Schwarzschild meets Ramanujan: From quantum black holes to mock modular forms

Boris Pioline

LPTHE, Paris

Math-Physics Colloquium University of Amsterdam, 7/06/2019

http://www.lpthe.jussieu.fr/~pioline/seminars.html

Black holes and mock modular forms

Karl Schwarzschild (1879-1916)

Srinivasa Ramanujan (1887-1920)

Letter to A. Einstein (Dec 1915, Russian front): "the war treated me kindly enough, in spite of the heavy gunfire, to allow me to get away from it all and take this walk in the land of your ideas."

Schoortichild 2:2	Madel. Schwarschild 2 ::
unger you l	Sustein!
Burnis your gunnings	Aprile marie git muching part
if in the chapped grade	, and more your winder theaters where
is maniquipe pour	in a disputing the proper problem
maniping adapting got sig	strings may mig min the good spot
matige Kilaitanadaramant das	goton, but his with your Byreemanne.
nig for the drawn	and got a print of printings do
mps saipning in your was	if ind port gatterper
2/1 - VW -	Asses a for fan
state and sty in the second state	- Kiping iter . from mig you
	Resides , A girle mit in
ship water when the	- Red. I demanding

$$\mathrm{d}s^{2} = -\left(1 - \frac{r_{S}}{r}\right)^{2}\mathrm{d}t^{2} + \frac{\mathrm{d}r^{2}}{\left(1 - \frac{r_{S}}{r}\right)^{2}} + r^{2}\mathrm{d}\Omega^{2}, \quad r_{s} = \frac{2GM}{c^{2}}$$

K. Schwarzschild, Sitz. Kön. Preuss. Ak. Wiss. 1916

• Unfortunately, Schwarzschild died 6 months later from a rare decease caught on the Russian front.

- Unfortunately, Schwarzschild died 6 months later from a rare decease caught on the Russian front.
- Generalized by *Reissner (1916), Nordström (1917), H. Weyl (1917)* to black hole hole carrying charge; by *Kerr (1963)* to rotating case. The physical relevance of these solutions remained controversial until late 60s, when the name "black hole" was coined.

- Unfortunately, Schwarzschild died 6 months later from a rare decease caught on the Russian front.
- Generalized by *Reissner (1916), Nordström (1917), H. Weyl (1917)* to black hole hole carrying charge; by *Kerr (1963)* to rotating case. The physical relevance of these solutions remained controversial until late 60s, when the name "black hole" was coined.
- In early 70s, *Bardeen, Bekenstein, Carter* discovered that black holes behave like thermodynamical objects, with energy E = M, entropy $S_{BH} = \frac{A}{4G}$ and therefore temperature $T = dE/dS_{BH}$. *Hawking (1974)* realized that black holes emit thermal radiation, and evaporate on a time scale $t \propto G^2 M^3$.

- 4 B b 4 B b

 Q1: If this thermodynamical analogy is correct, what are the *O*(*e*^{S_{BH}}) microscopic degrees of freedom responsible for the Bekenstein-Hawking entropy ?

- Q1: If this thermodynamical analogy is correct, what are the *O*(e^{S_{BH}}) microscopic degrees of freedom responsible for the Bekenstein-Hawking entropy ?
- Q2: what happens to the information carried by the matter which collapsed into a black hole, after the black hole has evaporated away ?

- Q1: If this thermodynamical analogy is correct, what are the *O*(e^{S_{BH}}) microscopic degrees of freedom responsible for the Bekenstein-Hawking entropy ?
- Q2: what happens to the information carried by the matter which collapsed into a black hole, after the black hole has evaporated away ?
- Meanwhile, LIGO (2016), EHT (2019):

Letter to G. H. Hardy (Jan 1920, Madras): *I am extremely sorry for not writing you a single letter up to now... I discovered very interesting functions recently which I call "Mock" theta-functions. Unlike the "False" theta-functions... they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some examples.*

$$f(\tau) = \sum_{n=0}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\dots(1+q^n)^2} = 1 + q - 2q^2 + 3q^3 + \dots$$

< A >

I ≥ ►

From Ramanujan to mock modular forms

• Recall that $f(\tau) = \sum_{n \ge 0} a_n q^{n-\Delta}$ (with $q = e^{2\pi i \tau}$, $\text{Im}\tau > 0$) is a *modular form* of weight *k* under $\Gamma \subset SL(2, \mathbb{Z})$ if

$$f\left(rac{a au+b}{c au+d}
ight)=\chi(\gamma)\left(c au+d
ight)^kf(au)\quad orall\gamma=egin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma$$

From Ramanujan to mock modular forms

• Recall that $f(\tau) = \sum_{n \ge 0} a_n q^{n-\Delta}$ (with $q = e^{2\pi i \tau}$, $\text{Im}\tau > 0$) is a *modular form* of weight *k* under $\Gamma \subset SL(2, \mathbb{Z})$ if

$$f\left(rac{a au+b}{c au+d}
ight)=\chi(\gamma)\left(c au+d
ight)^kf(au)\quad \forall\gamma=egin{pmatrix}a&b\\c&d\end{pmatrix}\in\Gamma$$

Examples include *Dedekind*'s function η(τ) = q^{1/24} ∏_{n≥1}(1 - qⁿ) and *Jacobi*'s theta function θ(τ) = ∑_{n=0}[∞] q^{n²} which are modular forms of weight 1/2 under *SL*(2, ℤ) and Γ₀(4), respectively.

