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Introduction

Almost 25 years after Strominger and Vafa’s breakthrough, BPS
black holes continue to haunt a number of mathematical
physicists. One reason is that they lie at the intersection of deep
questions in quantum gravity and in mathematics.

The net number of BPS states with fixed electro-magnetic charge
γ, called BPS index Ω(γ), is known exactly in most string
backgrounds with N ≥ 4 supersymmetry. This is not yet so in
N = 2 string vacua such as type IIA on a generic CY3.
Part of the reason is that Ω(γ, z) depends on the moduli z in an
intricate way, due to wall-crossing phenomena associated to BPS
bound states with any number of constituents. The moduli space
itself receives quantum corrections, unlike in N ≥ 4.
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Introduction

On the math side, Ω(γ, z) are the generalized Donaldson-Thomas
invariants of the category D(X ) of coherent sheaves on X .
Roughly, Ω(γ, z) is the Euler number of the moduli space of stable
sheaves with Chern character γ ∈ Heven(X ), but details are subtle.

Kontsevich ’94; Douglas ’00 Bridgeland ’07; Bayer Macri Toda ’11

For n D0-bound branes, one expects Ω(nδ, z) = −χX for any n, z.
For D2-D0 bound states, Ω(γ) are known as genus 0
Gopakumar-Vafa invariants (GV), related to Gromov-Witten (GW)
invariants and computable using mirror symmetry.

Gopakumar Vafa ’98; Huang Klemm Quackenbush ’06

For D6-D2-D0 bound states for single unit of D6-brane charge at
large volume, Ω(γ, z) are the standard Donaldson-Thomas
invariants, related to higher-genus GV invariants.

Thomas’ 99; Maulik Nekrasov Okounkov Panharipande ’04
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Introduction

D4-D2-D0 black holes can be realized by wrapping an M5 on a
compact 4-cycle P ⊂ X , hence are described by a 2D
superconformal field theory. The generating series of BPS indices
(=VW invariants) is expected to be modular under SL(2,Z). The
central charge of the SCFT predicts the correct entropy at large
charge, but exact indices are known only in a handful of cases.

Maldacena Strominger Witten’98; Gaiotto Strominger Yin’06; Denef Moore ’07

Alternatively, by reducing along T 2, D4-D2-D0 branes on a rigid
4-cycle P are described by Vafa-Witten theory on P. Unless the
divisor P is irreducible, the generating series of VW invariants is
expected to be a (vector-valued) mock modular form, with a
precise modular anomaly.

Minahan Nemeschansky Vafa Warner’98

Alexandrov Banerjee Manschot BP’16-19; Dabholkar Putrov Witten ’20
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Toric CY3, quivers and brane tilings

In this talk, I will consider BPS states in type IIA string theory
compactified on a non-compact toric CY threefold. In that case,
the category of branes D(X ) is isomorphic to the category of
representations of a certain quiver with superpotential (Q,W ).

The nodes of Q corresponds to a basis of absolutely stable
branes on X , whose bound states generate the BPS spectrum.
For X = C3/Γ, these are the fractional branes; for X = KS, these
are elements of an exceptional collection on S.

Douglas Moore’96; Herzog Walcher’03; Aspinwall Melnikov’04

The quiver Q and superpotential W are conveniently summarized
by a brane tiling, or equivalently a periodic quiver.

Franco Hanany Kenneway Vegh Wecht’05

The dimension vector d and stability parameters ζ can be
deduced from the Chern vector γ and CY moduli z.
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For toric CY3, attractor indices almost always vanish !

Since the quiver has oriented loops, the indices Ω(γ, z) = Ω(d , ζ)
are in general difficult to compute. We claim that quivers
associated to toric CY3 are special: the attractor indices

Ω?(d) = Ω(d , ζ∗(d))

always vanish, except when they can’t !

More precisely, for X = KS where S is a Fano surface, we
conjecture that Ω?(d) = 0 except

Ω?(. . . ,0,1,0, . . . ) = 1 for the fractional branes
Ω?(n,n, . . . ,n) = −χX for n D0-branes

Beaujard Manschot BP’20; Mozgovoy BP’20

More generally, for toric CY3 singularities, we claim that Ω∗(d) = 0
unless da = δa,` or d lies in (a subspace of) the kernel of the Dirac
pairing (i.e. 〈d ,d ′〉 = 0 for all d ′).
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Introduction

If correct, this conjecture allows to compute the BPS index Ω(γ, z)
for any γ, z by using the flow tree formula, or one of its variants.

