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Introduction

A central goal for any theory of quantum gravity is to provide a
microscopic explanation of the thermodynamical entropy of black
holes in General Relativity [Bekenstein’72, Hawking’74]

SBH = A
4GN SBH

?
= logΩ

As shown by [Strominger Vafa’96,. . . ], String Theory provides a
quantitative description in the case of BPS black holes in vacua
with extended SUSY: at weak string coupling, black hole
micro-states arise as bound states of D-branes wrapped on cycles
of the internal manifold.
Besides confirming the consistency of string theory as a theory of
quantum gravity, this has opened up many fruitful connections
with mathematics.

B. Pioline (LPTHE, Paris) Counting CY black holes SEED workshop, 25/04/25 2 / 39



BPS indices and Donaldson-Thomas invariants

In the context of type IIA strings compactified on a Calabi-Yau
three-fold X , BPS states are described mathematically by stable
objects in the derived category of coherent sheaves C = DbCohX .
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.
The problem becomes a question in Donaldson-Thomas theory:
for fixed γ ∈ K (X ), compute the generalized DT invariant Ωz(γ)
counting (semi)stable objects of class γ, and determine its growth
as |γ| → ∞.
Importantly, Ωz(γ) depends on the moduli of X , or more generally
on a choice of Bridgeland stability condition z ∈ Stab C. The
chamber structure is fairly simple for X = T 6 or X = K 3 × T 2, but
very intricate for a general CY 3-fold.
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Modularity of Donaldson-Thomas invariants

Physical arguments predict that suitable generating series of DT
invariants (those counting D4-D2-D0 bound states in a suitable
chamber) should have specific modular properties. This gives
very good control on their asymptotic growth, and allows to test
agreement with the BH prediction Ωz(γ) ≃ eSBH(γ).

Recall that f (τ) =
∑

n≥0 c(n)qn−∆ (with q = e2πiτ , Imτ > 0) is a

modular form of weight w if ∀
(

a b
c d

)
∈ Γ ⊂ SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)w f (τ) ⇒ c(n) ∼ exp

(
4π

√
∆n

)
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Mock Modularity of Donaldson-Thomas invariants

More precisely, these generating series are expected to be (higher
depth) mock modular, similar to Ramanujan’s mock theta series.
The modular anomaly can be repaired by adding a universal
non-holomorphic correction [Alexandrov BP Manschot’16-20].
A (depth one) mock modular form of weight w transforms
inhomogeneously under Γ ⊂ SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)w

[
f (τ)−

∫ i∞

−d/c
g(−ρ̄)(τ + ρ)−w dρ

]
where the shadow g(τ) is an ordinary modular form of weight
2 − w . Equivalently, the non-holomorphic completion

f̂ (τ, τ̄) := f (τ) +
∫ i∞

−τ̄
g(−ρ̄)(τ + ρ)−w dρ , τw

2 ∂τ̄ f̂ (τ, τ̄) ∝ g(τ)

transforms like a modular form [Zagier’1973, Zwegers’02]
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Outline

In this talk, I will explain how to combine knowledge of standard
Gromov-Witten invariants (counting curves in X ) and wall-crossing
arguments to rigorously compute many DT invariants, and check mock
modularity to high precision

S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, T. Schimannek, arXiv:2301.08066

S. Alexandrov, S. Feyzbakhsh, A. Klemm, BP, arXiv:2312.12629

1 Reminder of enumerative invariants on CY3: GW, GV, DT, PT. . .
2 Mock modularity of D4-D2-D0 generating series
3 From rank 1 to rank 0 DT invariants, and back
4 Testing modularity on X5 and other hypergeometric models
5 Conclusion and open problems
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Gromov-Witten invariants

Let X be a smooth, projective CY threefold. The Gromov-Witten
invariants GW

(g)
β count genus g curves Σ with class β ∈ H2(X ,Z).