From Ramanujan to mock modular forms

- For the rest of the 20th century, Mock theta functions remained as troubling to number theorists as black holes to physicists...
- ... until Sander Zwegers (2002), then PhD student under Don Zagier in Bonn, found several intrinsic characterizations of mock theta functions, in terms of
 - Appell-Lerch sums,
 - indefinite theta series,
 - Fourier coefficients of meromorphic Jacobi forms
 - harmonic Maass forms,

Bourbaki seminar, Zagier 2007

Image: A Image: A

• Amazingly, each of these classes show up in physics !

Harmonic Mass forms and Eichler integrals

• With hindsight, one important clue can be traced to *Zagier and Hirzebruch (1975-76)*, who studied a certain limit of a non-holomorphic Eisenstein series $\hat{G}(\tau)$ of weight 3/2, and found that it decomposes into an ordinary, holomorphic *q*-series plus a non-holomorphic remainder now called "Eichler integral":

$$egin{aligned} \hat{G}(au,ar{ au}) &:= \lim_{s o 0} \left[\sum_{\gamma \in \Gamma_\infty ackslash \Gamma_0(4)} (\mathrm{Im} au)^s |_{3/2} \gamma
ight] \ &= & d(au) - rac{\mathrm{i}}{4\pi\sqrt{2}} \int_{-ar{ au}}^{\mathrm{i}\infty} rac{ heta(u)\,\mathrm{d} u}{[-\mathrm{i}(au+u)]^{3/2}} \end{aligned}$$

The sum $\hat{G}(\tau, \bar{\tau})$ is an example of harmonic Maass form.

Harmonic Mass forms and Eichler integrals

 G(τ) is the generating function of Hurwitz class numbers, counting conjugacy classes of quadratic forms with fixed discriminant -4n,

$$G(\tau) = \sum_{n \ge 0} H(4n)q^n = -\frac{1}{12} + \frac{1}{2}q + q^2 + \frac{4}{3}q^3 + \frac{3}{2}q^4 + 2q^5 + \dots$$

Harmonic Mass forms and Eichler integrals

 G(τ) is the generating function of Hurwitz class numbers, counting conjugacy classes of quadratic forms with fixed discriminant -4n,

$$G(\tau) = \sum_{n \ge 0} H(4n)q^n = -\frac{1}{12} + \frac{1}{2}q + q^2 + \frac{4}{3}q^3 + \frac{3}{2}q^4 + 2q^5 + \dots$$

 Since Ĝ is an ordinary (albeit non-holomorphic) modular form, its holomorphic part G must transform non-homogeneously,

$$G\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{\frac{3}{2}} \left[G(\tau) - \frac{i}{4\pi\sqrt{2}} \int_{-d/c}^{i\infty} \frac{\theta(u) \, \mathrm{d}u}{[-i(\tau+u)]^{3/2}}\right]$$

Indeed: $\int_{-\bar{\tau}}^{i\infty} \mathrm{d}u \mapsto \int_{-\gamma(\tau)}^{i\infty} \mathrm{d}u \sim \int_{-\bar{\tau}}^{\gamma^{-1}(i\infty)} \mathrm{d}u' = \int_{-\bar{\tau}}^{i\infty} \mathrm{d}u' + \int_{i\infty}^{\gamma^{-1}(i\infty)} \mathrm{d}u'$

Mock modular forms in field theories

• On the physics side, the first connections of mock modular forms occurred as early as 1994, where evidence started to emerge that certain supersymmetric gauge theories in 3+1 dimensions are invariant under electromagnetic duality, acting by fractional linear transformations on the complexified gauge coupling $\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{q_{ext}^2}$.

Mock modular forms in field theories

- On the physics side, the first connections of mock modular forms occurred as early as 1994, where evidence started to emerge that certain supersymmetric gauge theories in 3+1 dimensions are invariant under electromagnetic duality, acting by fractional linear transformations on the complexified gauge coupling $\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{q_{ext}^2}$.
- Using mathematical results by Klyachko and Yoshioka, Vafa Witten (1994) computed the partition function of topologically twisted N = 4 gauge theory with gauge group SU(2) on P²,

$$Z_{\mathbb{P}^2}^{SU(2)} = \sum_{n \ge 0} \chi(\mathcal{M}_n^{SU(2)}) \, q^{n-1/4} = \frac{3G(\tau)}{\eta^6(\tau)}$$

where $\mathcal{M}_n^{SU(2)}$ is the moduli space of SU(2) instantons of charge n on \mathbb{P}^2 , and $G(\tau)$ is the generating function of Hurwitz class numbers.

• Invariance under electric-magnetic duality appears to be broken, but might be recovered by including contributions from the boundary of $\mathcal{M}_n^{SU(2)}$ which (hopefully) turn *G* into its modular completion \hat{G} .

- Invariance under electric-magnetic duality appears to be broken, but might be recovered by including contributions from the boundary of $\mathcal{M}_n^{SU(2)}$ which (hopefully) turn *G* into its modular completion \hat{G} .
- With hindsight, the first connection to physics can be traced to *Eguchi Taormina (1988)*'s study of characters of superconformal algebras in 2 dimensions, though a precise connection was only made by *Semikhatov Taormina Typunin (2003)*, just around the same time as Zwegers' thesis.

 Connections between modular forms and black holes go back to Strominger Vafa (1995) seminal work, which provided for the first time a microscopic description of a class of supersymmetric black holes in D = 5 dimensions. Soon extended to supersymmetric Reissner-Nordström black holes in 4D by Maldacena Strominger (96), Johnson Khuri Myers (96), and Dijkgraaf Verlinde² (96).

