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δενδροσκοπια= analyzing the BPS spectrum in terms
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Introduction

In type IIA string theory compactified on a Calabi-Yau threefold X ,
the BPS spectrum consists of bound states of D6-D4-D2-D0
branes with electromagnetic charge γ ∈ Γ ⊂ Heven(X ,Q).

The BPS index Ωz(γ) counts states with charge γ saturating the
BPS bound M(γ) ≥ |Z (γ)|, where Z ∈ Hom(Γ,C) depends on the
complexified Kähler moduli z ∈M.
Ωz(γ) is locally constant onM, but can jump across real
codimension one walls of marginal stabilityW(γ1, γ2) ⊂M, where
the phases of the central charges Z (γ1) and Z (γ2) with
γ = γ1 + γ2 become aligned. The jump is governed by a universal
wall-crossing formula [Kontsevich Soibelman’08, Joyce Song’08]

Physically, multi-centered black hole solutions (dis)appear across
the wall [Denef Moore ’07, Manschot BP Sen ’11]. In contrast,
single-centered black holes do not decay.
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DT invariants and Bridgeland stability conditions

Mathematically, Ωz(γ) are generalized Donadson-Thomas
invariants for the derived category of coherent sheaves
C = DbCoh(X ). [Douglas 2010]

They depend on a choice of Bridgeland stability condition
σ = (Z ,A), where Z is the central charge function and A a
suitable Abelian subcategory of C such that ImZ (γ) ≥ 0 for all
objects in A (and ReZ (γ) < 0 if ImZ (γ) = 0).
The space Stab(C) of Bridgeland stability conditions has complex
dimension beven(X ). The image of the embeddingM ↪→ Stab(C)
defines the physical slice of Π-stability conditions, of complex
codimension beven(X )− b2(X ) = 1 + b4(X ) + b6(X ).

There is an action of G̃L+(2,R) on Stab(C) by
rescaling/rotating/stretching Z . This allows to extend Π-stability
conditions to a slice of complex codimension b4(X ) + b6(X )− 1.
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Bridgeland stability conditions on local surfaces

For a non-compact CY3 of the form X = KS where S is a complex
Fano surface, the derived category Db

c (X ) of compactly supported
coherent sheaves coincides with Db Coh(S).

An object in Db Coh(S) with Chern vector γ = [r , c1, ch2] lifts to a
bound state of Q4 = r D4-branes wrapped on S, Q2 ∼ c1
D2-branes and Q0 ∼ ch2 D0-branes.
At large volume za → i∞, the central charge for Π-stability is
quadratic in za = ba + ita,

Z (γ) ∼ −
∫

S
e−zaHa ch E = −r zaQabzb + za ch1,a− ch2

and Ωz(γ) reduces to the Gieseker index Ω∞(γ) counting
Gieseker semi-stable sheaves.
Since b6(X ) = 0 and b4(X ) = 1, subleading corrections to Z can
be absorbed by G̃L+(2,R) in a region around large volume.
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Dendroscopy on local CY3 manifolds

Physically, Ωz(γ) counts BPS states in the 5D-dimensional
superconformal field theory engineered by M-theory on X , further
reduced along S1. Macroscopically, they correspond to
multi-centered dyon solutions of 4D N = 2 effective field theory.

Our goal will be to analyze the BPS spectrum in the simplest case
X = KP2 = C3/Z3, corresponding to a non-Lagrangian SCFT in
5D, and categorize it into various types of multi-centered bound
states.
It will emerge that attractor flow trees for non-compact CY3 are
closely connected to scattering diagrams in the space of
Bridgeland stability conditions.
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Outline

1 Introduction

2 Attractor flow tree formula

3 Quiver scattering diagram

4 Large volume scattering diagram

5 Towards the exact scattering diagram
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Attractor flow and attractor indices

Recall that for in a spherically symmetric BPS solution of N = 2
supergravity, the Kähler moduli z i(r) have a radial profile governed
by the attractor flow equations

r2 dz i

dr
= −g i j̄ ∂̄j |Z (γ)|2

Ferrara Kallosh Strominger’95

As r → 0, the moduli reach an attractor point z?(γ) which
minimizes |Z (γ)|, and is independent of the value at r =∞, at
least within a given basin of attraction. The attractor index is
defined as the value Ω?(γ) := Ωz?(γ)(γ).
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The Attractor Flow Tree formula

