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Precision counting of BPS black holes I

Since Strominger and Vafa’s seminal 1995 work, a lot of work has
gone into performing precision counting of BPS black hole
micro-states in various string vacua with extended SUSY, and
detailed comparison with macroscopic supergravity predictions.
For string vacua with 16 or 32 supercharges, exact degeneracies
are given by Fourier coefficients of (classical, or Jacobi, or Siegel)
modular forms, giving access to their large charge behavior, and
enabling detailed comparison with the Bekenstein-Hawking
formula and its refinements.
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Precision counting of BPS black holes II

An important complication in N ≤ 4 string vacua in D = 4 is that
multi-centered black hole solutions exist, and correspondingly, the
spectrum of BPS states is subject to wall-crossing. Microstates of
single-centered black holes are counted by mock modular forms,
which affects the growth of Fourier coefficients.

Dabholkar Murthy Zagier 2012

In string vacua with 8 supersymmetries, such as Calabi-Yau
vacua, precision counting is much more difficult, as it involves
detailed properties of the internal manifold (Gromov-Witten
invariants, generalized Donaldson-Thomas invariants, etc), and
complicated structure of walls of marginal stability.

Maldacena Strominger Witten 1998; Denef 2000; Denef Moore 2007
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Counting black holes via protected couplings I

For several years, I have advocated to approach the problem of
precision counting of BPS states in D + 1-dimensional string vacua
by considering protected couplings in the low energy effective
action in D dimensions after compactifying on a circle of radius R.

Gunaydin Neitzke BP Waldron 2005

Indeed, a finite energy stationary solution in dimension D + 1
produce a finite action solution in D Euclidean dimensions. States
breaking k supercharges lead to instantons with k fermionic
zero-modes, contributing vertices with more than k fermions (or
k/2 derivatives) in the LEEA.
The simplest example of this phenomenon are ’t Hooft-Polyakov
monopoles in D = 4, which induce a scalar potential in 3D QED
with compact U(1), explaining confinement [Polyakov 1977].
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Counting black holes via protected couplings II
Couplings in the LEEA in dimension D are functions f (D)(R, za, φI)
of the radius R, moduli za in dimension D + 1, and holonomies φI

of the D + 1-dimensional gauge fields along the circle:

MD = R+ ×MD+1 × T

Any coupling has a Fourier expansion w.r.t the torus T ,

f (D)(R, za, ϕI) =
∑

Q∈Λ+

FQ(R, za) e2πi〈Q,φ〉 + cc

where Λ+ is a positive cone in the charge lattice Λ.
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Counting black holes via protected couplings III
For BPS saturated couplings, and for Q primitive, FQ(R, za) is
expected to receive contributions from BPS states of charge Q in
dimension D + 1, exponentially suppressed as R →∞ and
weighted by a suitable BPS index Ωk (Q), or helicity supertrace,

FQ(R, za) = Ωk (Q)KQ(R, za) , KQ(R, za) ∼ e−2πRM(Q)

If Q is not primitive, i.e. Q =
∑n

i=1 Qi with Qi ∈ Λ+,n > 1, Ωk (Q)
may jump as a function of za, but contributions from multi-particle
states of charge Qi ensure that FQ(R, za) is smooth across walls
of marginal stability.

Alexandrov Moore Neitzke BP 2013
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Counting black holes via protected couplings IV
Thus, f (D)(R, za, ϕI) plays the rôle of a thermodynamical black
hole partition function at temperature T = 1/R, chemical
potentials ϕI , for fixed values za ∈MD+1 of the moduli at spatial
infinity.
In contrast, the constant term F0(R, za) typically grows as a power
of R as R →∞, and matches terms in the LEEA in dimension
D + 1.
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Counting black holes via protected couplings V
For D + 1 = 4, the moduli spaceM3 also includes the NUT
potential σ, dual to the KK gauge field, and valued in a circle
bundle over T . The Fourier expansion includes non-Abelian
Fourier coefficients

f (3)(R, za, ϕI , σ) =
∑
Q∈Λ

FQ(R, za) e2πi〈Q,φ〉 +
∑
k 6=0

Fk (R, za, φI)eiπkσ

where Fk (R, za, φI) is a section of a circle bundle Lk over T . It
receives contributions from Taub-NUT instantons of charge k ,
suppressed as e−πR2/`2P as R →∞.
In that case, the black hole partition function is the constant term
of f (3)(R, za, ϕI , σ) with respect to σ.
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Counting black holes via protected couplings VI

For vacua with N ≥ 4 supersymmetries, the moduli space is a
symmetric spaceMD = GD/KD, exact at tree-level, and f (D) is an
automorphic function under the U-duality group, an arithmetic
subgroup GD(Z) ⊂ GD.