They depend only on the symplectic structure (or Kähler moduli)
of X and in general take rational values.
Physically, they determine certain higher-derivative couplings in
the low energy effective action, which depend only on the
(complexified) Kähler moduli t and receive worldsheet instanton
corrections: Fg(t) =

∑
β GW

(g)
β e2πit ·β [Antoniadis Gava Narain Taylor’93]

The first two F0 and F1 can be computed using mirror symmetry.
Holomorphic anomaly equations along with suitable boundary
conditions allow to determine Fg≥2 up to a certain genus gint (= 53
for the quintic threefold X5) [Bershadsky Cecotti Ooguri Vafa’93; Huang Klemm

Quackenbush’06]
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Gopakumar-Vafa invariants

Gromov-Witten invariants turn out to be determined by a set of
integer invariants GV

(g)
β via [Gopakumar Vafa’98,Ionel Parker’13]

∞∑
g=0

∑
β

GW
(g)
β λ2g−2e2πit ·β =

∞∑
g=0

∞∑
k=1

∑
β

GV (g)
β

k

(
2 sin kλ

2

)2g−2
e2πikt ·β

For g = 0, this reduces to [Candelas de la Ossa Greene Parkes’93]

GW (0)
β =

∑
k |β

1
k3 GV (0)

β/k

Physically, GV (0)
β counts D2-D0 brane bound states with D2

charge β, and arbitrary D0 charge n ,while higher genus GV
invariants keep track of their angular momentum.

Importantly, GV (g)
β vanishes for large enough g ≥ gmax(β)

(Castelnuovo bound).
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GV invariants and 5D rotating black holes

Viewing type II string theory as M-theory on a circle, D2-branes lift
to M2-branes wrapped on curve inside X , yielding BPS black
holes in R1,4. These carry in general two angular momenta (jL, jR).
Tracing over jR, the number of BPS states with m = jzL is

Ω5D(β,m) =
∑gmax(β)

g=0

( 2g+2
g+1+m

)
GV

(g)
β

Katz Klemm Vafa’99
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There is some numerical evidence that Ω(β,m) ∼ e2π
√

β3−m2 for
large β keeping m2/β3 fixed, in agreement with the BH entropy of
5D black holes [Klemm Marino Tavanfar’07], with a transition to black
rings at large angular momentum [Halder Lin’23].
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Generalized Donaldson-Thomas invariants

More generally, bound states of D6-D4-D2-D0 branes are
described by stable objects in the bounded derived category of
coherent sheaves C = DbCoh(X ) [Kontsevich’95, Douglas’01]. Objects
are bounded complexes E = (· · · → E−1 → E0 → E1 → . . . ) of
coherent sheaves Ek , graded by the total Chern character
γ(E) =

∑
k (−1)k ch Ek ∈ Γ

Stability depends on a choice of stability condition σ = (Z ,A),
where the central charge Z ∈ Hom(Γ,C) and the heart A ⊂ C
satisfy various axioms [Bridgeland 2007], in particular

1 ∀E ∈ A, ImZ (E) ≥ 0
2 ∀E ∈ A, ImZ (E) = 0 ⇒ ReZ (E) < 0

The generalized Donaldson-Thomas invariant Ωσ(γ) is roughly the
weighted Euler number of the moduli space Mσ(γ) of semi-stable
objects E ∈ A with chE = γ, where semi-stability means that
argZ (E ′) ≤ argZ (E) for any subobject E ′ ⊂ E .
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Generalized Donaldson-Thomas invariants

The space of stability conditions Stab C is a complex manifold of
dimension dimKnum(X ) = 2b2(X ) + 2, unless it is empty
[Bridgeland’07].
Stability conditions in the vicinity of the large volume point can be
constructed subject to a conjectural Bogomolov-Gieseker-type
inequality introduced in [Bayer Macri Toda’11] – more on this later.
The BMT inequality is very hard to prove for a general compact
CY3, but has been proven for the quintic threefold X5 [Li’18] and a
couple of other examples [Koseki’20, Liu’21].
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Generalized Donaldson-Thomas invariants

Ωσ(γ) may jump on co-dimension 1 walls in Stab C where some
the central charge Z (γ′) of a subobject E ′ ⊂ E becomes aligned
with Z (γ). The jump is governed by a universal wall-crossing
formula [Joyce Song’08, Kontsevich Soibelman’08]. In simplest primitive case,

∆Ωσ(γ1 + γ2) = ⟨γ1, γ2⟩Ωσ(γ1) Ωσ(γ2)

corresponding physically to the (dis)appearance of multi-centered
black hole bound states [Denef Moore’07; Andriyash Denef Jafferis Moore’10;

Manschot BP Sen’10]

For γ = (0,0, β, n), Ωσ(γ) coincides with GV (0)
β at large volume.