Denef Green Raugas’01; Denef Moore’07; Manschot’10; Alexandrov BP ’18

The conjecture is supported by computing

for X = KS, the BPS indices for D4-D2-D0 branes wrapped on S,
and comparing with known results for Vafa-Witten invariants on S.

Beaujard Manschot BP’2020

for any brane tiling, the framed BPS indices for D6-D4-D2-D0
branes in the non-commutative chamber, and comparing with the
combinatorics of molten crystals [BP Mozgovoy’20]
Other arguments, including computations of refined DT invariants
for trivial stability and condition and exponential (spectral) networks.

Banerjee Longhi Romo’20

The fact that Ω?(γ) = O(1) (and apparently ΩL2

S (γ) = 0 !) is
disappointing but consistent with gravity being decoupled.
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Outline

1 The attractor flow tree formula for quivers

2 Toric CY3 and brane tilings

3 Unframed indices and VW invariants

4 Framed indices and molten crystals

5 Conclusion
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Quiver quantum mechanics

Consider a SUSY quantum mechanics in 0 + 1 dimensions,
obtained by reducing N = 1 gauge theory in 3 + 1 dimension, with
matter content encoded in a quiver: each node ` = 1...K
represents a U(d`) vector multiplet, each arrow from k to `
represents a chiral multiplet Φα

k ,` in (d`, d̄k ) representation of
U(d`)× U(dk ). [Denef ’02]

The ranks {d`} are encoded in a dimension vector γ =
∑

d`γ` in a
lattice Γ, endowed with an antisymmetric Dirac-Schwinger pairing
〈γ, γ′〉 =

∑
γk`dkd ′` where γk` is the skew-adjacency matrix (the

number of arrows from node k to node ` counted with sign).
In addition, one must specify Fayet-Iliopoulos terms ζ` ∈ R and (in
presence of closed oriented loops) a superpotential W (Φ).
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presence of closed oriented loops) a superpotential W (Φ).
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Quiver quantum mechanics

On the Higgs branch, the moduli space of classical SUSY vacua
MH(γ, ζ) is the solutions of the F-term and D-term equations
modulo set gauge equivalence,

∀` :
∑

γ`k>0

Φ∗`k T a Φ`k −
∑

γk`>0

Φ∗k` T a Φk` = ζ` Tr(T a)

∀k , `, α : ∂Φk`,αW = 0

Equivalently,MH is the moduli space of stable quiver
representations with potential, an open subspace of solutions of
F-term equations modulo the complexified gauge group.
’stable’ means that µ(γ′) < µ(γ) for any proper subrepresentation
with dimension vector γ′ < γ, where µ(γ′) = (

∑
` ζ`d

′
`)/
∑

d ′` is the
slope. [King’94]
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Quiver quantum mechanics

BPS states correspond to Dolbeault cohomology classes of
degree (p,q) on inMH(γ, ζ), counted by the Hodge polynomial

Ω(γ, y , t , ζ) =
2d∑

p,q=0

hp,q(MH(γ, ζ)) (−y)p+q−d tp−q

The fugacity y keeps track of angular momentum JL
3 , while t is

conjugate to JR
3 inside R-symmetry group SU(2)L × SU(2)R.

The refined BPS index Ω(γ, y , ζ) = Ω(γ, y ,1/y , ζ) (the χy2-genus).
When Dolbeault cohomology is supported in degree p = q, it
coincides with the Poincaré polynomial. In either case, it reduces
to the Euler number in the unrefined limit y → 1.
Ω(γ, y) also counts BPS states on the Coulomb branch, but that
interpretation is subtle due to scaling solutions.
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Primitive wall-crossing

The DT invariants Ω(γ, y , ζ) for γ ∈ Span(γ1, γ2) jump on walls
where µ(γ1) = µ(γ2). For primitive dimension vectors γ1,2 with
Dirac-Schwinger pairing γ12 = 〈γ1, γ2〉,

∆Ω(γ1 + γ2, y) = (−1)γ12
yγ12 − y−γ12

y − 1/y
Ω(γ1, y)Ω(γ2, y)

Physically, a two-centered bound state with spin degeneracy
2j + 1 = |γ12| appears/disappears. [Denef Moore ’07]

For more general charges, it is useful to introduce the rational
invariants

Ω̄(γ, y) =
∑

m|γ

1
m

y − 1/y
ym − 1/ym Ω(γ/m, ym)
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General wall-crossing

The discontinuity across the hyperplane where µ(γ1) = µ(γ2) is
then given by a universal wall-crossing formula.