- Connections between modular forms and black holes go back to Strominger Vafa (1995) seminal work, which provided for the first time a microscopic description of a class of supersymmetric black holes in D = 5 dimensions. Soon extended to supersymmetric Reissner-Nordström black holes in 4D by Maldacena Strominger (96), Johnson Khuri Myers (96), and Dijkgraaf Verlinde² (96).
- Supersymmetric black holes saturate the bound $M \ge |Q|$ (often called BPS bound, by analogy to a similar bound for monopoles in gauge theories due to *Bogolmolnyi Prasad Sommerfeld*). As a result, they have T = 0 and cannot decay, unlike Schwarzschild black holes. However, they do have finite entropy $S_{BH} = A/(4G)$, suggestive to a large ground state degeneracy $\Omega(Q) \propto O(e^{S_{BH}})$.

< ロ > < 同 > < 回 > < 回 >

 By viewing black holes as black strings wrapped on a circle, micro-states can be viewed as excitations in a 2D superconformal field theory. The partition function Z_{T²(τ)} is then manifestly modular. BPS ground states are chiral excitations of the SCFT, counted (with sign) by a weakly holomorphic modular form.

- By viewing black holes as black strings wrapped on a circle, micro-states can be viewed as excitations in a 2D superconformal field theory. The partition function $Z_{T^2(\tau)}$ is then manifestly modular. BPS ground states are chiral excitations of the SCFT, counted (with sign) by a weakly holomorphic modular form.
- E.g. in type II string theory compactified on T^6 , $\Omega(Q) = c(I_4(Q))$ where I_4 is a quartic polynomial in Q and c(n) are Fourier coefficients of the modular form

$$\frac{\theta(\tau)}{\eta^6(4\tau)} = \sum_{n \ge -1} c(n) q^n = \frac{1}{q} + 2 + 8q^3 + 12q^4 + 39q^7 + 56q^8 + \dots$$

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005

< ロ > < 同 > < 回 > < 回 >

- By viewing black holes as black strings wrapped on a circle, micro-states can be viewed as excitations in a 2D superconformal field theory. The partition function Z_{T²(τ)} is then manifestly modular. BPS ground states are chiral excitations of the SCFT, counted (with sign) by a weakly holomorphic modular form.
- E.g. in type II string theory compactified on T^6 , $\Omega(Q) = c(I_4(Q))$ where I_4 is a quartic polynomial in Q and c(n) are Fourier coefficients of the modular form

$$\frac{\theta(\tau)}{\eta^6(4\tau)} = \sum_{n \ge -1} c(n) q^n = \frac{1}{q} + 2 + 8q^3 + 12q^4 + 39q^7 + 56q^8 + \dots$$

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005

• The Hardy-Ramanujan formula (aka. Cardy's formula in physics) gives $c(n) \sim e^{\pi \sqrt{n}}$, in perfect agreement with gravity's prediction $\Omega(Q) \sim e^{\pi \sqrt{l_4(Q)}}$.

A B M A B M

 Given beautiful matching in the large charge limit Q → ∞, one may ask if subleading corrections to the Bekenstein-Hawking entropy, coming from stringy corrections to Einstein-Hilbert action, also match subleading terms in the asymptotics of c(n).

- Given beautiful matching in the large charge limit Q → ∞, one may ask if subleading corrections to the Bekenstein-Hawking entropy, coming from stringy corrections to Einstein-Hilbert action, also match subleading terms in the asymptotics of c(n).
- More ambitiously, can one derive the exact microscopic degeneracies c_n from non-perturbative quantum gravity in the near-horizon geometry of BPS black holes ?

Sen, Dabholkar, Gomes, Murthy

- Given beautiful matching in the large charge limit Q → ∞, one may ask if subleading corrections to the Bekenstein-Hawking entropy, coming from stringy corrections to Einstein-Hilbert action, also match subleading terms in the asymptotics of c(n).
- More ambitiously, can one derive the exact microscopic degeneracies c_n from non-perturbative quantum gravity in the near-horizon geometry of BPS black holes ?

Sen, Dabholkar, Gomes, Murthy

• Alternatively, can one extend this counting to BPS black holes in string vacua with $\mathcal{N} < 8$ supersymmetries (ideally, $\mathcal{N} = 0$)? This is where connections to mock theta functions come about.

Manschot 2009, Dabholkar Murthy Zagier 2009-12

< D > < P > < P > < P > < P</pre>

- Given beautiful matching in the large charge limit Q → ∞, one may ask if subleading corrections to the Bekenstein-Hawking entropy, coming from stringy corrections to Einstein-Hilbert action, also match subleading terms in the asymptotics of c(n).
- More ambitiously, can one derive the exact microscopic degeneracies c_n from non-perturbative quantum gravity in the near-horizon geometry of BPS black holes ?

Sen, Dabholkar, Gomes, Murthy

• Alternatively, can one extend this counting to BPS black holes in string vacua with $\mathcal{N} < 8$ supersymmetries (ideally, $\mathcal{N} = 0$)? This is where connections to mock theta functions come about.

Manschot 2009, Dabholkar Murthy Zagier 2009-12

< ロ > < 同 > < 回 > < 回 >

 I will first discuss the N = 4 case, before turning to N = 2, more closely connected to my own work.

• In a visionary paper from 1996, *Dijkgraaf Verlinde*² proposed a magic formula claiming to give the exact number of micro-states of a generic 1/4-BPS black hole with charge $\gamma = (Q, P)$ in type II strings compactified on $K3 \times T^2$:

$$\Omega(\gamma) = \int_{\mathcal{C}} \mathrm{d}\rho \,\mathrm{d}\nu \,\mathrm{d}\sigma \,\frac{e^{\mathrm{i}\pi(\rho Q^2 + \sigma P^2 + \nu Q \cdot P)}}{\Phi_{10}(\rho, \nu, \sigma)} , \quad \tau = \begin{pmatrix} \rho & \nu \\ \nu & \sigma \end{pmatrix} \in \mathcal{H}_2$$

where Φ_{10} is Igusa's cusp form (the product of genus-two ThetaNullWerte with even characteristics).