Hull Townsend 1994; Witten 1995

BPS indices in dimension D + 1 thus arise as Fourier coefficients
FQ of an automorphic form under GD(Z). They are automatically
invariant under the U-duality group GD+1(Z) in dimension D + 1,
while GD(Z) plays the role of a spectrum generating symmetry.

Breitenlohner Mason Gibbons 1988; Gunaydin Neitzke BP Waldron 2005

In the remainder of this talk, I will discuss protected couplings in
D = 3 string vacua with 32 and 16 supercharges, and
demonstrate their relationship to BPS indices in D = 4.
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Outline

1 From BPS indices to BPS-saturated couplings

2 Protected couplings in N = 8 string vacua

3 Protected couplings in N = 4 string vacua
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Protected couplings in N = 8 string vacua I

In type II string compactified on a torus T d , the LEEA is expected
to be invariant under the U-duality group Ed+1(Z), which extends
both the T-duality group SO(d ,d ,Z) and global diffeomorphisms
of the M-theory torus T d+1.

◦2
|

◦1 − ◦3 − ◦4 − ◦5 − · · ·− ◦d+1

Supersymmetric Ward identities and known perturbative
contributions uniquely determine the R4 and ∇4R4 couplings to
be given by Eisenstein series,

f (D)

R4 = 2ζ(3) EEd+1(Z)
3
2 Λ1

, f (D)

∇4R4 = ζ(5) EEd+1(Z)
5
2 Λ1
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Protected couplings in N = 8 string vacua II

In the limit where a circle decompactifies, one expects these
couplings to receive contributions from 1/2-BPS and 1/4-BPS
states in dimension D + 1, respectively, weighted by the helicity
supertraces Ω8(Q) and Ω12(Q), where

Ωn(Q) =
(−1)n/2

n!
Tr′Q(−1)2J3(2J3)n

In the perturbative spectrum of type II strings compactified on T d ,
1 1/2-BPS states arise from ground states N = N̄ = miw i = 0 and

have Ω8 = 1;
2 1/4-BPS states arise from N = miw i > 0, N̄ = 0, or N̄ = −miw i > 0,

N = 0. There is an exponentially large number of 1/4-BPS states,
but large cancellations in the helicity supertrace: Ω12 = σ3(N).
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Protected couplings in N = 8 string vacua III
More generally, for general primitive charges Q,

Ω8(Q) =

{
1 (Q ×Q = 0)

0 (Q ×Q 6= 0)

Ω12(Q) =

{
σ3[gcd(Q ×Q)] (I′4(Q) = 0,Q ×Q 6= 0)

0 (I′4(Q) 6= 0)

where Q ×Q is the Jordan quadratic product and I′4(Q) is the
Freudenthal cubic product, which coincides with the gradient of
the quartic invariant I4(Q).

Does this match the large radius expansion of f (D)

R4 and f (D)

∇4R4 ?
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Protected couplings in N = 8 string vacua IV

The Fourier expansion of general Eisenstein series with respect to
non-minimal parabolic subgroups is not known in general, but here
it can be obtained by analyzing the decompactification limit of the
perturbative terms, and covariantizing the result under U-duality.
For the R4 coupling, the result is known from previous work:

f (D)

R4 =R
6

8−d

(
f (D+1)

R4 + 4π ξ(d − 2)Rd−3

+ 4πR
d−3

2

′∑
Q×Q=0

σd−3(Q)
K d−3

2
(2πR|Z (Q)|)

|Z (Q)|
d−3

2
e2πi〈Q,a〉

)

exhibiting the expected contributions of 1/2-BPS states with mass
M = |Z (Q)|, Ω8 = 1 (for Q primitive). NB: ξ(s) ≡ π−

s
2 Γ(s/2) ζ(s).