Konsevitch Soibelman’08, Joyce Song’08

On physical grounds, we expect and get

Ω̄(γ, y , ζ+) =
∑

γ=
∑
αi

gWC({αi}, y)

|Aut({αi})|
∏

i

Ω̄(αi , y , ζ−)

where |Aut({αi})| is a Boltzmann symmetry factor, and
gWC({αi}, y) is the index for Abelian quiver quantum mechanics
with one node vi for each αi , and 〈αi , αj〉 arrows from vi to vj . This
is computable using localisation on the Coulomb branch, or using
Reineke’s formula on the Higgs branch.

Reineke ’02; Manschot BP Sen ’10
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Attractor flow and attractor indices

For spherically symmetric black holes in N = 2 supergravity, the
moduli flow from z∞ to zγ determined by the attractor mechanism:

Im[e−iαX Λ] = qΛ

Im[e−iαFΛ] = pΛ

⇒ ∀γ′ Im[e−iαZγ′ ] = −〈γ′, γ〉
Ferrara Kallosh Strominger’95

Similarly, in quiver quantum mechanics there is a particular choice
of stability parameters where 2-center bound states are ruled out,

ζ?k (γ) = −
∑

`

γk`d ` = −〈γk , γ〉

known as attractor point or self-stability [Manschot BP Sen ’13, unpublished]
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Attractor flow and attractor indices

The full spectrum can be constructed as bound states of these
attractor BPS states, labelled by attractor flow trees:

5

γ1

γ

γ

γ4

γ
3

2

Denef ’00; Denef Greene Raugas ’01; Denef Moore’07; Manschot ’10
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Wall-crossing and attractor indices

The flow tree formula allows to express Ω̄(γ, y , ζ) in terms of the
attractor indices Ω̄?(αi , y) := Ω̄(αi , y , ζ∗(αi))

Ω̄(γ, y , ζ) =
∑

γ=
∑
αi

gtr({αi}, y , ζ)

|Aut({αi})|
∏

i

Ω̄∗(αi , y)

Manschot’10, Alexandrov BP ’18

where

gtr({αi}, y , ζ) =
∑

T

∏

v∈VT

(−1)γLR
yγLR − y−γLR

y − 1/y

Here T runs over all possible stable flow trees T ending on the
leaves α1, . . . , αn, v runs over all vertices and γLR = 〈γL(v), γR(v)〉.

The flow tree formula is combinatorial, and does not require
integrating the attractor flow ! It is now a mathematical theorem.

Mozgovoy ’20, Argüz Bousseau ’21
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Toric CY3 and brane tilings

Toric CY3 are non-compact CY three-folds which admit an action
of (C×)3 having a dense orbit. The category of coherent sheaves
D(X ) is isomorphic to the category of representations D(Q,W ) of
a quiver with superpotential.

The quiver (Q,W ) are conveniently summarized by a brane tiling,
i.e. a bipartite graph embedded in a two-torus. Tiles correspond to
gauge groups, edges to chiral fields, and black/white vertices to
monomials in the superpotential. The dual graph is a periodic
quiver Q̃ covering Q.
Bound states with a D6-brane or a non-compact D4 are described
by a framed quiver (Q∞,W∞) with an extra ungauged node and
extra arrows∞→ ` or `→∞.
The same toric CY3 may be described by different tilings/quivers,
related by Seiberg duality.
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Example: C3/Z3 ∼ KP2

N1

N2

N3ND6

W = εijk Φi
12Φj

23Φk
31

24 SERGEY MOZGOVOY AND BORIS PIOLINE

of the D-brane charge � =
Pr

i=1 Ni�i on a basis of charges �i 2 H⇤(X) associated to a set

of ‘elementary D-branes’, and the net number of chiral fields |{�↵
ij}| � |{�↵

ji}| going from i

to j is given by (minus) the skew-symmetrized Euler form �h�i, �ji. The full BPS spectrum,

for given stability parameters ✓i, is then obtained as supersymmetric bound states of these

elementary constituents, represented by BPS ground states of the quiver quantum mechanics.