• In a visionary paper from 1996, *Dijkgraaf Verlinde*² proposed a magic formula claiming to give the exact number of micro-states of a generic 1/4-BPS black hole with charge $\gamma = (Q, P)$ in type II strings compactified on $K3 \times T^2$:

$$\Omega(\gamma) = \int_{\mathcal{C}} \mathrm{d}\rho \,\mathrm{d}\nu \,\mathrm{d}\sigma \,\frac{e^{\mathrm{i}\pi(\rho Q^2 + \sigma P^2 + \nu Q \cdot P)}}{\Phi_{10}(\rho, \nu, \sigma)} , \quad \tau = \begin{pmatrix} \rho & \nu \\ \nu & \sigma \end{pmatrix} \in \mathcal{H}_2$$

where Φ_{10} is Igusa's cusp form (the product of genus-two ThetaNullWerte with even characteristics).

Due to the pole at v = 0 and its images under Sp(4, Z),

$$\Phi_{10}(\rho, \mathbf{v}, \sigma) \sim \mathbf{v}^2 \, \eta^{24}(\rho) \, \eta^{24}(\sigma) + \mathcal{O}(\mathbf{v}^4)$$

the RHS depends on the choice of integration contour. But the LHS is also ambiguous, due to wall-crossing phenomena.

For suitable values of the moduli *z*, there can exist stationary BPS solutions made of two black holes with charges γ_i = (Q_i, P_i), i = 1,2:

For suitable values of the moduli *z*, there can exist stationary BPS solutions made of two black holes with charges γ_i = (Q_i, P_i), i = 1,2:

• The distance between the two centers is fixed to be $r_{12} = \frac{\kappa}{\vartheta}$ where $2\kappa = Q_1P_2 - Q_2P_1$ is the Dirac-Schwinger-Zwanziger product, and ϑ^2 is proportional to the binding energy,

$$\frac{\vartheta^2}{2M} = M_1 + M_2 - M_{1+2} , \quad M = \frac{M_1 M_2}{M_1 + M_2}$$

The solution exists only in the chamber where $sgn(\vartheta) = sgn(\kappa)$.

Denef 2000

 The wall-crossing phenomenon at ∂ = 0 is captured by a simple supersymmetric Hamiltonian describing the relative motion of two mutually non-local particles,

$$H = \frac{1}{2M} \left(\vec{p} - \kappa \vec{A} \right)^2 + \frac{1}{2M} \left(\vartheta - \frac{\kappa}{r} \right)^2 - \frac{\kappa}{2M} \vec{B} \cdot \vec{\sigma} \otimes (1_2 - \sigma_3)$$

where $\vec{B} = \nabla \times \vec{A} = \frac{\vec{r}}{r^3}$ is a unit magnetic monopole at the origin.

D'Hoker Vinet 1985; Denef 2002; Avery Michelson 2007; BP 2015

 The wall-crossing phenomenon at
 θ = 0 is captured by a simple supersymmetric Hamiltonian describing the relative motion of two mutually non-local particles,

$$H = \frac{1}{2M} \left(\vec{p} - \kappa \vec{A} \right)^2 + \frac{1}{2M} \left(\vartheta - \frac{\kappa}{r} \right)^2 - \frac{\kappa}{2M} \vec{B} \cdot \vec{\sigma} \otimes (1_2 - \sigma_3)$$

where $\vec{B} = \nabla \times \vec{A} = \frac{\vec{r}}{r^3}$ is a unit magnetic monopole at the origin.

D'Hoker Vinet 1985; Denef 2002; Avery Michelson 2007; BP 2015

 Incidentally, *Harish Chandra (1948)* studied the similar problem of an electron in a magnetic monopole background, without the potential required for SUSY.

- - E - - - E

For κϑ > 0, there exists 2κ BPS bound states filling out a multiplet of spin j = κ - ½ under rotations (as well as non-BPS bound states which cancel in the index). For κϑ < 0, no bound states whatsoever. In either case, there is a continuum of scattering states.

10/20

For κθ > 0, there exists 2κ BPS bound states filling out a multiplet of spin j = κ - ½ under rotations (as well as non-BPS bound states which cancel in the index). For κθ < 0, no bound states whatsoever. In either case, there is a continuum of scattering states.

In *N* = 4 string vacua, composite 1/4-BPS states can only arise from pairs of 1/2-BPS states, whose electric and magnetic charges are collinear: (*Q_i*, *P_i*) = *h* · (*Q̃_i*, 0) with *h* ∈ *SL*(2, ℤ).