The Attractor Flow Tree Formula postulates that the BPS index
Ωz(γ) at any point z ∈M can be reconstructed from the attractor
indices by summing over all possible flow trees: schematically,

Ωz(γ) ∼
∑

γ=γ1+···+γn


 ∑

T∈Tz ({γi})

∏

v∈VT

〈γL(v ), γR(v )〉




n∏

i=1

Ω?(γi)

Denef ’00; Denef Greene Raugas ’01; Denef Moore’07; Manschot ’10, Alexandrov BP’18

Here, a flow tree T is a binary rooted tree, with edges decorated
with charges γe, such that γv = γL(v) + γR(v) at each vertex, with
charges γi assigned to the leaves and γ to the root.
Each edge is embedded inM along the gradient flow lines of
|Z (γe)|, such that the root vertex maps to z, each vertex to
zv ∈ W(γL(v), γR(v)), and the leaves to z?(γi).
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Split attractor flows

The physical picture is that typical multi-centered solutions have a
nested structure

5

γ1

γ

γ

γ4

γ
3

2

At each level v , the average distance between the clusters of
charge γL(v) and γR(v) is fixed, but the orientation in S2 gives
|〈γL(v), γR(v)〉| degrees of freedom.
In addition, each center of charge γi carries internal degrees of
freedom counted by Ω?(γi).
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Remarks

In order to enforce Bose-Fermi statistics whenever two charges
coincide, one should replace Ωz(γ) by the rational index
Ω̄z(γ) =

∑
d |γ

1
d2 Ωz( γd ) and insert a Boltzmann symmetry factor.

[Manschot BP Sen’11]

When the charges γi are not linearly independent, some splittings
can involve higher valency vertices. One can treat them using the
full KS wall-crossing formula, or perturb the trajectories such that
only binary trees remain.
The attractor flow tree formula is consistent with wall-crossing: the
index jumps when z crosses the wallW(γL(v0), γR(v0)) associated
to the primary splitting for one of the trees.
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Remarks

There are additional ‘fake walls’ where the topology of the trees
jump but the total index is constant, thanks to the Jacobi-type
identity

γ1 γ2 γ3 γ2 γ3 γ1 γ3 γ1 γ2

〈γ1, γ2〉 〈γ1 + γ2, γ3〉+ cyc. = 0

The formula can be refined by replacing

〈γL, γR〉 →
y 〈γL,γR〉 − y−〈γL,γR〉

y − 1/y

Ω̄z(γ) → Ω̄z(γ, y) =
∑

d |γ

y − 1/y
d(yd − y−d )

Ωz( γd , y
d )

Physically, y is a fugacity conjugate to angular momentum in R3.
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Flow tree formula for quivers with potential

The Attractor Flow Tree Formula can be shown to hold in the
context of quiver quantum mechanics: 0+1 dim SUSY gauge
theory with G =

∏
i∈Q0

U(Ni), bifundamental matter Φi j̄ for every
arrow (i → j) ∈ Q1 and superpotential W =

∑
w∈Q2

λww .

The dimension vector γ = (Ni)i∈Q0 plays the role of the charge
vector, with Dirac product 〈γ, γ′〉 =

∑
i→j(NiN ′j − N ′i Nj).

The index Ωζ(γ) is a locally constant function of the
Fayet-Iliopoulos parameters ζ ∈ RQ0/R+ (aka King stability
parameters) with jumps in real codimension 1.
For suitable (Q,W ) associated to a tilting sequence (E1, . . . ,EK )
on X , there is an isomorphism Db

c Coh(X ) ' DbRepJ(Q,W ). Near
the locus in Stab(C) where Z (ch Ei) are nearly aligned, Π- stability
reduces to King stability with θi ∝ Im(e−iαZ (γi)], A = RepJ(Q,W ).
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Quiver for KP2

24 SERGEY MOZGOVOY AND BORIS PIOLINE

of the D-brane charge � =
Pr

i=1 Ni�i on a basis of charges �i 2 H⇤(X) associated to a set

of ‘elementary D-branes’, and the net number of chiral fields |{�↵
ij}| � |{�↵

ji}| going from i

to j is given by (minus) the skew-symmetrized Euler form �h�i, �ji. The full BPS spectrum,

for given stability parameters ✓i, is then obtained as supersymmetric bound states of these

elementary constituents, represented by BPS ground states of the quiver quantum mechanics.