B. Pioline (LPTHE, Paris) Counting CY black holes SEED workshop, 25/04/25 12 / 39



GV invariants and D6-brane bound states

For γ = (−1,0, β,−n) at large volume and B-field, stable objects
have a much simpler mathematical description in terms of stable
pairs E : OX

s→ F [Pandharipande Thomas’07]:
1 F is a pure 1-dimensional sheaf with ch2 F = β and χ(F ) = n
2 the section s has zero-dimensional kernel

The PT invariant PT(β,n) is defined as the (weighted) Euler
characteristic of the corresponding moduli space.
Since a single D6-brane lifts to a Taub-NUT space in M-theory,
which is locally flat, one expects that PT invariants are computable
from GV invariants [Dijkgraaf Vafa Verlinde’06].

B. Pioline (LPTHE, Paris) Counting CY black holes SEED workshop, 25/04/25 13 / 39



GV invariants and D6-brane bound states

More precisely, PT invariants are related to GV invariants by [Maulik

Nekrasov Okounkov Pandharipande’06]

∑
β,n

PT(β,n)e2πit ·βqn = Exp

∑
β,g

GV
(g)
β (

√
q − 1/

√
q)2g−2e2πit ·β


where Exp(f (q)) = exp(

∑
n≥1 f (qn)) is the plethystic exponential.

Under this relation, the Castelnuovo bound GV (g≥gmax(β))
β = 0 is

mapped to PT (β,n ≤ 1 − gmax(β)) = 0
The main interest in this talk will be on rank 0 DT invariants
Ω(0,p, β, n) counting D4-D2-D0 brane bound states supported on
a divisor D with class [D] = p ∈ H4(X ,Z).
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D4-D2-D0 indices as rank 0 DT invariants

Viewing IIA=M/S1, D4-D2-D0 branes on D arise from M5-branes
wrapped on D × S1. In the limit where S1 is much larger than X ,
they are described by a two-dimensional superconformal field
theory with (0,4) SUSY. [Maldacena Strominger Witten’97]

D4-D2-D0 indices occur as Fourier coefficients in the elliptic
genus Tr(−1)F qL0−

cL
24 e2πiqaza

. If the SCFT has a discrete
spectrum, after theta series decomposition with respect to the
elliptic variables za, one obtains a vector-valued modular form

hp,µ(τ) :=
∑

n

Ω̄(0,p, µ,n)qn−χ(D)
24 + 1

2µ
2− 1

2 pµ

where µ takes values in the finite discriminant group Λ∗/Λ
associated to Λ = (H4(X ,Z), κab := κabcpc).
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Modularity of rank 0 DT invariants

When D is very ample and irreducible, there are no walls
extending to large volume, so the choice of chamber is irrelevant.
The central charges are given by [Maldacena Strominger Witten’97]{

cL = p3 + c2(TX ) · p = χ(D)

cR = p3 + 1
2c2(TX ) · p = 6χ(OD)

Cardy’s formula predicts a growth Ω(0,p, β, n → ∞) ∼ e2π
√

p3 n in
perfect agreement with Bekenstein-Hawking formula !
Moreover, since the space of vector-valued weakly holomorphic
modular form has finite dimension, the full series is completely
determined by its polar coefficients, with n + 1

2µ
2 − 1

2pµ < χ(D)
24 .

(Actually, the dimension can be smaller than the number of polar
terms).

