (yet non-trivial) examples of toric CY3-folds, namely X = K_S for S = ℙ² and S = ℙ₀ = ℙ¹ × ℙ¹.
- For such toric threefolds, C = D^b Coh X is isomorphic to the derived category D Rep(Q, W) of representations for a certain quiver with potential. I shall first construct the scattering diagram D^Q in the 'quiver' region in Stab C, by identifying the set of initial rays / attractor invariants.
- Next I will discuss the large volume slice, where the central charge is given by the classical expression Z_z(γ) = − ∫_S e^{-zH} ch(E).
- Finally, I will include corrections from worldsheet instantons and discuss the scattering diagram on the physical slice Π, interpolating between the quiver and LV scattering diagrams.

Scattering diagram for quivers

- Let (Q, W) a quiver with potential, γ = (N₁,..., N_K) ∈ N^{Q₀} a dimension vector and θ = (θ₁,..., θ_K) ∈ ℝ^{Q₀} a stability parameter (à la [King'93]) such that (θ, γ) := ∑ N_iθ_i = 0.
- This data defines a supersymmetric quantum mechanics with 4 supercharges, gauge group $G = \prod_i U(N_i)$, superpotential W, FI parameters θ_i . SUSY ground states are harmonic forms on

$$\mathcal{M}_{\theta}(\gamma) = \{ \sum_{a:i \to j} |\Phi_a|^2 - \sum_{a:j \to i} |\Phi_a|^2 = \theta_i, \quad \partial_{\Phi_a} W = \mathbf{0} \} / G$$

- Mathematically, $\mathcal{M}_{\theta}(\gamma)$ is the moduli space of θ -semi-stable representations of (Q, W) (i.e. $(\theta, \gamma') \leq (\theta, \gamma)$ for any subrep) and the refined BPS index $\Omega_{\theta}(\gamma, y)$ is (roughly) its Poincaré polynomial.
- Ω_θ(γ, y) may jump on real codimension 1 walls when the inequality is saturated (and on complex codimension 1 loci when W is varied, but we shall keep W fixed).

Scattering diagram for quivers

• The BPS indices are conveniently encoded in the stability scattering diagram $\mathcal{D}(Q, W)$ [Bridgeland'16], defined as the union of the real codimension-one rays $\{\mathcal{R}(\gamma), \gamma \in \mathbb{N}^{Q_0}\}$

$$\mathcal{R}(\gamma) = \{ heta \in \mathbb{R}^{\mathcal{Q}_0} : (heta, \gamma) = \mathbf{0}, \ \Omega_{ heta}(\gamma) \neq \mathbf{0} \}$$

 Each point along R(γ) is equipped with an automorphism of the quantum torus algebra,

$$\mathcal{U}_{ heta}(\gamma) = \mathsf{Exp}\left(rac{\Omega_{ heta}(\gamma)}{y^{-1}-y}\mathcal{X}_{\gamma}
ight) \;, \quad \mathcal{X}_{\gamma}\mathcal{X}_{\gamma'} = (-y)^{\langle \gamma, \gamma'
angle}\mathcal{X}_{\gamma+\gamma'}$$

where $\langle \gamma, \gamma' \rangle := \sum_{a:i \to j} (N_i N'_j - N_j N'_i)$.

The WCF ensures that the diagram is consistent: for any generic closed path *P* : t ∈ [0, 1] → ℝ^{Q₀}, ∏_i U_{θ(ti})(γ_i)^{ε_i} = 1

Attractor invariants for quivers

 Initial rays are defined as those containing the self-stability condition [Manschot BP Sen'13; Bridgeland'16]

$$(\theta_{\star}(\gamma),\gamma') = \langle \gamma',\gamma \rangle \quad \Leftrightarrow \quad \theta_i = -\sum_{a:i \to j} N_j$$

Let $\Omega_{\star}(\gamma) := \Omega_{\theta_{\star}(\gamma)}(\gamma)$ be the attractor invariant. All other invariants are uniquely determined by consistency.