Kazhdan BP Waldron 2001; Kazhdan Polishchuk 2002;

BP 2010; Green Russo Vanhove 2010
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Protected couplings in N = 8 string vacua V

For the ∇4R4 coupling,

f (D)

∇4R4 = R
10

8−d

(
f (D+1)

∇4R4 + 2ξ(d − 4)Rd−5 f (D+1)

R4 + 8πξ(4) ξ(d + 2)Rd+1

+16πξ(4)R
d+1

2

′∑
Q×Q=0

σd+1(Q)
K d+1

2
(2πR|Z (Q)|)

|Z (Q)|
d+1

2
e2πi〈Q,a〉

+16πξ(3)R
d−5

2

′∑
Q×Q=0

σd−5(Q) EEd−1(Z)
3
2 Λ1

(gQ)

(gcd Q)
6

d−10

K d−5
2

(2πR|Z (Q)|)

|Z (Q)|
d−5

2 + 6
10−d

e2πi〈Q,a〉

+16πRd−2
∑

I′4(Q)=0,
Q×Q 6=0

∑
n|Q

nd+1σ3(Q×Q
n2 )

B d−2
2 , 3

2
(R2|Z (Q)|2,R2

√
∆(Q))

∆(Q)
3
4

e2πi〈Q,a〉

)
+ . . .

+ . . .
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Protected couplings in N = 8 string vacua VI
The result exhibits contributions from 1/2-BPS states with
Q ×Q = 0, massM1/2 = |Z (Q)|, weighted by divisor sums and
by Eisenstein series for the stabilizer Ed−1(Z) ⊂ Ed (Z) of the
charge vector Q;
In addition, there are contributions from 1/4-BPS states with
Q ×Q 6= 0, I′4(Q) = 0, with massM1/4 =

√
|Z (Q)|2 + 2

√
∆(Q),

as follows from the asymptotics of the "double Bessel function"

Bs,ν(x , y) =

∫ ∞
0

dt
t1+s e−πt−πx

t Kν(2πy/t) ∼ e−2π
√

x+2y

2y1/2(x+2y)s/2

For D ≥ 4, the previous result is complete. For D = 3, it misses
non-Abelian Fourier coefficients. For s 6= 5

2 , additional Fourier
coefficients with I′4(Q) 6= 0 will appear.
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Protected couplings in N = 8 string vacua VII
Similarly, one may expect that the ∇6R4 coupling in dimension D
exhibits contributions from 1/8-states, weighted by the helicity
supertrace Ω14(Q).
For Q primitive, Ω14(Q) is given by a Fourier coefficient of a weak
Jacobi form,

Ω14(Q) = c(I4(Q)) , − θ2
1(z,τ)

η6 =
∑
N,`

c(4N − `2)qNy `

At large Q, Ω14(Q) ∼ eπ
√

I4(Q), in agreement with the
Bekenstein-Hawking entropy formula.

Maldacena Moore Strominger 1999; Shih Strominger Yin 2005; BP 2005
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Protected couplings in N = 8 string vacua VIII
It is clear however that f (D)

∇6R4 is not simply an Eisenstein series,
indeed SUSY Ward identities require(

∆Ed+1 −
6(D − 6)(14− D)

D − 2

)
f (D)

∇6R4 = −[f (D)

R4 ]2

up to additional linear source terms in dimension D = 4,5,6
where the local and non-local parts of the 1PI effective action mix.

Green Vanhove 2005, Green Russo Vanhove 2010; BP 2015; Bossard Verschinin 2015
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Protected couplings in N = 8 string vacua IX
Based on these Ward identities and the known perturbative
contributions up to 3 loops, one can show that the exact ∇6R4

coupling for D = 6 should be given by

f (6)

∇6R4 = π R.N.
∫
F2

dµ2 Γ5,5,2 ϕKZ +
8

189
ESO(5,5,Z)

4Λ5

where Γ5,5,2 is the partition function of the ‘non-perturbative’
Narain lattice at genus-two, and ϕKZ is the Kawazumi-Zhang
invariant, which appears naturally in the integrand of the two-loop
∇6R4 coupling.

d’Hoker Green 2014; BP 2015

Another non-perturbative completion has been proposed, which
involves a two-loop amplitude in exceptional field theory...