In the presence of an infinitely heavy defect of charge �f , such as a D6-brane wrapping X or

D4-branes wrapping non-compact divisors in X, the quiver quantum mechanics obtains an

additional gauge group U(N1) and arrows �↵
1,i,�

↵
i,1, and computes the number of framed BPS

states.

Mathematically, BPS grounds states are cohomology classes on the moduli space of ✓-

semistable representations of the quiver with potential (Q, W ). The ‘elementary D-branes’, or

‘fractional branes’ in the context of orbifolds, correspond to a tilting sequence T =
Lr

i=1 Ti

in the derived category of coherent sheaves Db(coh X), such that Ti generate Db(coh X) and

Extk(T, T ) = 0 for k 6= 0. When X is the total space of the canonical bundle on a complex

surface S, a tilting sequence T can be constructed by lifting a strong exceptional collection of

line bundles on S [54, 11]. Note however that the lifted sequence need not be exceptional, in

particular End(Ti) = �(X, OX) may have dimension > 1. The triangulated category Db(coh X)

is then equivalent to the category of representations of the Jacobian algebra J(Q, W ) for a

quiver with potential (Q, W ) associated to T [10, 9].

For a wide class of toric CY threefolds, the construction of the tilting sequence T can be

by-passed and the quiver (Q, W ) can be read o↵ from a brane tiling [52, 44]. The latter is

a bipartite graph G embedded in a 2-dimensional (real) torus T, or equivalently a periodic

bipartite graph G̃ on R2. Each vertex carries a color, black or white, such that edges connect

only vertices with di↵erent colors. The quiver Q is then the dual graph of G: the vertices i 2 Q0

correspond to faces of G (i.e. the connected components of T\G) and the arrows a : i! j 2 Q1

to edges common to faces i and j. The arrows are oriented so that they go clockwise around

white vertices of G and go anti-clockwise around black vertices of G.

Figure 3. A bipartite graph (in black and white) and the dual quiver (in red and blue)

Let Q2 be the set of connected components of T\Q, or equivalently the set of vertices of G.

Let Q+
2 and Q�

2 correspond to the sets of white and black vertices of G. For any face F 2 Q2,

let wF be the cycle obtained by going along the arrows of F (defined up to a cyclic shift). The

potential W is then

(4.11) W =
X

F2Q+
2

wF �
X

F2Q�
2

wF .

B. Pioline (LPTHE, Paris) Attractor indices and brane tilings Zoom@Chennai, 22/03/2021 20 / 42



Outline

1 The attractor flow tree formula for quivers

2 Toric CY3 and brane tilings

3 Unframed indices and VW invariants

4 Framed indices and molten crystals

5 Conclusion

B. Pioline (LPTHE, Paris) Attractor indices and brane tilings Zoom@Chennai, 22/03/2021 21 / 42



Quivers from exceptional collections

For local surfaces X = KS, a basis of branes on D(X ) (aka tilting
sequence) can be constructed from an exceptional collection on
S, i.e. an ordered sequence of (virtual) sheaves (E1, . . . ,Er ) s.t.

Hom(Ek ,Ek ) = C , ExtmS (Ek ,Ek ) ∀m > 0
ExtmS (Ek ,E`) = 0 ∀(m ≥ 0, 1 ≤ ` < k ≤ r)

There are two types of arrows k → `: forward arrows from
Ext1(Ek ,E`) with k < ` and backward arrows from Ext2(E`,Ek )
with k > `. The net number is computable from the Euler form

χ(E ,E ′) =
∑

m≥0

(−1)m dim ExtmS (E ,E ′) =

∫

S
ch(E∗) ch(E ′) Td(S)

The dimension vector d and FI parameters ζ can be related to the
Chern vector γ and moduli z using γ =

∑
N`γ`, ζ` = Im[ZγZγ` ].
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Sheaves on P2

N1

N2

N3

E1 = O γ1 = [1,0,0]