- Easy fact: For quivers without oriented loops, the only non-vanishing attractor invariants are supported on basis vectors associated to simple representations, $\Omega_{\star}(\gamma_i) = 1$. [Bridgeland'16]
- More generally, Ω_{*}(γ) = 0 unless the restriction Q' of Q to the support of γ is strongly connected (i.e. there is a path joining any pair of nodes in Q') [Mozgovoy BP'20]

Scattering diagram for Kronecker quiver

 $\theta_1 > 0, \theta_2 < 0$: dim $\mathcal{M}_{\theta}(\gamma) = mn_1n_2 - n_1^2 - n_2^2 + 1$

- Whenever a CY threefold X admits a (strong, full, cyclic) exceptional collection E, the category D^b Coh X is isomorphic to the category D^b Rep(Q, W) of representations of the quiver with potential associated to E. [Bondal'90]
- When X is toric, there is a simple prescription to obtain (Q, W) from brane tilings/periodic quivers. Eg. for X = K_{P2},

$$\gamma := [r, c_1, ch_2]$$

$$\begin{array}{ll} \gamma_1 &= [-1,0,0] \\ \gamma_2 &= [2,-1,-\frac{1}{2}] \\ \gamma_3 &= [-1,1,-\frac{1}{2}] \end{array}$$

- By studying expected dimension of the moduli space of semi-stable representations $\mathcal{M}_{\theta}(\gamma)$, [Beaujard BP Manschot'20] conjectured that for quivers associated to Ext-exceptional collections on local del Pezzo surfaces, the attractor index $\Omega_{\star}(\gamma)$ vanishes unless $\gamma = \gamma_i$ or γ lies in the kernel of the Dirac pairing, $\langle \gamma, \rangle = 0$.
- This conjecture was tested and extended for general toric CY3 singularities in [Mozgovoy BP '20, Descombes'21]. It is now a theorem, at least for $X = K_{\mathbb{P}^2}$ and $K_{\mathbb{F}_0}$ [Descombes].
- This allows to construct the quiver scattering diagram inductively, and to describe any BPS state in terms of attractor flow trees.

Quiver scattering diagram for $K_{\mathbb{P}^2}$

Let \mathcal{D}_o be the restriction of $\mathcal{D}(Q, W)$ to the hyperplane $\theta_1 + \theta_2 + \theta_3 = 1$:

Let \mathcal{D}_o be the restriction of $\mathcal{D}(Q, W)$ to the hyperplane $\theta_1 + \theta_2 + \theta_3 = 1$:

The full scattering diagram \mathcal{D}_o includes regions with dense set of rays:

B. Pioline (LPTHE, Paris)

The BPS index $\Omega_{\theta}(\gamma)$ for any γ can be obtained by listing scattering sequences, or attractor flow trees:

- More generally, Donaldson-Thomas invariants are defined in Bridgeland's framework of stability conditions on a triangulated CY3 category C.
- A stability condition is a pair σ = (Z, A) where Z : Γ → C is a linear map and A ⊂ C an Abelian subcategory (heart of *t*-structure) satisfying various axioms, e.g. ImZ(γ(E)) ≥ 0 ∀E ∈ A.
- The space of stability conditions Stab C is a complex manifold of dimension dim K(C) = dim H^{even}_{cpt}(X). For X = K_S, d = b₂(S) + 2.
- Stab C admits a (right) action by autoequivalences of C, and a (left) action of GL(2, ℝ)⁺ via orientation-preserving linear transf. of (ReZ, ImZ), reducing the dimension to b₂(S) = dim M_K. The Ω_σ(γ)'s stay invariant, but the scattering diagram changes.