B. Pioline (LPTHE, Paris) Counting CY black holes SEED workshop, 25/04/25 16 / 39



Mock modularity of rank 0 DT invariants

When D is reducible, the generating series hpa,µa(τ) in a suitable
("large volume attractor") chamber is expected to be a mock
modular form of higher depth [Alexandrov BP Manschot’16-20])
Namely, there exists explicit, universal non-holomorphic theta
series Θn({pi}, τ, τ̄) such that (ignoring the µ’s for simplicity)

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form. The completed series satisfy the
holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Mock modularity of rank 0 DT invariants

For binary splittings, this reduces to mock modular forms
encountered in the study of BPS dyons in Type II on K 3 × T 2, or
in heterotic string on T 6 [Dabholkar Murthy Zagier’12].
The modular completion is constructed using similar ideas as in
Zwegers’s work on Ramanujan’s mock theta series, namely
replacing "step functions" with "generalized error functions"
[Alexandrov Banerjee BP Manschot’16].
Our derivation relied on the study of instanton corrections to the
QK metric on the moduli space after compactifying on a circle, and
implementing SL(2,Z) symmetry manifest from IIA/S1 = M/T 2. A
nice spin off of earlier research on hypermultiplet moduli spaces !

Alexandrov Banerjee Persson BP Manschot Saueressig Vandoren, 2008-19
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Crash course on Indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ
2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Λ⊗ R).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided
R(x)f ,R(∂x)f ∈ L2(Λ⊗ R) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]
Φ = 0 [*]

The operator ∂τ̄ acts by sending Φ → (x∂x − λ)Φ. Thus ϑ is
holomorphic if Φ is homogeneous. But unless r = 0, f (x) will fail
to be square-integrable !
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.
Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′), (C,C′) > 0, then

Φ̂(x) = Erf
(

(C,x)
√
π√

Q(C)

)
− Erf

(
(C′,x)

√
π√

Q(C′)

)
satisfies [*] with λ = 0. As |x | → ∞, or if Q(C) = Q(C′) = 0,

Φ̂(x) → Φ(x) := sgn(C, x)− sgn(C′, x)

The theta series Θ2({p1,p2}), Θ̂2({p1,p2}) fall in this class. The
generalization to n > 2 involves generalized error functions.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016
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Non-holomorphic completion from Witten index

Physically, the non-holomorphic corrections arise from the
spectral asymmetry in the continuum of scattering states in the
supersymmetric quantum mechanics of n BPS black holes.
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BP 2015; Murthy BP 2018; BP Raj, in progress

B. Pioline (LPTHE, Paris) Counting CY black holes SEED workshop, 25/04/25 21 / 39



Testing mock modularity for one-parameter models

In the remainder of this talk, we shall test these modularity
predictions for CY threefolds with Picard rank 1, by computing the
first few coefficients in the q-expansion and determine the putative
vector-valued (mock) modular form.
This was first attempted by [Gaiotto Strominger Yin ’06-07] for the quintic
threefold X5 and a few other hypergeometric models. They were
able to guess the first few terms for unit D4-brane charge, and
found a unique modular completion.
We shall compute many terms rigorously, using recent results by
[Soheyla Fezbakhsh and Richard Thomas’20-22] relating rank r DT invariants
(including r = 0, counting D4-D2-D0 bound states) to PT
invariants, hence to GV invariants.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23
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From rank 1 to rank 0 DT invariants

The key idea is to study wall-crossing in the space of Bridgeland
stability conditions, away from the physical slice. For any
b + it ∈ H, consider the central charge

Zb,t(E) = i
6 t3 chb

0(E)− 1
2 t2 chb

1(E)− it chb
2(E) + 0 chb

3(E)

with chb
k (E) :=

∫
X H3−ke−bH ch(E). With a suitable choice of heart

(defined by tilting with respect to the slope chb
1(E)

rk(E) ), this defines a
weak stability condition called tilt-stability.
Note that Zb,t(E) is obtained from Z LV(E) = −

∫
X e(b+it)H ch(E) by

setting by hand the coefficient of chb
3 to 0. In fact, tilt-stability is the

first step in constructing genuine stability conditions near the large
volume point [Bayer Macri Toda’11]

The KS/JS wall-crossing formulae still hold for such weak stability
conditions.
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with slope stability at large volume, but the
chamber structure is much simpler: walls are nested half-circles in
the Poincaré upper half-plane spanned by z = b + i t√

3
.

