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The OSV Conjecture

• Based on the observation that the Legendre transform of the BHW entropy has a simple
relation to the topological string amplitude, Ooguri, Strominger and Vafa (OSV) have
proposed a simple relation between micro-canonical degeneracies Ω(pI, qI) and the
topological string amplitude:

Ω(p
I
, qI) ∼

Z
dφ

I|Ψtop(p
I
+ iφ

I
)|2eφIqI (∗)

where Ψtop(X
I) = exp

`
iπ
2 F (XI)

´
is the topological wave function. Equivalently,X

qI∈Λel

Ω(p
I
, qI)e

−φIqI ∼
X

kI∈Λ∗
el

Ψ
∗
top(p

I
+ k

I
+ iφ

I
)Ψtop(p

I − k
I
+ iφ

I
) (∗∗)

• The ∼ sign in (**) allegedly denotes an equality to all orders in an expansion at large
charges (λpI, λqI), λ →∞. A non-perturbative generalization might hold upon
completing the perturbative topological string amplitude and specifying a contour.

• This conjecture has many problems: symplectic invariance, holomorphic anomalies, . . . but
does work amazingly well in some cases.
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OSV conjecture and quantum mechanics

• Performing a Wick rotation φI = iχI , (*) becomes

Ω(p
I
, qI) ∼

Z
dχ

I
Ψ
∗
top(p

I
+ χ

I
)Ψtop(p

I − χ
I
)e

iφIqI

This is recognized as the Wigner distribution associated to wave function Ψtop(p
I). In

ordinary quantum mechanics, this provides a semi-classical description of the state Ψtop in
terms of a probability density W (p, q) on phase space (in general non-positive).

• Defining
Ψp,q(χ) := e

iqχ
Ψtop(χ− p) := Vp,q ·Ψtop(χ)

this can be rewritten even more suggestively as

Ω(p, q) ∼
Z

dχ Ψ
∗
p,q(χ) Ψp,q(χ)

where the dependence on p, q is absorbed in Ψ: This is an overlap between two wave
functions. But of what physical system ?
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OSV conjecture and channel duality

• This is reminiscent of the familiar open/closed duality for conformal field theory on the
cylinder,

Tre−πtHopen = 〈B|e−
π
t Hclosed|B〉

where Hopen is the Hamiltonian generating translations in σ, Hclosed is the Hamiltonian
describing translations in τ , and |B〉 is the boundary state which encodes the boundary
conditions at τ = 0, t

τ

σ

• In this analogy, Ω(p, q) is the trace of the open string Hamiltonian in the Hilbert space with
charge (p, q), and Ψp,q is the closed string boundary state. For the analogy to hold, both
Hopen and Hclosed should vanish.

Ooguri Vafa Verlinde
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Topological amplitude and quantum radial flow

• Indeed, the near-horizon geometry AdS2 × S2 has the topology of a cylinder, and can in
principle be quantized in two ways:

(global or Poincaré) time ↔ Conformal Quantum Mechanics

Radial quantization ↔ Quantum Attractor Flow

(Both Hamiltonians vanish due to the diffeomorphism invariance.)

t

τ

The equality between the two channels is a mini-version of AdS/CFT.
Ooguri Vafa Verlinde;Dijkgraaf Gopakumar Ooguri Vafa; Gukov Saraikin Vafa

• In this interpretation, the topological amplitude is understood as a particular wave function
for the radial attractor flow, in a “mini-superspace” approximation where only spherically
symmetric geometries are retained.
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Radial BH quantization and the Universe wave function

• Radial quantization of black holes is not a new idea: in fact much work was done on this
problem in the gr-qc community, but yielded little insight on the nature of black hole
micro-states.

Cavaglia de Alfaro Filippov; Kuchar; Thiemann Kastrup; Breitenlohner Hellmann

• One novelty here is that one works in a SUSY context, for which the “mini-superspace”
truncation to spherically symmetric geometries, and omission of D-term interactions, has
(perhaps) some chance of being exact.

• Furthermore, the idea of holography supports the idea that the spectrum of the global time
Hamiltonian can be reconstructed from the radial wave functions.

• Further interest arises from the fact that the black hole attractor equations are very similar
to those that determine supersymmetric vacua in flux compactifications. Upon double
analytic continuation, the black hole wave function can (perhaps) be interpreted as the
Hartle-Hawking wave function of the Universe.

• Q: is there a physical principle that picks out Ψtop from the infinite dimensional SUSY
Hilbert space ?
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Outline of the lecture

• Our goal is to try and clarify these ideas, by considering situations with higher symmetry:
N = 8 and N = 4 SUGRA, or “very special” N = 2 SUGRA. The complexity of CY
geometry is jettisoned in favor of representation theory.

• For this we shall reinterpret the attractor equations for 4D black holes as (BPS) geodesic
motion on the scalar manifold M∗

3 of the 3D SUGRA obtained by reducing 4D SUGRA
along the time direction.