Scattering diagrams on triangulated categories

As before, we define the scattering diagram D_ψ(C) as the union of codimension-one loci in Stab C,

 $\mathcal{R}_{\psi}(\gamma) = \{ \arg Z_{\sigma}(\gamma) = \psi + rac{\pi}{2}, \Omega_{\sigma}(\gamma) \neq \mathbf{0} \} \,, \quad \mathcal{U}_{\sigma}(\gamma) = \mathsf{Exp}\left(rac{\Omega_{\sigma}(\gamma)}{y^{-1} - y} \mathcal{X}_{\gamma}
ight)$

The WCF ensures that the diagram $\mathcal{D}_{\psi}(\mathcal{C})$ is locally consistent at each codimension-two intersection.

- In the 'quiver region' of Stab C where the central charges $Z(E_i)$ of objects in an exceptional collection lie in a common half-plane, the heart σ coincides (up to tilt) with the Abelian category of quiver representations, and $\mathcal{D}_{\psi}(C)$ coincides with the quiver scattering diagram $\mathcal{D}(Q, W)$ upon setting $\theta_i = -\text{Re}(e^{-i\psi}Z(\gamma_i))$.
- For local CY3, this covers a finite region near the singular point, but not the large volume region.

Large volume scattering diagram for local \mathbb{P}^2

• Consider the large volume slice with central charge

$$Z^{ ext{LV}}_{(s,t)}(\gamma) = -\int_{\mathcal{S}} e^{-(s+\mathrm{i}t)H} \operatorname{ch} E = -rT_D + dT - \operatorname{ch}_2$$

with T = s + it, $T_D = \frac{1}{2}T^2$. Set $\psi = 0$ for simplicity.

- Since ReZ(γ) = ½r(t² s²) + ds ch₂, each ray R₀(γ) is contained in a branch of hyperbola asymptoting to t = ±(s d/r) for r ≠ 0, or a vertical line s = ch₂/d when r = 0.
- Walls of marginal stability W(γ, γ') are nested half-circles centered on the real axis.

Large volume scattering diagram

- The objects O(m) and O(m)[1] for any m∈ Z are known to be stable throughout the large volume slice [Arcara Bertram'13]. The corresponding rays are 45 degree lines ending at s = m.
- The region of validity of the orbifold exceptional collection (and its translates) covers the vicinity of the boundary at t = 0, hence those are the only initial rays. [Bousseau'19].

Scattering diagram in affine coordinates

Actually, Bousseau used different coordinates such that rays become line segments $rx + dy - ch_2 = 0$. This works for any ψ :

$$x := \frac{\operatorname{Re}(e^{-i\psi}T)}{\cos\psi}, \quad y := -\frac{\operatorname{Re}(e^{-i\psi}T_D)}{\cos\psi} > -\frac{1}{2}x^2$$

Flow tree formula at large radius

- This implies that all BPS states at large volume must arise as bound states of pure D4 and anti D4-branes. How can one find the possible constituents for given γ and (s, t) ?
- Think of R(γ) as the worldline of a fictitious particle of charge r, mass M² = ¹/₂d² - r ch₂ moving in a constant electric field. This makes it clear that constituents must lie in the past light cone.
- Moreover, the 'electric potential' φ_s(γ) = d sr = ImZ(γ)/t increases along the flow. The first scatterings occur after each constituent k_iO(m_i) has moved by |Δs| ≥ ¹/₂, by which time φ_s(γ_i) ≥ |k_i|/2.
- Since φ_s(γ) is additive at each vertex, this gives a bound on the number and charges of constituents contributing to Ω_(s,t)(γ):

$$\sum_{i} k_{i}[1, m_{i}, \frac{1}{2}m_{i}^{2}] = \gamma, \quad s - t \leq m_{i} \leq s + t, \quad \sum_{i} |k_{i}| \leq 2\varphi_{s}(\gamma)$$

• {{ $-\mathcal{O}(-5), \mathcal{O}(-4)$ }, $\mathcal{O}(-1)$ } $K_3(1,1)^2 \to 9$

• {{
$$-\mathcal{O}(-4), \mathcal{O}(-3)$$
},
{ $-\mathcal{O}(-3), 2\mathcal{O}(-2)$ }}
 $K_3(1,1)^2 K_3(1,2) \rightarrow 27$