In the presence of an infinitely heavy defect of charge �f , such as a D6-brane wrapping X or

D4-branes wrapping non-compact divisors in X, the quiver quantum mechanics obtains an

additional gauge group U(N1) and arrows �↵1,i,�
↵
i,1, and computes the number of framed BPS

states.

Mathematically, BPS grounds states are cohomology classes on the moduli space of ✓-

semistable representations of the quiver with potential (Q, W ). The ‘elementary D-branes’, or

‘fractional branes’ in the context of orbifolds, correspond to a tilting sequence T =
Lr

i=1 Ti

in the derived category of coherent sheaves Db(coh X), such that Ti generate Db(coh X) and

Extk(T, T ) = 0 for k 6= 0. When X is the total space of the canonical bundle on a complex

surface S, a tilting sequence T can be constructed by lifting a strong exceptional collection of

line bundles on S [54, 11]. Note however that the lifted sequence need not be exceptional, in

particular End(Ti) = �(X, OX) may have dimension > 1. The triangulated category Db(coh X)

is then equivalent to the category of representations of the Jacobian algebra J(Q, W ) for a

quiver with potential (Q, W ) associated to T [10, 9].

For a wide class of toric CY threefolds, the construction of the tilting sequence T can be

by-passed and the quiver (Q, W ) can be read o↵ from a brane tiling [52, 44]. The latter is

a bipartite graph G embedded in a 2-dimensional (real) torus T, or equivalently a periodic

bipartite graph G̃ on R2. Each vertex carries a color, black or white, such that edges connect

only vertices with di↵erent colors. The quiver Q is then the dual graph of G: the vertices i 2 Q0

correspond to faces of G (i.e. the connected components of T\G) and the arrows a : i! j 2 Q1

to edges common to faces i and j. The arrows are oriented so that they go clockwise around

white vertices of G and go anti-clockwise around black vertices of G.

Figure 3. A bipartite graph (in black and white) and the dual quiver (in red and blue)

Let Q2 be the set of connected components of T\Q, or equivalently the set of vertices of G.

Let Q+
2 and Q�

2 correspond to the sets of white and black vertices of G. For any face F 2 Q2,

let wF be the cycle obtained by going along the arrows of F (defined up to a cyclic shift). The

potential W is then

(4.11) W =
X

F2Q+
2

wF �
X

F2Q�
2

wF .

n1

n2

n3

Xi Yj

Zk

W =
∑
εijkXiYjZk

E1 = O γ1 = [1,0,0]

E2 = Ω(1)[1], γ2 = [−2,1, 1
2 ]

E3 = O(−1)[2] γ3 = [1,−1, 1
2 ]

r = 2n2 − n1 − n3
d = n3 − n2
ch2 = −1

2(n2 + n3)
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Flow tree formula for quivers with potential

The attractor point becomes the self-stability condition
(ζ?(γ), ·) = 〈γ, ·〉. The attractor indices Ω?(γi) depend on W .

The attractor flow becomes linear,

(ζv , ·) = (ζp(v), ·) + λ
(ζp(v), γL(v))

〈γL(v), γR(v)〉
〈γv , ·〉 , 0 ≤ λ ≤ 1

Manschot’10; Alexandrov BP’18

Since Ni ≥ 0, only a finite number of trees contribute. When
Ni > 1, a small perturbation of ζ is necessary so as to restrict to
binary trees.
The Attractor Flow Tree formula was established rigorously using
the framework of scattering diagrams [Argüz Bousseau ’20]. See
[Mozgovoy’20] for a proof of another version using operads.
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Flow tree formula from scattering diagrams

For any quiver with potential (Q,W ), the scattering diagram D is
the set of real codimension-one rays {R(γ), γ ∈ ZQ0} defined by
[Bridgeland’16]

R(γ) = {ζ ∈ RQ0 : (ζ, γ) = 0,Ωζ(kγ) 6= 0 for some k ≥ 1}

Each point along R(γ) is endowed with an automorphism of the
quantum torus algebra, (assume γ primitive)

U(γ) = exp(
∞∑

m=1

Ω̄ζ(kγ,y)

y−1−y Xkγ) , XγXγ′ = (−y)〈γ,γ
′〉Xγ+γ′

γ1

γ1

γ2

γ2

γ1 + γ2
• The WCF ensures that the diagram is consistent,∏
γi
U(γi)

±1 = 1 around any codimension 2 intersec-
tion. The Attractor Flow Tree Formula determines out-
going rays from incoming rays at each vertex. [Argüz

Bousseau ’20].