• The BPS index carried by the *i*-th component is given by the number of colored partitions of $N_i = \frac{1}{2}\tilde{Q}_i^2$:

$$\Omega(\gamma_i) = p_{24} \left(\frac{1}{2} \tilde{Q}_i^2
ight) , \quad \sum_{N \ge 0} p_{24}(N) q^{N-1} = \frac{1}{\eta^{24}(\tau)}$$
Dabhokar Harvey 1989

• The BPS index carried by the *i*-th component is given by the number of colored partitions of $N_i = \frac{1}{2}\tilde{Q}_i^2$:

$$\Omega(\gamma_i) = p_{24} \left(\frac{1}{2} \tilde{Q}_i^2 \right) , \quad \sum_{N \ge 0} p_{24}(N) q^{N-1} = \frac{1}{\eta^{24}(\tau)}$$
Dabhokar Harvey 1989

• Cheng and Verlinde (2007) devised a prescription for the contour C(z), in such a way that whenever *z* crosses a wall of marginal stability for a bound state of charge $\gamma_1 + \gamma_2$, $\Omega(\gamma, z)$ jumps by the required amount

$$\Delta\Omega(\gamma_{1}+\gamma_{2})=(-1)^{\langle\gamma_{1},\gamma_{2}\rangle}\langle\gamma_{1},\gamma_{2}\rangle\,\Omega(\gamma_{1})\,\Omega(\gamma_{2})$$

• The BPS index carried by the *i*-th component is given by the number of colored partitions of $N_i = \frac{1}{2}\tilde{Q}_i^2$:

$$\Omega(\gamma_i) = p_{24} \left(\frac{1}{2} \tilde{Q}_i^2 \right) , \quad \sum_{N \ge 0} p_{24}(N) q^{N-1} = \frac{1}{\eta^{24}(\tau)}$$
Dabhokar Harvey 1989

• Cheng and Verlinde (2007) devised a prescription for the contour C(z), in such a way that whenever *z* crosses a wall of marginal stability for a bound state of charge $\gamma_1 + \gamma_2$, $\Omega(\gamma, z)$ jumps by the required amount

$$\Delta\Omega(\gamma_1 + \gamma_2) = (-1)^{\langle \gamma_1, \gamma_2 \rangle} \langle \gamma_1, \gamma_2 \rangle \Omega(\gamma_1) \Omega(\gamma_2)$$

• The DVV formula was proven by D-brane techniques, or extracted from non-perturbative effective interaction in D = 3.

Shih Strominger Yin 2005, David Sen 2006; Bossard Cosnier Horeau BP 2016

Appell-Lerch sums and indefinite theta series I

 For the purpose of matching the Bekenstein-Hawking entropy with the number of micro-states, we need to subtract the contribution of all two-centered bound states. The latter can be expressed as

$$Z(
ho, m{v}, \sigma) = \sum_{m \ge 0} \begin{bmatrix} rac{p_{24}(m+1)}{\eta^{24}(
ho)} \mathcal{A}_m(
ho, m{v}) \end{bmatrix} e^{2\pi \mathrm{i} m \sigma}$$
Dabholkar Murthy Zagier (2012

where $A_m(\rho, v)$ is a Appell-Lerch sum, or indefinite theta series

$$\begin{aligned} \mathcal{A}_{m}(\rho, \mathbf{v}) &= \sum_{s \in \mathbb{Z}} \frac{q^{ms^{2}+s} e^{2\pi i(2ms+1)\mathbf{v}}}{(1-q^{s}e^{2\pi i\mathbf{v}})^{2}} \\ &= \frac{1}{2} \sum_{s,\ell \in \mathbb{Z}} \ell \left[\operatorname{sgn}\left(s + \frac{\operatorname{Im}\mathbf{v}}{\operatorname{Im}\rho}\right) + \operatorname{sgn}\ell \right] \, q^{ms^{2}+\ell s} e^{2\pi i(2ms+\ell)\mathbf{v}} \end{aligned}$$

Note that only terms with $\ell\left(s + \frac{\mathrm{Im}\nu}{\mathrm{Im}\rho}\right) > 0$ contribute, analogous to the condition $\kappa \vartheta > 0$ for stable bound states.

B. Pioline (LPTHE, Paris)

Black holes and mock modular forms

Appell-Lerch sums and indefinite theta series II

A_m(ρ, ν) is a basic example of a mock Jacobi forms. It can be written as a theta series of the form

$$\vartheta[\Phi](\rho, \boldsymbol{c} - \boldsymbol{b}\rho) = \rho_2^{-\lambda/2} \sum_{k \in \Lambda + \boldsymbol{b}} \Phi(k\sqrt{2\rho_2}) \, \boldsymbol{e}^{\mathrm{i}\pi\rho Q(k) + 2\pi\mathrm{i}(\boldsymbol{c}, k)}$$

with signature (1, 1) quadratic form $Q(k) = (k, k) = 2(ms^2 + \ell s)$ and kernel

$$\Phi(x) = \frac{1}{2}(C',x)\left(\operatorname{sgn}(C,x) - \operatorname{sgn}(C',x)\right)$$

where C = (0, -1), C' = (1, -2m) are two negative vectors with (C, C') < 0. The sum converges since it is supported inside the positive cone, but $\vartheta[\Phi](\rho, v)$ is not modular.

Appell-Lerch sums and indefinite theta series III

 In his PhD thesis, Zwegers explained that A_m(ρ, ν) is the holomorphic part of a real-analytic modular form, basically obtained by replacing

$$\operatorname{sgn}(\mathcal{C},k) \to \operatorname{Erf}\left(\sqrt{\frac{2\pi\rho_2}{-Q(\mathcal{C})}}(\mathcal{C},k)\right)$$

• In fact, it follows from *Vignéras 1978* that the modular completion is found by replacing the kernel $\Phi(x)$ by a smooth kernel $\widehat{\Phi}(x)$ with the same asymptotics as $|x| \to \infty$, and satisfying

$$\left[Q^{-1}(\partial_x) + 2\pi x \partial_x \right] \widehat{\Phi}(x) = 2\pi \lambda \, \widehat{\Phi}(x)$$

which ensures invariance under Poisson resummation.