•
$$\{-\mathcal{O}(-4), 2\mathcal{O}(-2)\}\$$

 $K_6(1,2) \to 15$

Total: $\Omega_{\infty}(\gamma) = 51 = \chi(\text{Hilb}_4 \mathbb{P}^2)$

Large volume scattering diagram for local \mathbb{F}_0

- For S = P¹ × P¹, the space of stability conditions (modulo GL(2, ℝ)⁺) is parametrized by the Kähler moduli T₁, T₂. We focus on the canonical polarization where Im T₁ = Im T₂, and set T₁ = T = s + it, T₂ = T + m with m real.
- The large volume slice is given by

 $Z_{x,t}^{\text{LV}}(\gamma) = -rT(T+m) + d_1T + d_2(T+m) - ch_2$

The geometric rays are similar as for local \mathbb{P}^2 , with $[r, d, ch_2]$ replaced by $[2r, d_1 + d_2 - mr, ch_2 - md_2]$. Set $\psi = 0$ for simplicity.

• The objects $\mathcal{O}(d_1, d_2)$, $\mathcal{O}(d_1, d_2)[1]$ are stable throughout the large volume slice *[Arcara Miles'14]*. The rays $\mathcal{R}_0(\mathcal{O}(d_1, d_2))$ start at $s = \min(d_1 - m, d_2)$ and bend to the left. Similarly, $\mathcal{R}_0(\mathcal{O}(d_1, d_2)[1])$ start at $s = \max(d_1 - m, d_2)$ and bend right.

Large volume scattering diagram for local \mathbb{F}_0

 The category D^b Coh X is isomorphic to the derived category of representations for the quiver (Q, W) (or one of its mutations)

- The quiver (Q, W) is valid near the orbifold point Conifold/ \mathbb{Z}_2 .
- The validity of the mutated quiver (and its translates) near t = 0 ensure that the only initial rays in the large volume slice are $\mathcal{O}(d_1, d_2)$ and $\mathcal{O}(d_1, d_2)[1]$ [Le Floch BP Raj'24]

Initial rays for local \mathbb{F}_0 at large volume

In (*x*, *t*) coordinates, $\psi = 0$, m = 1/2:

B. Pioline (LPTHE, Paris)

Initial rays for local \mathbb{F}_0 at large volume

In (*x*, *y*) coordinates, $\psi = 0$, m = 1/2:

The infinite sets of rays originating from $s \in \mathbb{Z}$ and $s = \mathbb{Z} - m$ come from the scattering of two rays $\mathcal{R}(\gamma_1), \mathcal{R}(\gamma_2)$ with $\langle \gamma_1, \gamma_2 \rangle = 2$ below the parabola !

Kähler moduli space

- Mirror symmetry selects a particular Lagrangian subspace
 Π ⊂ Stab C in the space of Bridgeland stability conditions.
- For local del Pezzo surfaces, the mirror CY3 is (a conic bundle over) a genus one curve Σ. The D2 and D4 central charges (*T_i*, *T_D*) are given by periods of a holomorphic differential with logarithmic singularities, and satisfy Picard-Fuchs equations.
- Rather than working with flat coordinates T_i , it is advantageous to use (τ, m_i) where τ parametrizes the Coulomb branch while m_i are gauge couplings/mass parameters in the 5D gauge theory.
- Near the large volume point, mirror symmetry ensures that $Z(\gamma) \sim -\int_{S} e^{-J} \operatorname{ch}(E)$, up to Todd-class and worldsheet instantons which may be absorved by $\widetilde{GL(2,\mathbb{R})^+}$.

Modularity in Kähler moduli space

- In some cases, the monodromy group is a subgroup Γ ⊂ SL(2, Z), and the universal cover of M_K = ℍ/Γ becomes the Poincaré half-plane ℍ. [Closset Magureanu'21; Aspman Furrer Manschot'21]
- This happens for X = K_{P²}, where Γ = Γ₁(3), and for X = K_{F₀} at special points m ∈ Z where Γ = Γ₀(8). For generic m, Γ = Γ₁(4) with a square root branch cut.