B. Pioline (LPTHE, Paris) BPS Dendroscopy 07/07/2022 19 / 41



Flow tree formula from scattering diagrams

For any quiver with potential (Q,W ), the scattering diagram D is
the set of real codimension-one rays {R(γ), γ ∈ ZQ0} defined by
[Bridgeland’16]

R(γ) = {ζ ∈ RQ0 : (ζ, γ) = 0,Ωζ(kγ) 6= 0 for some k ≥ 1}

Each point along R(γ) is endowed with an automorphism of the
quantum torus algebra, (assume γ primitive)

U(γ) = exp(
∞∑

m=1

Ω̄ζ(kγ,y)

y−1−y Xkγ) , XγXγ′ = (−y)〈γ,γ
′〉Xγ+γ′

γ1

γ1

γ2

γ2

γ1 + γ2
• The WCF ensures that the diagram is consistent,∏
γi
U(γi)

±1 = 1 around any codimension 2 intersec-
tion. The Attractor Flow Tree Formula determines out-
going rays from incoming rays at each vertex. [Argüz

Bousseau ’20].

B. Pioline (LPTHE, Paris) BPS Dendroscopy 07/07/2022 19 / 41



Attractor conjecture for KP2

By examining the expected dimension of the moduli space of
quiver representations, [Beaujard BP Manschot’20] conjectured that all
attractor invariants Ω?(γ) vanish except

Ω?(γi ) = 1 for i = 1,2,3
Ω?(k(γ1 + γ2 + γ3)) = −y3 − y − 1/y for k ≥ 1.

Under this assumption, we observed that the index Ω−ζ?(γ)(γ) for
γ = (n1,n2,n3), in the anti-attractor chamber coincides with the
index Ω∞(r ,d , ch2) counting Gieseker semi-stable sheaves
provided r > 0 and −r ≤ d ≤ 0. But the quiver description is only
supposed to be valid near the orbifold point !
A similar conjecture for Ω?(γ) holds for any toric CY3, giving in
principle access to DT invariants Ωζ(γ) for any ζ ∈ RQ0 [Mozgovoy

BP’20; Descombes’21]
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Orbifold scattering diagram
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A 2D slice of the orbifold scattering diagram

γ�

γ�

γ�

γ�+γ�

γ�+�γ�

�γ�+γ�

γ�+γ�

γ�+�γ�

�γ�+γ�

γ�+γ�
γ�+�γ��γ�+γ�

γ�+�γ�+γ�
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Flow trees from scattering diagrams

More generally, for any ψ ∈ R/2πZ define scattering rays as loci

Rψ(γ) = {Z : Re(e−iψZ (γ)) = 0, Im(e−iψZ (γ)) > 0,Ωζ(kγ) 6= 0}

For a non-compact CY3, Z (γ) is holomorphic in Kähler moduli,
thus arg Z (γ) is constant along the gradient flow of |Z (γ)|.
Choosing ψ such that z ∈ Rψ(γ), edges of attractor flow trees lie
inside Rψ(γe), while vertices lie in Rψ(γL(v)) ∩Rψ(γR(v)).
Besides, since Z (γ) is holomorphic, initial rays must originate from
attractor points on the boundary.
Thus, flow trees are subsets of scattering diagrams, determining
sequences of scatterings which produce an outgoing ray Rψ(γ)
passing through the desired point z.
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Kähler moduli space of KP2

The Kähler moduli space of KP2 is the modular curve
X1(3) = H/Γ1(3) parametrizing elliptic curves with level structure.
It admits two cusps LV ,C and one elliptic point o of order 3.