2 4 6 8
b

1

2

3

4

5

t

3

Importantly, for any tilt-semistable object E there is a conjectural
inequality on Chern classes Ci :=

∫
X chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 −2C0C2)(

1
2b2 + 1

6 t2)+ (3C0C3 −C1C2)b+(2C2
2 −3C1C3) ≥ 0
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Rank 0 DT invariants from GV invariants

In particular, if the discriminant ∆(C) at t = 0 is positive, there
exists an empty chamber ! ∆(γ) is quartic in the charges,

∆(C) = 8C0C3
2 + 6C3

1C3 + 9C2
0C2

3 − 3C2
1C2

2 − 18C0C1C2C3 ≥ 0

Remarkably, ∆(C) is proportional to (minus) the quartic invariant
I4(Q) which determines the entropy SBH ∼ π

√
I4(Q) of

single-centered black holes ! In particular, an empty chamber
exists whenever single-centered black hole are ruled out !
Consider an anti-D6-brane with charge γ = (−1,0, β,−n) such
that ∆(C) > 0. By studying wall-crossing between the empty
chamber where Ωb,t(γ) = 0 and the large volume chamber where
Ωb,t(γ) = PT(β,m), one can extract the indices of the D4-D2-D0
branes emitted at each wall !
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A new explicit formula (S. Feyzbakhsh’23)

Theorem Let (X ,H) be a smooth polarised CY threefold with
Pic(X ) = Z.H satisfying the BMT conjecture. There is f (x) such that

If m
β·H < f (β,HH ) then the stable pair invariant PT(β,m) =

∑
(m′, β′)(−1)χm′,β′χm′,β′PT(β′,m′) Ω

(
0,1, H2

2 − β′ + β , H3

6 + m′ − m − β′.H
)

where χm′,β′ = β.H + β′.H + m − m′ − H3

6 − 1
12c2(X ).H.

The sum runs over (β′,m′) ∈ H2(X ,Z)⊕ H0(X ,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.
Corollary (Castelnuovo bound): PT(β,m) = 0 unless m ≥ − (β.H)2

2H3 − β.H
2
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Modularity for one-modulus compact CY

Using the theorem above and known GV invariants, we could
compute a large number of coefficients in the generating series of
Abelian (=unit D4-brane charge) rank 0 DT invariants in
one-parameter hypergeometric threefolds, including the quintic X5.
In all cases (except X3,2,2,X2,2,2,2 where current knowledge of GV
invariants is insufficient), we found a linear combination of the
following vv modular forms matching all computed coeffs:

Ea
4 Eb

6
η4κ+c2

Dℓ(ϑ(κ)
µ ) with ϑ(κ)

µ =
∑

k∈Z+µ
κ
+ 1

2

q
1
2κk2

, κ := H3

where D = 2πi∂τ − w
12E2, and 4a + 6b + 2ℓ− 2κ− 1

2c2 = −2.
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Modularity for one-modulus compact CY

X χX κ c2(TX ) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Modular predictions for the quintic threefold

Using known GV (g≤53)
β we can compute more than 20 terms:

h0 =q− 55
24

(
5 − 800q + 58500q2 + 5817125q3 + 75474060100q4

+28096675153255q5 + 3756542229485475q6

+277591744202815875q7 + 13610985014709888750q8 + . . .
)
,

h±1 =q− 55
24+

3
5

(
0 + 8625q − 1138500q2 + 3777474000q3

+ 3102750380125q4 + 577727215123000q5 + . . .
)

h±2 =q− 55
24+

2
5

(
0 + 0q − 1218500q2 + 441969250q3 + 953712511250q4

+ 217571250023750q5 + 22258695264509625q6 + . . .
)
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Modular predictions for the quintic threefold

The space of vv modular forms has dimension 7. Remarkably, all
terms above are reproduced by [Gaiotto Strominger Yin’06]

hµ = 1
η55+15

[
−222887E8

4+1093010E5
4 E2

6+177095E2
4 E4

6
35831808

+
25(458287E6

4 E6+967810E3
4 E3

6+66895E5
6)
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Physically, polar coefficients are expected arise as bound states of
D6-brane and anti D6-branes [Denef Moore’07]. Indeed, they are often
consistent with the naive ansatz [Alexandrov Gaddam Manschot BP’22]