Central charge as Eichler integral

(∂_τ T, ∂_τ T_D) are proportional to the periods (1, τ) of the mirror curve. Integrating along a path from reference point *o* to τ, one finds an Eichler integral representation

$$\begin{pmatrix} T \\ T_D \end{pmatrix} (\tau) = \begin{pmatrix} T \\ T_d \end{pmatrix} (\tau_o) + \int_{\tau_o}^{\tau} \begin{pmatrix} 1 \\ u \end{pmatrix} C(u) \, \mathrm{d}u$$

where $C(\tau)$ is a weight 3 modular form:

$$C_{\mathbb{P}^2} = rac{\eta(au)^9}{\eta(3 au)^3}, \quad C_{\mathbb{F}_0} = rac{\eta(au)^4 \eta(2 au)^6}{\eta(4 au)^4} \sqrt{rac{J_4 + 8}{J_4 + 8\cos\pi m}}$$

Here $J_4(\tau) = 8 + \left(\frac{\eta(\tau)}{\eta(4\tau)}\right)^8$ is the Hauptmodul for $\Gamma_1(4)$. This provides an computationally efficient analytic continuation of Z_{τ} .

Π -scattering diagram for local \mathbb{P}^2

- The scattering diagram D^Π_ψ along the physical slice should interpolate between D^{LV}_ψ around τ = i∞ and D_o around τ = τ_o, and be invariant under the action of Γ₁(3).
- Under $\tau \mapsto \frac{\tau}{3n\tau+1}$ with $n \in \mathbb{Z}$, $\mathcal{O} \mapsto \mathcal{O}[n]$. Hence there is a doubly infinite family of initial rays emitted at $\tau = 0$, associated to $\mathcal{O}[n]$.

 Similarly, there must be an infinite family of initial rays coming from
 τ = ^p/_q with q ≠ 0 mod 3, corresponding to Γ₁(3)-images of *O*,
 where an object denoted by *O*_{p/q} becomes massless.

$\Pi\text{-}\mathrm{scattering}$ diagram for small ψ

• For $|\psi|$ small enough, the only rays which reach the large volume region are those associated to $\mathcal{O}(m)$ and $\mathcal{O}(m)$ [1]. Thus, the scattering diagram \mathcal{D}_{ψ}^{Π} is isomorphic to $\mathcal{D}_{\psi}^{\text{LV}}$ inside \mathcal{F} and its translates:

Scattering diagram in affine coordinates

• In affine coordinates $(x, y) = \left(\frac{\operatorname{Re}(e^{-i\psi}T)}{\cos\psi}, -\frac{\operatorname{Re}(e^{-i\psi}T_D)}{\cos\psi}\right)$, the initial rays $\mathcal{R}_{\psi}(\mathcal{O}(m))$ are still tangent to the parabola $y = -\frac{1}{2}x^2$ at x = m, but the origin of each ray is shifted to $x = m + \mathcal{V} \tan \psi$ where \mathcal{V} is the quantum volume

$$\mathcal{V} = \operatorname{Im} T(0) = \frac{27}{4\pi^2} \operatorname{Im} \left[\operatorname{Li}_2(e^{2\pi i/3}) \right] \simeq 0.463$$

• The topology of \mathcal{D}^{Π}_{ψ} jumps at a discrete set of rational values

$$\mathcal{V} \tan \psi \in \{ \frac{F_{2k} + F_{2k+2}}{2F_{2k+1}}, k \ge 0 \} = \{ \frac{1}{2}, 1, \frac{11}{10}, \frac{29}{26}, \frac{19}{17}, \ldots \}$$

and a dense set of values in $[\frac{\sqrt{5}}{2},+\infty)$ where secondary rays pass through a conifold point.