The universal cover is parametrized by τ ∈ H:

LV

C(1)C

o

Fo

g Fo g-1Fo

0
1

6

1

5

2

9

1

4

1

3

2

5

3

7

1

2

4

7

3

5

2

3

3

4

7

9

4

5

5

6
1

4

9

5

9

0

1

2 3

Zτ (γ) = −rTD(τ) + dT (τ)− ch2

T =
∫
` λ

TD =
∫
`D
λ

λ holomorphic one-form with loga-
rithmic singularities on Eτ
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Central charge as Eichler integral

Since ∂τλ is holomorphic, its periods are proportional to (1, τ).
Integrating on a path from o to τ , one finds the Eichler-type
integral (

T
TD

)
=

(
1/2
1/3

)
+

∫ τ

τo

(
1
u

)
C(u) du

where C(τ) = η(τ)9

η(3τ)3 is a weight 3 modular form for Γ1(3).

This provides an computationally efficient analytic continuation of
Zτ throughout H, and gives access to monodromies:

τ 7→ aτ + b
cτ + d




1
T
TD


 7→




1 0 0
m d c

mD b a


 ·




1
T
TD




where (m,mD) are period integrals of C from τo to aτo−b
cτo−d .
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Central charge as Eichler integral

At large volume, using C = 1− 9q + . . . one finds

T = τ +O(q), TD =
1
2
τ2 +

1
8

+O(q)

For τ2 large enough, one can use the GL(2,R)+ action on Stab C
to absorb the O(q) corrections and work with

Z LV
(s,t)(γ) = − r

2
(s + it)2 + d(s + it)− ch2 ,

LV

CC

o'

s =
ImTD

ImT
, µ =

d
r

1
2

(s2 + t2) = − Im(T T̄D)

ImT

A = {E d→ F , µ(E) < s, µ(F ) ≥ s}
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Large volume scattering diagram

For the stability conditions (Z LV(s,t) ,A(s)), [Bousseau’19] constructed
the scattering diagram Dψ in (s, t) upper half-plane for ψ = 0. For
ψ 6= 0, just map (s, t) 7→ (s − t tanψ, t/ cosψ).

The rays R(γ) are branches of hyperbola asymptoting to
t = ±(s − d

r ) for r 6= 0, or vertical lines when r = 0. Walls of
marginal stabilityW(γ, γ′) are half-circles centered on real axis.

-� -� -� -� � �

�

�

�

�

�

�

Think of R(γ) as the worldline of a fictitious particle of charge r ,
mass m2 = 1

2d2 − r ch2 moving in a constant electric field !
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Large volume scattering diagram

Initial rays correspond to O(m) and O(m)[1], ie (anti)D4-branes
with m units of flux, emanating from (s, t) = (m,0) on the
boundary where the central charge vanishes.

�(-�) �(-�) �(�) �(�) �(�)

-� -� � �
�

���

���

���

�

The first scatterings occur for t ≥ 1
2 , after each constituent has

moved by |∆s| ≥ 1
2 . Causality and monotonicity of the ‘electric

potential’ ϕ(γ) = d − sr along the flow, allow to bound the number
and charges of constituents.
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Flow trees for γ = [0,4,1)

-3 O(-2) 2 O(-1) O(0)-O(-3)

-O(-1) 2 O(0)

{{−3O(−2),2O(−1)},O}:
3O(−2)→ 2O(−1)⊕O → E
K3(2,3)K12(1,1)→ −156

{−O(−3), {−O(−1),2O}}:
O(−3)⊕O(−1)→ 2O → E
K3(1,2)K12(1,1)→ −36

Total: Ω∞(γ) = −192 = GV (0)
4
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Flow trees for γ = [1,0,−3)

-O(-5) O(-4) O(-1)

-O(-4)

O(-3)

-O(-3)

2 O(-2)

-O(-4)

2 O(-2)

{{−O(−5),O(−4)},O(−1)}
O(−5)→ O(−4)⊕O(−1)→ E
K3(1,1)2 → 9
{{−O(−4),O(−3)},
{−O(−3),2O(−2)}}
O(−4)⊕O(−3)→
O(−3)⊕ 2O(−2)→ E
K3(1,1)2K3(1,2)→ 27
{−O(−4),2O(−2)}
O(−4)→ 2O(−2)→ E
K6(1,2)→ 15

Total: Ω∞(γ) = 51 = χ(Hilb4P2)
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Outline

1 Introduction

2 Attractor flow tree formula

3 Quiver scattering diagram

4 Large volume scattering diagram

5 Towards the exact scattering diagram
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Exact scattering diagram

The full scattering diagram DΠ
ψ on the slice of Π-stability conditions

should interpolate between DLV
ψ around τ = i∞ and Do

ψ around
τ = 1√

3
eiπ/6 + n, and be invariant under the action of Γ1(3).