Bossard Kleinschmidt 2015
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Protected couplings in N = 8 string vacua X

The large radius expansion is in principle computable from the
Fourier expansion of ϕKZ , which follows from the theta lift
representation

ϕKZ (Ω) = −1
2

∫
F1

dµ1

[
Γ

(0)
3,2,1Dτh0 + Γ

(1)
3,2,1Dτh1

]
where hi are the coefficients of the theta series decomposition

θ2
1(z,τ)

η6 = h0(τ) θ3(2z,2τ) + h1(τ) θ2(2z,2τ) .
BP 2015

Remarkably, ϕKZ (Ω) knows about degeneracies of 1/8-BPS black
holes ! More work is needed to make this connection precise.
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Protected couplings in N = 4 string vacua I

in D = 4 string vacua with 16 supercharges, the moduli space is

M4 =
SL(2)

U(1)
× O(r − 6,6)

O(r − 6)×O(6)

The highest rank r = 28 is attained in Het/T 6 or its dual type
II/K 3× T 2. A large set of CHL models with reduced rank can be
obtained as freely acting ZN orbifolds. The SL(2)/U(1) factor
corresponds to the heterotic axiodilaton S = a + i/g2

4 .

Chaudhury Hockney Lykken 1995

These 4D models are believed to be invariant under G4(Z), an
arithmetic subgroup of SL(2)×O(r − 6,6) preserving the charge
lattice Λe ⊕ Λm (extended by "Fricke S-duality", which mixes the
two factors)

Font Ibanez Lüst Quevedo 1990; Sen 1994; Persson Volpato 2015
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Protected couplings in N = 4 string vacua II
Degeneracies of 1/4-BPS dyons are given by Fourier coefficients
of a meromorphic Siegel modular form of weight −k = 8−r

2 :

Ω6(Q,P, za) = (−1)Q·P
∫
C

dρdσdv
eiπ(ρQ2+σP2+2vQ·P)

Φk (ρ, σ, v)

where C is a suitable contour, depending on za ∈M4.

Dijkgraaf Verlinde Verlinde 1996; David Jatkar Sen 2005-06; Cheng Verlinde 2007

Across walls of marginal stability, Ω6(Q,P, za) jumps due to poles
of 1/Φk on the separating divisor v = 0 (and its images),
corresponding to bound states of two 1/2-BPS dyons.
In particular, the BPS indices Ω4(Q,0) and Ω4(0,P) for purely
electric or magnetic states are Fourier coefficients of 1/f1(ρ) and
1/f2(σ), such that Φk (ρ, σ, v) ∼ v2f1(ρ)f2(σ) as v → 0.
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Protected couplings in N = 4 string vacua III
For r = 28, i.e. heterotic on T 6 or type II string on K 3× T 2, Φ10 is
the weight 10 Igusa cusp form under Sp(4,Z), and f1 = f2 = 1/∆.
Invariance under G4(Z) = SL(2,Z)×O(Λe) is manifest, thanks to
SL(2,Z) ⊂ Sp(4,Z), but the physical origin of the Sp(4,Z)
symmetry is obscure.
Gaiotto and Dabholkar proposed that 1/4-BPS dyons can be
interpreted as heterotic strings wrapped on a genus-two Riemann
surface Σ2, or M5-branes wrapped on K 3× Σ2, but left many
questions unanswered (e.g. why higher genera are not allowed).

Gaiotto 2005; Dabholkar Gaiotto 2006
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Protected couplings in N = 4 string vacua IV
After compactification on a circle, the moduli space extends to

M3 =
O(r − 4,8)

O(r − 4)×O(8)
⊃

{
R+

R ×M4 × R2r+1

R+
1/g2

3
× O(r−5,7)

O(r−5)×O(7) × Rr+2

and the U-duality group enhances to an arithmetic subgroup
G3(Z) ⊂ O(r − 4,8), containing both G4(Z) and the T-duality
group in D = 3.

Markus Schwarz 1983, Sen 1994

For r = 28, G3(Z) is the automorphism group of the
non-perturbative Narain lattice Λ̃ = Λe ⊕ Λ2,2. For CHL orbifolds,
noting that Λe = Λ∗m = Λm[N], it is natural to propose that
Λ̃ = Λm ⊕ Λ1,1 ⊕ Λ1,1[N].