Appell-Lerch sums and indefinite theta series IV

• In the case at hand one finds the modular completion

$$\begin{aligned} \widehat{\mathcal{A}}_{m}(\rho, \mathbf{v}) &= \sum_{\mathbf{s}, \ell \in \mathbb{Z}} q^{ms^{2} + \ell s} e^{2\pi i (2ms + \ell) \mathbf{v}} \\ &\times \left\{ \frac{\ell}{2} \left[\operatorname{sgn} \left(\mathbf{s} + \frac{\operatorname{Im} \mathbf{v}}{\operatorname{Im} \rho} \right) + \operatorname{Erf} \left(\ell \sqrt{\frac{\pi \rho_{2}}{m}} \right) + \frac{1}{2\pi} \sqrt{\frac{m}{\rho_{2}}} e^{-\frac{\pi \ell^{2} \rho_{2}}{m}} \right] \right\} \end{aligned}$$

• The difference $\widehat{\mathcal{A}}_m(\rho, v) - \mathcal{A}_m(\rho, v)$ is proportional to a non-holomorphic Eichler integral $\int_{-\bar{\rho}}^{i\infty} \frac{\vartheta_{m,\ell}(u) \, du}{(\rho+u)^{3/2}}$. Hence $\mathcal{A}_m(\rho, v)$ transforms under $SL(2, \mathbb{Z})$ with a non-homogeneous term of the form $\int_{-d/c}^{i\infty} \frac{\vartheta_{m,\ell}(u) \, du}{(\rho+u)^{3/2}}$.

Physics of the modular completion I

 Physically, the difference Erfx - sgn(x) = Erfc(|x|) can be understood as the contribution from the continuum of scattering states in the spectrum of the Hamiltonian H

$$\operatorname{Tr}_{\operatorname{cont}}(-1)^{F} e^{-\beta H} = -\frac{2q\vartheta}{\pi} \int_{k=|\vartheta|}^{\infty} \frac{e^{-\frac{\beta k^{2}}{2M}} dk}{k\sqrt{k^{2}-\vartheta^{2}}} = -q \operatorname{Erfc}\left(|\vartheta|\sqrt{\frac{\beta}{2M}}\right)$$

BP 2015, Murthy BP 2018

Physics of the modular completion II

 Since the sum of single-centered and two-centered contributions is an ordinary meromorphic Jacobi form, the single-centered piece itself must be a mock Jacobi form.

Dabholkar Murthy Zagier 2012

 In particular the detailed asymptotics of the number of micro-states associated to a single horizon deviates from the usual Hardy-Ramanujan-Cardy prediction.

Bringmann Manschot 2010; Bringmann Nazaroglu 2018

It would be very interesting to understand the origin of these corrections from the macroscopic side, i.e. from quantum gravity in AdS₂ × T₂ × K₃ × T².

< D > < P > < P > < P > < P</pre>

• In the remainder, I will briefly discuss that happens for BPS black holes in string vacua with $\mathcal{N} = 2$ supersymmetry, such as type II strings compactified on a genuine Calabi-Yau 3-fold.

Manschot 2009, ..., Alexandrov Banerjee Manschot BP 2016-18

• In the remainder, I will briefly discuss that happens for BPS black holes in string vacua with $\mathcal{N} = 2$ supersymmetry, such as type II strings compactified on a genuine Calabi-Yau 3-fold.

Manschot 2009, ..., Alexandrov Banerjee Manschot BP 2016-18

 Unlike the case with N ≥ 4 SUSY, there can now be black hole bound states involving an arbitrary number of constituents. The positions of the centers are constrained to satisfy

$$orall i, \quad \sum_{j \neq i} rac{\gamma_{ij}}{|ec r_i - ec r_j|} = c_i(z) \;, \qquad \sum_{i=1}^n c_i = 0$$

Denef 2000

where $\gamma_{ij} \equiv \langle \gamma_i, \gamma_j \rangle$ is the Dirac-Schwinger-Zwanziger product, and c_i are some real constants depending on the moduli *z*.

(口) (同) (三) (三) …

The space of solutions modulo translations is a 2n – 2 dimensional symplectic space (M_n, ω_n), with ω_n the restriction of the full symplectic form to the BPS sector. The number of configurational states, or Coulomb index g({γ_i, c_i}) is the Dirac index of (M_n, ω_n).

de Boer El Showk Messamah Van den Bleeken 2008

The space of solutions modulo translations is a 2n – 2 dimensional symplectic space (M_n, ω_n), with ω_n the restriction of the full symplectic form to the BPS sector. The number of configurational states, or Coulomb index g({γ_i, c_i}) is the Dirac index of (M_n, ω_n).

de Boer El Showk Messamah Van den Bleeken 2008

• In the vicinity of each center, the solution is indistinguishable from a spherically symmetric BPS black hole, in particular the moduli *z* asymptote to the attractor point $Z_*(\gamma_i)$. Ferrara Kallosh Strominger 1995

• Taking into account statistics, the contribution of all bound states is

$$\bar{\Omega}(\gamma, \mathbf{z}) = \sum_{n \ge 1} \sum_{\gamma = \gamma_1 + \dots + \gamma_n} \frac{g(\{\gamma_i, \mathbf{c}_i\})}{|\operatorname{Aut}(\{\gamma_i\})|} \prod_{i=1}^n \bar{\Omega}(\gamma_i)$$

where $|\operatorname{Aut}(\{\gamma_i\})|$ is a Boltzmann symmetry factor and $\overline{\Omega}(\gamma)$ is the attractor index. More precisely: $\overline{\Omega}(\gamma) = \sum_{d|\gamma} \frac{1}{d^2} \Omega(\frac{\gamma}{d}, z_*(\gamma))$