Affine scattering diagram, $|\mathcal{V} \tan \psi| < 1/2$

B. Pioline (LPTHE, Paris)

Π-scattering diagram, ψ = 0

Π-scattering diagram, ψ = 0.3

Π-scattering diagram, $\psi = 0.6$

B. Pioline (LPTHE, Paris)

<u> Π -scattering diagram, $\psi = 0.8$ </u>

Π-scattering diagram, $\psi = 0.824$

Π -scattering diagram, $\psi = 0.825$

Π-scattering diagram, ψ = 0.9

Π -scattering diagram, $\psi = 1$

Π -scattering diagram, $\psi = 1.137$

Π -scattering diagram, $\psi = 1.139$

Π-scattering diagram, $\psi = \pi/2$

For ψ = ±^π/₂, the geometric rays {ImZ_τ(γ) = 0} coincide with lines of constant ratio ImT_D/ImT = d/r, independent of ch₂:

• Hence, there is no wall-crossing between τ_o and $\tau = i\infty$ when $-1 \leq \frac{d}{r} \leq 0$, explaining why the Gieseker index $\Omega_{\infty}(\gamma)$ agrees with the quiver index $\Omega_c(\gamma)$ in the anti-attractor chamber.

Douglas Fiol Romelsberger'00, Beaujard BP Manschot'20

Π -scattering diagram for $K_{\mathbb{F}_0}$

• For local 𝔽₀, the Π-scattering diagram is complicated by branch cuts and *m*-dependence. The quantum volume is now

$$T(0,m) = i\mathcal{V}(m) = \frac{2}{\pi^2} (Li_2(ie^{i\pi m/2}) - Li_2(-ie^{i\pi m/2}))$$

• In (x, y) coordinates, the origin of the initial rays is shifted by $\Delta x = \tan \psi \operatorname{Re}\mathcal{V}(m) - \operatorname{Im}\mathcal{V}(m)$. For Δx small enough, the topology is the same as for the LV diagram: (here $m = 0.4, \psi = 0.4$)

B. Pioline (LPTHE, Paris)

Large volume scattering diagram for $K_{\mathbb{F}_0}$

• As ψ increases, some of the initial rays curl back to $\Gamma_0(4)$ images of the LV point, while suitable homological shifts escape to infinity: (here $m = 0.4, \psi = 0.98$)

Large volume scattering diagram for $K_{\mathbb{F}_0}$

 The region around the branch point reproduces the quiver scattering diagram, after unfolding:

- Scattering diagrams provide an efficient way to organize the (unframed) BPS spectrum on local CY3 manifolds, and suggests a natural decomposition into elementary constituents. What does it mean mathematically?
- The framed BPS invariants are constant in the complement of the scattering diagram. It would be interesting to see how they interpolate between DT/PT invariants at large volume and plane partition counts near the orbifold point.
- One could try to use the same techniques for toric CY4 singularities, for example K_X where X is one of the 18 smooth toric Fano 3-folds, such as P³, P² × P¹, P¹ × P¹ × P¹...

Scattering diagrams for toric CY4 ?

- The dynamics of a D1-brane probing the CY4 singularity is described by a (0, 2) quiver gauge theory, with vector, chiral and Fermi multiplets and relations (Q, J, E) encoded in a 3D-periodic tiling, or brane brick [Franco Ghim Lee Seong, Yokoyama'15, Franco Seong'22].
- These models presumably arise from strong full exceptional collections of line bundles on *X* constructed in *[Bernardi Tirabassi'10]*, or mutations thereof, corresponding to trialities in the (0,2) gauge theory *[Gadde Putrov Gukov'13]*.
- The Witten index of the quiver gauge theory is computable by localization, provided the superpotential is generic *[Hori Kim Yi'14]*. What is its precise interpretation in DT4 theory ?
- Presumably DT4-invariants can be encoded in a scattering diagram, with rays equipped with an automorphism of Joyce's vertex Lie algebra. Can one use this to say something about moduli spaces of Gieseker-stable sheaves on Fano threefolds ?

Thanks for your attention !

B. Pioline (LPTHE, Paris)