Cosnier-Horeau, Bossard, BP, 2017
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Protected couplings in N = 4 string vacua V
The 4-derivative and 6-derivative couplings in the LEEA

Fabcd (Φ)∇Φa∇Φb∇Φc∇Φd + Gab,cd (Φ)∇(∇Φa∇Φb)∇(∇Φc∇Φd )

are expected to satisfy non-renormalization theorems and get
contributions from 1/2-BPS and 1/4-BPS instantons, respectively.
Indeed, they satisfy supersymmetric Ward identities

D2
ef Fabcd = c1 δef Fabcd + c2 δe)(a Fbcd)(f + c3 δ(ab Fcd)ef ,

D2
ef Gab,cd =c4δef Gab,cd + c5

[
δe)(aGb)(f ,cd + δe)(cGd)(f ,ab

]
+c6

[
δab Gef ,cd + δcd Gef ,ab − 2δa)(c Gef ,d)(b

]
+c7

[
Fabk(e F k

f )cd − Fc)ka(e F k
f )b(d

]
,

D[e
[êDf ]

f̂ ]Fabcd = 0 , D[e
[êDf

f̂Dg]
ĝ]Gab,cd = 0 .

Bossard, Cosnier-Horeau, BP, 2016
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Exact (∇Φ)4 coupling in N = 4 string vacua I

The coupling (∇Φ)4 is a 3D version of the F 4 and R2 couplings
which were analyzed in the past. The F 4 coupling is one-loop
exact on the heterotic side in D ≥ 4, while the R2 coupling is
one-loop exact on the type II side in D = 4.

Lerche Nilsson Schellekens Warner 1988; Harvey Moore 1996

Requiring invariance under U-duality, it is natural to conjecture
that the exact coefficient of the (∇Φ)4 in D = 3 is [Obers BP 2000]

F (r−4,8)

abcd =

∫
F1(N)

dρ1dρ2

ρ 2
2

Γr−4,8,1[Pabcd ]

∆k+2

where ∆k+2 is a weight k + 2 modular form, and Γr−4,8 is the
Narain partition function of the lattice Λ̃ with polynomial insertion,

Γr−4,8[Pabcd ] = ρ 4
2

∑
Q∈Λ̃

Pabcd (QL)eiπQ2
Lρ−iπQ2

R ρ̄

Obers BP, 2000
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Exact (∇Φ)4 coupling in N = 4 string vacua II

This Ansatz satisfies the Ward identities and has the correct
perturbative expansion on the heterotic side:

F (r−4,8)

αβγδ =
c0

16πg 4
3
δ(αβδγδ) +

F (r−5,7)
αβγδ

g 2
3

+ 4
3∑
`=1

′∑
Q∈Λr−5,7

P(`)
αβγδ

×c̄(Q) g2`−9
3 |

√
2QR|`−

7
2 K

`−7
2

(
2π
g 2

3
|
√

2QR|
)

e−2πiaIQI

exhibiting the tree-level and one-loop contribution and an infinite
sum of NS5-brane and KK5-brane instantons. Here P(`)

αβγδ are
degree 6− 2k polynomials in QL, and

c̄(Q) =
∑
d |Q

d c
(
− |Q|

2

2d

)
,

1
∆k

=
∑
N≥1

c(N)qN .
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Exact (∇Φ)4 coupling in N = 4 string vacua III
In the large radius limit, one finds instead

F (r−4,8)

αβγδ =R2
(

fR2(S) δ(αβδγδ) + F (r−6,6)

αβγδ

)
+ 4

3∑
`=1

R5−`
′∑

Q̃∈Λr−6,6

′∑
j,p

c
(
− |Q̃|

2

2

)
P(`)
αβγδK`− 7

2

(
2πR|pS+j|√

S2
|
√

2Q̃R|
)

e−2πi(ja1+pa2)·Q̃ +O(e−R2
)

exhibiting the exact R2 and F 4 couplings in D = 4, along with
O(e−R) terms from 1/2-BPS dyons with charge (Q,P) = (j ,p)Q̃,
with measure

µ(Q,P) =
∑

d |(Q,P)

c
(
− gcd(Q2,P2,Q·P)

2d2

) primitive
= Ω4(Q,P) .