Manschot BP Sen 2011

Taking into account statistics, the contribution of all bound states is

$$\bar{\Omega}(\gamma, \mathbf{Z}) = \sum_{n \ge 1} \sum_{\gamma = \gamma_1 + \dots + \gamma_n} \frac{g(\{\gamma_i, \mathbf{C}_i\})}{|\operatorname{Aut}(\{\gamma_i\})|} \prod_{i=1}^n \bar{\Omega}(\gamma_i)$$

where $|\operatorname{Aut}(\{\gamma_i\})|$ is a Boltzmann symmetry factor and $\overline{\Omega}(\gamma)$ is the attractor index. More precisely: $\overline{\Omega}(\gamma) = \sum_{d|\gamma} \frac{1}{d^2} \Omega(\frac{\gamma}{d}, z_*(\gamma))$

Manschot BP Sen 2011

 One way to compute the Coulomb index g({γ_i, c_i}) is to localize with respect to rotations around a fixed axis: fixed points are collinear multi-black hole configurations, which can be enumerated. The supersymmetric n-body problem is solvable !

Manschot BP Sen 2011-13

・ 同 ト ・ ヨ ト ・ ヨ ト

• Another way is to use the attractor flow conjecture, which postulates that every bound state can be decomposed as a hierarchical sequence of two-center bound states:

Denef '00; Denef Green Raugas '01; Denef Moore'07

 Along each edge, the moduli flow as in a spherically symmetric black hole, until they hit the wall of marginal stability for the decay

 $\gamma_{\mathbf{v}} \to \gamma_{\mathbf{L}(\mathbf{v})} + \gamma_{\mathbf{R}(\mathbf{v})}:$

 Along each edge, the moduli flow as in a spherically symmetric black hole, until they hit the wall of marginal stability for the decay γ_ν → γ_{L(ν)} + γ_{B(ν)}:

 Effectively, the stability parameters c_{v,i} at each vertex follow the discrete attractor flow (Alexandrov BP '18)

$$c_{\mathbf{v},i} = c_{p(\mathbf{v}),i} - \frac{\langle \gamma_{\mathbf{v}}, \gamma_{i} \rangle}{\langle \gamma_{\mathbf{v}}, \gamma_{L(\mathbf{v})} \rangle} \sum_{j=1}^{n} m_{L(\mathbf{v})}^{j} c_{p(\mathbf{v}),j}$$

where m_v^i are the components of $\gamma_v = \sum_{i=1}^n m_v^i \gamma_i$. This ensures $\sum m_{L(v)}^i c_{v,i} = \sum m_{R(v)}^i c_{v,i} = 0$ for each of the two partitions.

• The contribution of the flow tree *T* to the index $g(\{\gamma_i, c_i\})$ is then

$$\frac{(-1)^{n-1}}{2^{n-1}}\prod_{\mathbf{v}\in\mathbf{V}_{T}}\langle\gamma_{L(\mathbf{v})},\gamma_{R(\mathbf{v})}\rangle\Big[\mathrm{sgn}\left(\sum_{i}m_{L(\mathbf{v})}^{i}c_{\mathbf{v},i}\right)+\mathrm{sgn}\langle\gamma_{L(\mathbf{v})},\gamma_{R(\mathbf{v})}\rangle\Big]$$

→ Ξ →

• The contribution of the flow tree T to the index $g(\{\gamma_i, c_i\})$ is then

$$\frac{(-1)^{n-1}}{2^{n-1}}\prod_{\nu\in V_{T}}\langle\gamma_{L(\nu)},\gamma_{R(\nu)}\rangle\Big[\operatorname{sgn}\left(\sum_{i}m_{L(\nu)}^{i}c_{\nu,i}\right)+\operatorname{sgn}\langle\gamma_{L(\nu)},\gamma_{R(\nu)}\rangle\Big]$$

 Skipping over details, it is not hard to imagine that the modularity of generating functions of the attractor indices Ω(α) boils down to studying indefinite theta series ϑ[Φ_r] with kernel

$$\Phi_r(x) = \frac{1}{2^r} \prod_{i=1}^r (C_i'', x) \left[\operatorname{sgn}(C_i, x) - \operatorname{sgn}(C_i', x) \right]$$

where x is summed over a signature (n - r - r) lattice Λ .

Alexandrov Banerjee Manschot BP 2016-17, Alexandrov BP 2018

< ロ > < 同 > < 回 > < 回 > .

 The convergence of such indefinite theta series requires certain incidence conditions on the negative vectors C_i, C'_i which are not so easy to state, but are guaranteed by physics.

- The convergence of such indefinite theta series requires certain incidence conditions on the negative vectors C_i, C'_i which are not so easy to state, but are guaranteed by physics.
- To characterize the modular anomaly of ∂[Φ_r], it suffices to construct its modular completion ∂[Φ̂_r], which amounts to finding a smooth solution Φ̂_r(x) of Vignéras' equation which asymptotes to Φ(x) as |x| → ∞:

$$\left[Q^{-1}(\partial_x)+2\pi x\partial_x\right]\widehat{\Phi}_r(x)=2\pi\lambda\,\widehat{\Phi}_r(x)$$

with $\lambda = \deg(\Phi_r)$.

• Expanding out the product, and ignoring the prefactor $\prod_{i=1}^{r} (C_i'', x)$, it suffices to find solutions which asymptote to $\prod_{i=1}^{r} \operatorname{sgn}(C_i, x)$. Fortunately, convolution with a Gaussian does the job:

$$E_r(C_1,\ldots,C_r;x) = \int_{\langle C_1,\ldots,C_r \rangle} \mathrm{d}^r y \, e^{\pi Q(y-x_+)} \prod_{i=1}^r \mathrm{sgn}(C_i,y)$$

where x_+ is the orthogonal projection on the plane $\langle C_1, \ldots, C_r \rangle$.