E2 = Ω(1)[1] γ2 = [−2,1, 1
2 ]

E3 = O(−1)[2] γ3 = [1,−1, 1
2 ]

χ(Ek ,E`) =




1 0 0
−3 1 0
3 −3 1




[Le Potier’94]

Dimension vector: (∝ (1,1,1) for D0-branes)

(N1,N2,N3) = −
(3

2c1 + ch2 + rk, 1
2c1 + ch2,−1

2c1 + ch2
)

For canonical polarization J = ρc1(S) with ρ� 1,

ζ =3ρ (N2 − N3,N3 − N1,N1 − N2) + (−N2+N3
2 , N1+3N3

2 , N1−3N2
2 )
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Canonical vs. attractor chamber

For any X = KS, the canonical chamber J = ρ c1(S) in the large
volume limit translates into the anti-attractor chamber,

ζk = ρ
∑

`

γk` N` +O(1)

In this chamber, the backward arrows Φ ∈ I vanish, and one is left
with the forward arrows (or Beilinson quiver Q′ = Q\I), subject to
the relations {∂W/∂Φ = 0,Φ ∈ I}.
The dimension of the moduli space of stable sheaves coincides
with the dimension of the moduli space of stable representations,

dC =
∑

a/∈I

NkN` −
∑

a∈I

NkN` −
∑

N2
` + 1 = 1− χ(E ,E)

In contrast, in the attractor chamber ζk = −ρ ∑` γk`N`, the
expected dimension is always negative, unless the dimension
vector is one of the basis vectors γ`, or lies in the kernel of 〈−,−〉.
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Sheaves on P2

N1

N2

N3

Φ12 Φ23

Φ31 = 0

N1 =−
(3

2c1 + ch2 + rk
)

N2 =−
(1

2c1 + ch2
)

N3 =−
(
−1

2c1 + ch2
)

• In canonical (anti-attractor chamber), the expected dimension is
positive at large instanton number c2 ∼ − ch2,

dC =3(N1N2 + N2N3 − N3N1)− N2
1 − N2

2 − N2
3 + 1

=c2
1 − 2 rk ch2− rk2 +1

This requires ζ1 ≥ 0, ζ3 ≤ 0 hence − rk ≤ c1 ≤ 0.
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Attractor invariants for KP2

In attractor chamber ζ? = 3 (N2 − N3,N3 − N1,N1 − N2), the
expected dimension is almost always negative:

d?C = 1−Q(γ) +





2
3N3ζ

?
3 − 2

3N1ζ
?
1 ζ?1 ≥ 0, ζ?3 ≤ 0 (Φ31 = 0)

2
3N1ζ

?
1 − 2

3N2ζ
?
2 ζ?2 ≥ 0, ζ?1 ≤ 0 (Φ12 = 0)

2
3N2ζ

?
2 − 2

3N3ζ
?
3 ζ?3 ≥ 0, ζ?2 ≤ 0 (Φ23 = 0)

Q(γ) = 1
2(N1 − N2)2 + 1

2(N2 − N3)2 + 1
2(N3 − N1)2

hence d∗C < 0 unless γ ∈ {(1,0,0), (0,1,0), (0,0,1), (n,n,n)}.

We conjecture that Ω?(γ) = 0 except in those cases. We set
Ω?(1,0,0) = Ω?(0,1,0) = Ω?(0,0,1) = 1, The index Ω?(n,n,n),
corresponding to n D0-branes will be specified later.
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VW invariants on P2

Using the flow tree formula, and assuming the conjecture, we find
that the index in canonical chamber agrees with VW invariants on
P2 previously computed using blow-up/wall-crossing formulae !

Goettsche’90, Klyachko’91, Yoshioka’94, Manschot’11-14

[N; c1; c2] (N1,N2,N3) Ω(γ,−ζ?(γ))

[1; 0; 2] (1,2,2) y4 + 2y2 + 3 + . . .

[1; 0; 3] (2,3,3) y6 + 2y4 + 5y2 + 6 + . . .

[2; 0; 3] (1,3,3) −y9 − 2y7 − 4y5 − 6y3 − 6y − . . .
[2;−1; 2] (1,2,1) y4 + 2y2 + 3 + . . .