The non-Abelian O(e−R2
) terms come from Taub-NUT instantons.
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Exact (∇Φ)4 coupling in N = 4 string vacua IV

These expansions are easily obtained using the unfolding trick: for
Γp,q → Γp−1,q−1, the sum in Γ1,1 = R

∑
(m̃,n) e−πR2|m̃−nρ|2/ρ2 can be

restricted to n = 0 provided it is integrated on the strip S = H1/Z.
For Γp,q → Γp−2,q−2, the sum over (dual momenta,windings) in Γ2,2
has three orbits:

(
m̃1 n1
m̃2 n2

)
/SL(2,Z)

= {
(

0 0
0 0

)
;

(
j 0
p 0

)
(j ,p) 6= (0,0)

;

(
j k
p 0

)
0 ≤ j < k ,p 6= 0

}

integrated over F1,H1/Z,2H1, respectively. These produce the
powerlike, Abelian and non-Abelian Fourier coefficients,
respectively.

Dixon Kaplunovsky Louis 1990; Harvey Moore 1995
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua I

Similarly, it is natural to conjecture that the exact coefficient of the
∇2(∇Φ)4 in D = 3 is given by

G(r−4,8)

ab,cd =

∫
F2(N)

d3Ω1d3Ω2

|Ω2|3
Γr−4,8,2[Rab,cd ]

Φk

where Φk is a cusp form of weight k under a suitable level N
subgroup of the Siegel modular group, and Γ24,8,2 is the
genus-two partition function of the non pert. Narain lattice Λ̃,

Γ24,8,2[Rab,cd ] = |Ω2|4
∑

Qi∈Λ̃⊗2

Rab,cd (QL) eiπ(Qi
LΩij Q

j
L−Qi

RΩ̄ij Q
j
R)

Again, this ansatz satisfies the correct Ward identity, including the
quadratic source term originating from the pole of 1/Φk in the
separating degeneration.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua II

At weak heterotic coupling, it reproduces the known perturbative
contributions,

G(r−4,8)

αβ,γδ =
G(r−5,7)

αβ,γδ

g 4
3
−
δαβG(r−5,7)

γδ +δγδG
(r−5,7)

αβ −2δγ)(αG(r−5,7)

β)(δ

12g 6
3

− 1
2πg 8

3

[
δαβδγδ − δα(γδδ)β

]
+O(e−1/g2

3 )

exhibiting the two-loop [d’Hoker Phong 2005], one-loop [Sakai Tanii 1987],

G(r−5,7)

ab =

∫
F1(N)

dρ1dρ2

ρ 2
2

Ê2 Γr−5,7[Pab]

∆k
,

tree-level, and NS5/KK5-brane instantons.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua III
In the large radius limit, we find instead, schematically,

G(r−4,8)

αβ,γδ =R4
[
G(r−6,6)

αβ,γδ − fR2(S)
(
δαβG(r−6,6)

γδ + δγδG
(r−6,6)

αβ − 2δγ)(αG(r−6,6)

β)(δ

)
+[fR2(S)]2(δαβδγδ − δα(γδδ)β

]
+ G(1)

αβ,γδ + G(2)
αβ,γδ + G(KKM)

αβ,γδ

exhibiting the exact ∇2F 4 and R2F 2 couplings in D = 4.
The Abelian Fourier coefficients G(1) and G(2) are both O(e−R),
and come from 1/2-BPS and 1/4-BPS states in D = 4.

The non-Abelian Fourier coefficient G(KKM) is O(e−R2
) and comes

from Taub-NUT instantons.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua IV
These expansions follow again from the unfolding trick: for
Γp,q → Γp−1,q−1, the sum over non-zero (dual momenta,windings)
unfolds onto R+ ×F1(N)× T 2+1.
For Γp,q → Γp−2,q−2, the sum has (for N = 1) 4 orbits:0,

(
0 m1 0 0
0 m2 0 0

)
(m1,m2) 6= (0,0)

,

(
k 0 0 0
j p 0 0

)
0 ≤ j < p, k 6= 0

,

(
j1 j2 0 p
0 k 0 0

)
0 ≤ j1, j2 < p, k 6= 0


integrated over R+×F1× T 2+1, P2× T 3, P2×R3. These produce
the powerlike, 1/2-BPS Abelian, 1/4-BPS Abelian and non-Abelian
Fourier coefficients, respectively.
Due to the pole in 1/Φk , the naive unfolding procedure misses a
crucial contact term corresponding to ∇2F 4 amplitude in N = 4
supergravity.