Ω(0,1, β, n) = ±(χ(OD)− β.H − n)DT (β,n)PT (0,0)

but deviations do occur ! [Collinucci Wyder’08, van Herck Wyder’09]
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Mock modularity for non-Abelian D4-D2-D0 indices

For D4-D2-D0 indices with N = 2 units of D4-brane charge,
{h2,µ, µ ∈ Z/(2κZ)} should transform as a vector-valued mock
modular form with modular completion

ĥ2,µ(τ, τ̄) = h2,µ(τ) +
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ Θ

(κ)
µ2−µ1+κ h1,µ1 h1,µ2

where (denoting β(x) = 2|x |−1/2e−πx − 2πErfc(
√
π|x |))
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Mock modularity for non-Abelian D4-D2-D0 indices

Suppose there exists a holomorphic function g(κ)
µ such that

Θ
(κ)
µ + g(κ)

µ transforms as a vv modular form. Then

h̃2,µ(τ, τ̄) = h2,µ(τ)−
κ−1∑

µ1,µ2=0

δ
(κ)
µ1+µ2−µ g(κ)

µ2−µ1+κ h1,µ1 h1,µ2

will be an ordinary weak holomorphic vv modular form, hence
uniquely determined by its polar part.

For κ = 1, the series Θ
(1)
µ is the one appearing in the modular

completion of the generating series of Hurwitz class numbers
[Hirzebruch Zagier 1973] (or rank 2 Vafa-Witten invariants on P2)
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)
Thus we can choose g(1)

µ = Hµ(τ).
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Mock modularity for non-Abelian D4-D2-D0 indices

X χX κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Mock modularity for non-Abelian D4-D2-D0 indices

For X10, we computed the 7 polar terms + 4 non-polar terms and
found a unique mock modular form reproducing this data:
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216 η35 = q− 35
24 (3 − 575q + . . . ), leading to integer

DT invariants
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)
Similar results for X8 [S. Alexandrov, S. Feyzbakhsh, A. Klemm’23]
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Computing the leading term in h2,0 for X10
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Quantum geometry from stability and modularity

Gopakumar-Vafa
invariants N(g)

β

Pandharipande-Thomas
invariants PT(β,n)

Rank 0 DT-invariants
hN,µ(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

X χX κ type ginteg g(1)
mod g(2)

mod gavail

X5(15) −200 5 F 53 69 80 64
X6(14,2) −204 3 F 48 66 84 48
X8(14,4) −296 2 F 60 84 112 66
X10(13,2,5) −288 1 F 50 70 95 72
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 22 26
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 66 64
X6,2(15,3) −256 4 C 63 78 49

http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php
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Summary and open questions

We provided overwhelming evidence that D4-D2-D0 indices
exhibit mock modular properties. Where does it come from
mathematically ? Is there some VOA acting on the cohomology of
moduli space of stable objects, à la [Nakajima’94] ?
Can one test modularity in multi-parameter models, for example in
genus-one fibrations or K3-fibrations ? Can one follow D4-D2-D0
invariants through extremal transitions ?
Similar wall-crossing arguments also allow to compute higher rank
DT invariants. Is there some higher rank version of [MNOP’03] ?
A long-standing problem: incorporate NS5-instanton corrections
to the QK metric on hypermultiplet moduli space, consistently with
S-duality, beyond the linear analys of [Alexandrov Persson BP’10].
Thanks for your attention !
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Back up slide: Modularity from geometry

While modularity of D4-D2-D0 invariants is clear physically from
the M5-brane picture, its mathematical origin is in general
mysterious.
When X admits a K3-fibration, using the relation to Noether-
Lefschetz invariants one can show that modularity holds for
vertical D4-brane charge. The modular anomaly disappears
entirely due to κabpb = 0. [Bouchard Creutzig Diaconescu Doran Quigley

Sheshmani’16; Doran BP Schimannek’24]

Similarly, when X admits a genus-one fibration, one can relate
D4-D2-D0 invariants for a D4-brane wrapping the fiber to GW
invariants via Fourier-Mukai duality. Generating series of GW
invariants are quasi-modular forms, consistent with κabpapb = 0.
[Klemm Manschot Wotschke’12; BP Schimannek, to appear.]
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