[2;−1; 3] (2,3,2) y8 + 2y6 + 6y4 + 9y2 + 12 + . . .

[3;−1; 3] (1,3,2) y8 + 2y6 + 5y4 + 8y2 + 10 + . . .

[4;−2; 4] (1,3,1) y5 + y3 + y + . . .
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Attractor invariants for Fano surfaces

We conjecture that the vanishing of attractor invariants holds for
any CY threefold X = KS where S is a Fano surface. This includes
the toric cases S = P1 × P1 and S = dPk≤3 , but also the non-toric
del Pezzo surfaces dP4≤k≤8.

For those cases, we have computed VW invariants using the flow
tree formula, under the assumption that Ω?(γ, y) = 0 unless
γ = γk or 〈γ, ·〉 = 0, and found agreement with independent
results based on blow-up and wall-crossing formulae.
The vanishing of Ω?(γ, y) is supported by similar arguments about
expected dimension, using ad hoc quadratic form Q(γ).
The computation of D4-D2-D0 indices are insensitive to the value
of Ω∗(nδ), the BPS index for n D0-branes on X . This value can be
fixed by considering D6-brane bound states.
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D6-D4-D2-D0 bound states

In presence of a non-compact D6-brane, the quiver acquires an
additional (ungauged) framing node with fk arrows∞→ `. For
X = KS, fk = χ(OS,Ek ).

For simplicity we assume a single framing arrow, fk = δk ,`. The
framed DT invariants Ω(1,d) in the non-commutative (NC)
chamber ζ∞ > 0, ζk < 0 can be computed by torus localization.

Mozgovoy Reineke’08

Let J(Q,W ) the Jacobian algebra (i.e. the path algebra modded
out by relations ∂aW = 0), and ∆` the set of equivalence classes
of paths which start at the vertex `. It admits a partial order with
u ≤ v if there exists a path w such that wu ∼ v . ∆i can be
represented as a pyramid or crystal.
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D6-D4-D2-D0 bound states

In the NC chamber, toric fixed points are in one-to-one
correspondence with finite ideals C ⊂ ∆`, i.e. subsets such that
u ∈ C whenever ∃v ∈ C with u ≤ v . They can be represented as
molten pyramids or molten crystals.

Each ideal C contributes ±1 to the (unrefined, framed) index
ΩNCDT(1,d) with d =

∑
u∈C du. The generating series is

Z`(x) =
∑

C⊂∆`

(−1)d`+χQ(d ,d) xd

Mozgovoy Reineke’08

where χQ(d ,d ′) =
∑

a∈Q0
dad ′a −

∑
a:i→j dad ′b is the Euler form.

Using the flow tree formula for quiver Q̃ with Ω?(1,d) = 0 for
d 6= 0, we can read off the (unrefined, unframed) attractor
invariants Ω?(0,d).
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Example: D6-D0/C3

1

W = x [y , z]
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The Jacobian algebra is J(Q,W ) = C[x , y , z]. Ideals correspond
to plane partitions, or molten configurations of the crystal N3.

The generating function of D6-D0 indices is [MacMahon 1916]

M(x) =
∞∏

k=1

(1−xk )−k = 1+x +3x2 +6x3 +13x4 +24x5 +48x6 +. . .

The unframed, unrefined indices are Ω(n) = −1 for n D0-branes.
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Example: D6-D2-D0 on the conifold

N0 N1

1

W = A1B1A2B2 − A1B2A2B1
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The generating function of D6-D2-D0 indices is [Szendroi’07]

Z0 = M(−x0x1)2
∏

k≥1

(1 + xk
0 (−x1)k−1)k (1 + xk

0 (−x1)k+1)k

= 1 + x0 − 2x0x1 + (x0x2
1 − 4x2

0 x1) + (8x2
0 x2

1 − 2x3
0 x1) + . . .

The non-zero unframed indices are Ω(n,n) = −2, Ω(n,n ± 1) = 1.
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Example: D6-D4-D2-D0 on C3/Z3

N3
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The generating function of D6-D4-D2-D0 indices is

Z1 = 1 + x1 + 3x1x2 + 3x1x2
2 − 3x1x2x3 + 9x1x2

2 x3 + x1x3
2 − 3x2

1 x2x3 + . . .