Bern Davies Dennen 2013
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua V

We focus on the Abelian rank-two orbit G(2), integrated over
P2 × T 3. The integral over Ω1 in T 3 extracts the Fourier coefficient

C
[
− 1

2 |Q1|2 −Q1 · Q2
−Q1 · Q2 − 1

2 |Q2|2
; Ω2

]
=

∫
[0,1]3

dρ1dσ1dv1
eiπ(ρQ2

1+σQ2
2+2vQ1·Q2)

Φk (ρ, σ, v)

which is a locally constant function of Ω2.

For large R, the integral is dominated by a saddle point at

Ω?
2 =

R
M(Q,P)

Aᵀ
[

1
S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
A .

where (Q
P ) = A(Q1

Q2
), A =

(
k 0
j p

)
, |PR ∧QR| =

√
(P2

R)(Q2
R)− (PR ·QR)2.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua VI
Approximating C [ ; Ω2] by its saddle point value, we find

G(2)
αβ,γδ =2R7

∑
Q,P∈Λ′r−6,6

3∑
`=1

P(`)
αβ,γδe

−2πi(a1Q+a2P)

× µ(Q,P)

|2PR ∧QR|
4−`

2
B 1

2 ,
4−`

2

[
2R2

S2

(
1 S1
0 S2

)(
|QR|2 PR ·QR

PR ·QR |PR|2
)(

1 0
S1 S2

)]
where

µ(Q,P) =
∑

A∈M2(Z)/GL(2,Z)

A−1( Q
P )∈Λ⊗2

r−6,6

|A|C
[
A−1

(
− 1

2 |Q|
2 −Q · P

−Q · P − 1
2 |P|

2

)
A−ᵀ; Ω?

2

]

and B is the same "double Bessel function" encountered in ∇4R4,

Bν,δ(Z ) =

∫ ∞
0

dt
t1+s e−πt−πTrZ

t Kδ
(

2π
t

√
|Z |
)
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua VII

In the limit R →∞, using Bν,δ(Z ) ∼ e−2π
√

TrZ+2
√
|Z |, one finds

that the contributions are suppressed as e−2πRM(Q,P).

In ‘primitive’ cases where only A = 1 contributes, µ(Q,P) agrees
with the helicity supertrace Ω6(Q,P; za), evaluated with the
correct contour prescription. It also refines earlier proposals for
counting dyons with ‘non-primitive’ charges.

Cheng Verlinde 2007; Banerjee Sen Srivastava 2008; Dabholkar Gomes Murthy 2008

There are exponentially suppressed corrections due to the
discrepancy between C [ ; Ω2] and its saddle point value.
Presumably these terms give the instanton/anti-instanton effects
sourced by the square of the (∇Φ)4 coupling in the Ward identity.
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Conclusion - Outlook I

∇2(∇Φ)4 couplings in D = 3,N = 4 string vacua nicely
incorporate degeneracies of 1/4-BPS dyons in D = 4, and explain
their hidden modular invariance. They give a precise
implementation of Gaiotto’s idea that 1/4-BPS dyons are (U-duals
of) heterotic strings wrapped on genus-two Riemann surfaces.
A similar story presumably relates ∇6R4 couplings in N = 8 string
vacua and degeneracies of 1/8-BPS dyons, but details remain to
be worked out.

BP 2015; Bossard Kleinschmidt 2015
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Conclusion - Outlook II

In D = 4,N = 2 string vacua, the appropriate coupling capturing
degeneracies of 1/2-BPS black holes is the metric on the
vector-multiplet moduli spaceMV after compactification on a
circle. It is related by T-duality to the hypermultiplet moduli space
MH . Hopefully, progress on understandingMV andMH will allow
new precision tests of BPS black holes, and provide new ways of
computing Donaldson-Thomas invariants...

Alexandrov BP Vandoren 2008, Alexandrov Banerjee Manschot BP 2016

From a mathematical viewpoint, higher-genus modular integrals
are an interesting source of new automorphic objects beyond
Eisenstein series, which satisfy Poisson-type equations with
sources.
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