Under τ 7→ τ
3nτ+1 with n ∈ Z, O 7→ O[n]. Hence we have an doubly

infinite family of initial rays associated to O(m)[n].

��

���

�

�[-�]
�[-�]

�[�] �[�]

�[�]
�[�]

For | tanψ| < 1
2V where V = ImT (0) = 27

4π2 ImLi2(e2πi/3) ' 0.463
only the rays associated to O(m)[0] and O(m)[1] escape to i∞,
and merge onto rays in the large volume scattering diagram DLV

ψ .
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Exact scattering diagram

In addition, there must be an infinite family of initial rays coming
from τ = p

q with q 6= 0 mod 3, corresponding to Γ1(3)-images of
O(0). This includes initial rays emitted at τ = n − 1

2 , associated to
Ω(n + 1); for ψ ∼ π

2 , these merge onto initial rays of the orbifold
scattering diagram.

Since ∂τZ (γ) = (d − rτ)C(τ) and C 6= 0 for Imτ > 0, it appears
that rays Rψ(γ) can only end at τ = d

r such that Zτ (γ) vanishes.
This can be shown to hold for generic ψ, but when V tanψ ∈ Q, a
ray R(γ) emitted at τ = d

r might end up at τ ′ = d ′
r ′ with Zτ ′(γ) 6= 0.

We conjecture that the only initial rays are the Γ1(3) images of the
structure sheaf O, each of them carrying Ω(kγ) = 1 for k = 1, 0
otherwise.
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Exact scattering diagram - ψ = 0
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Exact scattering diagram - ψ = ±π
2 mod 2π

For ψ = ±π
2 , the diagram DΠ

ψ simplifies dramatically, since the loci
ImZτ (γ) = 0 are lines of constant s := ImTD

ImT = d
r .

Hence, there is no wall-crossing between τo and τ = i∞ when
−1 ≤ d

r ≤ 0, explaining why the Gieseker index Ω∞(γ) agrees
with the index Ω−ζ∗(γ)(γ) in the anti-attractor chamber. In that
chamber, the orbifold quiver with potential reduces to the Beilinson
quiver with relations [Douglas Fiol Romelsberger’00]
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Scattering diagram in affine coordinates

For | tanψ| < 1
2V and fixed γ, the flow trees in DΠ

ψ are identical
(topologically) to flow trees in DLV

ψ . One way to show this is to map
both of them to the plane

x =
Re
(
e−iψT

)

cosψ
, y = −Re

(
e−iψTD

)

cosψ
,

such that Rψ(γ) becomes a line segment rx + dy − ch2 = 0.

The initial rays RO(m) are tangent to the parabola y = −1
2x2 at

x = m, but the origin of each ray is shifted to x = m + V tanψ.
In addition, there are initial rays associated to images of O(m)
under Γ1(3), but those don’t play a role if ψ is small enough.
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Exact scattering diagram in (x , y) plane, ψ = 1
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Exact scattering diagram, varying ψ

γ = [0,1,1) = chOC :

γ = [1,0,1) = chO:
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Conclusion - outlook

The scattering diagram is the proper mathematical framework for
the attractor flow tree formula in the case of local CY3. This is
because the central charge is holomorphic, so the gradient flow
preserves the phase of Z (γ). Moreover, initial rays can only start
from the boundary.

This provides an effective way of computing (unframed) BPS
invariants in any chamber, and a natural decomposition into
elementary constituents. Mathematically, different trees should
correspond to different strata inMZ (γ), but the precise relation is
not clear.
It would be interesting to extend this description to other toric CY3,
such as local del Pezzo surfaces, and to framed BPS indices.
In the compact case, arg Z (γ) is no longer constant along the flow
and there can be attractor points with Ω?(γ) 6= 0 at finite distance
in Kähler moduli space...
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Thanks for your attention !

B. Pioline (LPTHE, Paris) BPS Dendroscopy 07/07/2022 41 / 41


	Introduction
	Attractor flow tree formula
	Quiver scattering diagram
	Large volume scattering diagram
	Towards the exact scattering diagram