This is consistent with the vanishing of all attractor indices except
Ω?(n,n,n) = −3 = −χ(KP2) for n D0-branes.
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Example: D6-D4-D2-D0 on C3/Z3
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NCDT invariants from attractor indices

This strategy applies to any brane tiling and allows to determine
the (unframed, unrefined) attractor indices by counting molten
crystals.
This confirms our conjecture for Fano surfaces, and indicates that
the vanishing of all attractor indices except Ω?(nδ) = −χX also
holds for smooth toric threefolds with more than one compact
divisor. Eg: C3/Z5, Y 3,2, . . .
For singular toric threefolds, such that the boundary of the toric
diagram contains lattice points in addition to the corners, one finds
Ω?(d) 6= 0 for some d in the kernel of 〈−,−〉. Eg: F2, PdP2,
C3/Z6, . . .
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Toric CY threefolds

F2 PdP2 Y 3,2

C3/Z5 C3/Z6(1,1,4) C3/Z6(1,2,3)
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NCDT invariants from attractor indices

Assuming the conjecture holds, refined NCDT invariants can be
computed for all d once we know Ω?(nδ, y). The latter can be
extracted from the motivic D6-D0 invariants of X :

Ω?(nδ, y) = (−y)−3 [X ] = −b6/y3 − b4/y − yb2 − y3b0

where bi are Betti numbers for cohomology with compact support.
Behrend Bryan Szendroï’09, Manschot BP Sen’10

For toric CY threefold, [X ] can be read off from the toric diagram:

Ω?(nδ, y) = −y−3 − (i + b − 3)y−1 − i y

where i and b are the number of internal and boundary lattice
points. For y = 1, Ω?(nδ) = −(2i + b − 2) = −χX is the number of
triangles in the toric diagram, by Pick’s theorem.
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Refined NCDT invariants for C3/Z3

The generating function of refined framed indices is

Z1 = 1 + x1 +
(

y2 + 1 + 1/y2
)(

x1x2 + x1x2
2

)

−
(

y3 + y + 1/y
)(

x1x2x3 + x2
1 x2x3

)

+
(

y4 + 2y2 + 3 + 2/y2 + 1/y4
)

x1x2
2 x3 + x1x3

2

−
(

y5 + y3 + y + 1/y + 1/y3 + 1/y5
)

x1x3
2 x3

+
(

y4 + 2y2 + 3 + 2/y2 + 1/y4
)

x1x2
2 x2

3

−
(

y5 + 2y3 + 3y + 2y + 1/y3
)

(x2
1 x2

2 x3 + x2
1 x3

2 x3) + . . .

These invariants can be confirmed by computing (unframed,
refined) DT invariants for trivial stability, and using wall-crossing.

Mozgovoy BP’20
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Implications for L2 and single-centered invariants

The motivic invariants count cohomology classes with compact
support onMH(γ, ζ), and are usually not invariant under y → 1/y .

Physical refined invariants should rather L2-cohomology classes,
and fit into complete SU(2)L multiplets. Under favorable
circumstances, they correspond to the common terms in Ω(γ, y)
and Ω(γ,1/y) [Lee Yi ’16]

If so, ΩL2

? (nδ, y) = −i(y + 1/y) for m D0-branes, where i is the
number of internal points, or compact divisors.

Beaujard BP Manschot ’20, Duan Ghim Yi ’20

Single-centered (or pure Higgs) invariants ΩS(γ, y) differ from
Ω?(γ, y) due to scaling solutions. There is circumstancial evidence
that ΩL2

S (γ, y) = 0 except for the basic D-branes !
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Summary and Outlook

There is overwhelming evidence for the claim that attractor
invariants for toric CY3 singularities always vanish, except when
they cannot ! Exceptional attractor invariants arise for toric
diagrams with lattice points on the boundary. The same seems to
hold in non-toric examples.

Our argument based on expected dimension ofMH(γ.ζ) falls
short of being a mathematical proof since the reduction to
Beilinson-type subquivers is assumed.
If true, this conjecture gives a new algorithm for computing refined
VW invariants and refined NCDT invariants. Can one refine the
crystal melting prescription ?
Does this shed light on the mock modular properties of generating
series of VW invariants ? How about Ω?/S(γ) for compact CY3 ?
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Thank you for your attention, and mind the wall !
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