For r = 1, this reduces to the standard error function $E_1(C, x) =$ $\operatorname{Erf}(\sqrt{\pi}(C, x)/\sqrt{-Q(C)})$. For r = 2:

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016; Zagier Zwegers ca. 2005

Acting with the shadow operator ρ²₂∂_{ρ̄} produces another theta series with kernel

$$x \partial_x E_r(C_1, \dots, C_r; x) = e^{\frac{\pi(C_1, x)^2}{Q(C_1)}} E_{r-1}(C_{2\perp 1}, \dots, C_{r\perp 1}; x) + \text{cycl.}$$

where $C_{i\perp j} = C_i - \frac{(C_i, C_j)}{Q(C_j)} C_j$

Acting with the shadow operator ρ²₂∂_{ρ̄} produces another theta series with kernel

$$x \partial_x E_r(C_1, \ldots, C_r; x) = e^{\frac{\pi(C_1, x)^2}{Q(C_1)}} E_{r-1}(C_{2\perp 1}, \ldots, C_{r\perp 1}; x) + \text{cycl.}$$

where $C_{i\perp j} = C_i - \frac{(C_i, C_j)}{Q(C_j)}C_j$

It follows that ϑ[Φ̂_r - Φ_r] is a non-holomorphic Eichler integral of a theta series ϑ[Ψ_{r-1}] of signature (n - r + 1, r - 1), and therefore that the modular anomaly of ϑ[Φ_r] is a non-holomorphic period integral of ϑ[Ψ_{r-1}].

Acting with the shadow operator ρ²₂∂_{ρ̄} produces another theta series with kernel

$$x\partial_x E_r(C_1,\ldots,C_r;x) = e^{\frac{\pi(C_1,x)^2}{Q(C_1)}} E_{r-1}(C_{2\perp 1},\ldots,C_{r\perp 1};x) + \text{cycl.}$$

where $C_{i\perp j} = C_i - \frac{(C_i, C_j)}{Q(C_j)}C_j$

- It follows that ϑ[Φ̂_r Φ_r] is a non-holomorphic Eichler integral of a theta series ϑ[Ψ_{r-1}] of signature (n r + 1, r 1), and therefore that the modular anomaly of ϑ[Φ_r] is a non-holomorphic period integral of ϑ[Ψ_{r-1}].
- The holomorphic theta series $\vartheta[\Phi_r]$ may be viewed as mock modular form of depth *r*, with Ramanujan's mock theta functions corresponding to r = 1.

• *Kudla Funke (2016-17)* have given a nice conceptual understanding of our completed indefinite theta series:

$$\vartheta[\widehat{\Phi}_r] = \int_{\mathcal{C}(\{C_i, C_i'\})} \vartheta_{KM}$$

where $\vartheta_{KM} \in H^r(G_{n-r,r})$ is the Kudla-Milsson theta form on $G_{n-r,r}$, the Grassmannian of negative *r*-planes inside \mathbb{R}^n , and $\mathcal{C}(\{C_i, C'_i\})$ is the image of the map

$$\begin{array}{lll} [0,1]^r & \to & G_{n-r,r} \\ (s_1,\ldots,s_r) & \mapsto & Span[s_1C_1+(1-s_1)C_1',\ldots,s_rC_r+(1-s_r)C_r')] \end{array}$$

• *Kudla Funke (2016-17)* have given a nice conceptual understanding of our completed indefinite theta series:

$$\vartheta[\widehat{\Phi}_r] = \int_{\mathcal{C}(\{C_i, C_i'\})} \vartheta_{KM}$$

where $\vartheta_{KM} \in H^r(G_{n-r,r})$ is the Kudla-Milsson theta form on $G_{n-r,r}$, the Grassmannian of negative *r*-planes inside \mathbb{R}^n , and $\mathcal{C}(\{C_i, C'_i\})$ is the image of the map

$$\begin{bmatrix} [0,1]^r & \to & G_{n-r,r} \\ (s_1,\ldots,s_r) & \mapsto & Span[s_1C_1 + (1-s_1)C'_1,\ldots,s_rC_r + (1-s_r)C'_r)] \end{bmatrix}$$

The shadow of ϑ[Φ_r] is a sum of theta series associated to the faces of the *r*-cube.

Mock modularity of Donaldson-Thomas invariants

• By considering a certain protected coupling in the low energy effective action of type II strings compactified on a CY 3-fold \mathcal{X} , and enforcing invariance under S-duality, we predict that generating functions $h_p(\tau)$ of generalized Donaldson-Thomas invariants $\Omega_*(p,q)$ supported on a fixed divisor class $p \in H_4(\mathcal{X})$ admit a non-holomorphic modular completion of the form

$$\widehat{h}_{p}(\tau) = h_{p}(\tau) + \sum_{n=2}^{\infty} \sum_{\substack{p = \sum_{i=1}^{n} p_{i}}} \vartheta_{p_{1},\dots,p_{n}}(\tau,\bar{\tau}) \prod_{i=1}^{n} h_{p_{i}}(\tau)$$

where $\vartheta_{p_1,...,p_n}(\tau, \bar{\tau})$ is an indefinite theta series of signature $(n-1)(b_2-1,1)$. Can this be used to compute $h_p(\tau)$?

Alexandrov BP 2018

• A very similar structure arises for higher rank Vafa-Witten invariants of 4-manifolds with $b_2 = 1$.

Manschot 2017; Alexandrov BP Manschot, in progress

Conclusion

Thank you for your attention !

B. Pioline (LPTHE, Paris)

Black holes and mock modular forms

э

20 / 20