Breitenlohner Gibbons Maison, Gutperle Spalinski

• This geodesic motion is then quantized by replacing classical trajectories by functions on
M∗

3. BPS trajectories quantize into special (e.g. holomorphic) functions. When
M∗

3 = G3/K∗
3 is symmetric, the (BPS) Hilbert space may be understood in terms of

(unusually small) irreps of G3.
Gross Wallach; Kazhdan BP Waldron; Gunaydin Koepsell Nicolai

• Our main message is that, beyond the expected 4D U-duality symmetry, under which black
hole degeneracies ought to be invariant, there is a larger “spectrum generating” symmetry
G3, the 3D U-duality group , which underlies the black hole wave function. Exact
degeneracies should be expressed in terms of Fourier coefficients of automorphic forms
for G3(Z).

• Warning: work in progress, many loose ends remain.
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Plan of the lecture

• Attractor flow and geodesic motion

• Very special supergravities and the quasi-conformal representation

• The quantum attractor flow

• The automorphic black hole wave function

• Open problems
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Attractor flow and KK ∗ reduction

• Stationary solutions in 4D can be parameterized in the form

ds
2
4 = −e

2U
(dt + ω)

2
+ e

−2U
ds

2
3 , A

I
4 = ζ

I
dt + A

I
3

where ds3, U, ω, AI
3, ζI are independent of time. The D=3+1 theory reduces to a field

theory in 3 Euclidean dimensions.

• In contrast to the usual KK ansatz,

ds
2
4 = e

2U
(dy + ω)

2
+ e

−2U
ds

2
2,1 , A

I
4 = ζ

I
dy + A

I
3

where the fields are independent of y, we reduce on a time-like direction.

• For the usual KK reduction to 2+1D, the one-forms (AI
3, ω) can be dualized into

pseudo-scalars (ζ̃I, a). The 4D Einstein-Maxwell equations reduce to 3D gravity + scalars
living in a Riemannian space M3.
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KK → KK∗ + ν

• The KK∗ reduction is simply related to the KK reduction by letting (ζI, ζ̃I) → i(ζI, ζ̃I). As
a result, the scalar fields live in a pseudo-Riemannian space M∗

3, with non-positive
definite signature.

Breitenlohner Gibbons Maison; Hull Julia

• M∗
3 always has 2n + 2 isometries corresponding to the gauge symmetries of AI, ÃI, ω,

as well as rescalings of time t. The Killing vector fields satisfy the algebra

[p
I
, qJ] = 2δ

I
J k , [m, p

I
] = p

I
, [m, qI] = qI , [m, k] = 2k

• As we shall see shortly, black hole solutions correspond to geodesic motion on M∗
3; as the

notation suggests, the conserved charges associated to these isometries will be identified
to electric and magnetic charges, NUT charge and ADM mass.



CERN RTN WINTER SCHOOL - JAN 16-20, 2006 10

c-map and c ∗-map

• The reduction of tree-level 4D N = 2 SUGRA coupled to vector multiplets to 2+1
dimensions is well studied [hypers go along for the ride]: the Riemannian space is a
quaternionic-Kähler space, entirely determined by the tree-level prepotential in 4
dimensions:

ds
2
= 2(dU)

2
+ gij̄(z, z̄)dz

i
dz

j̄
+

1

2
e
−4U

“
da + ζ

I
dζ̃I − ζ̃Idζ

I
”2

−e
−2U

h
(ImN )IJdζ

I
dζ

J
+ (ImN−1

)
IJ

“
dζ̃I + (ReN )IKdζ

K
” “

dζ̃J + (ReN )JLdζ
L

”i
where

NIJ = τ̄IJ + 2i
(ImτIKXK)(ImτJLXL)

XKImτKLXL
, τIJ := ∂IJF

• This is known as the c-map of the original special Kähler manifold. This construction
originally arose in a purely 4D context, in relation with mirror symmetry.

Ferrara Sabharwal; de Wit Van Proyen Vanderseypen

• The manifold M∗
3 obtained by analytic continuation (ζI, ζ̃I) → i(ζI, ζ̃I) is sometimes

called “para-quaternionic-Kahler manifold”.
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Quaternionic-Kähler geometry

• Recall that a quaternionic-Kähler space is a manifold with special holonomy
USp(2)× USp(2n) ⊂ SO(4n). It admits three almost complex structures J i satisfying
the quaternion algebra,

J
i · Jj

= −δ
ij

+ ε
ijk

J
k

The associated 2-forms Ωi(X, Y ) = g(X, J iY ) are covariantly constant with respect to a
USp(2) = SU(2) connection pi whose curvature is proportional to Ωi,

dΩ
i
+ ε

ijk
p

j ∧ Ω
k

= 0 , dp
i
+ ε

ijk
p

j ∧ p
k

= −iΩ
i

• The USp(2)× USp(2n) connection p + q may be obtained from a covariantly constant
quaternionic viel-bein V αΓ, α = 1, 2, Γ = 1, .., 2n such that

Ω
i
= εαβ (σ

i
)
β
γρΓΓ′V

αΓ ∧ V
γΓ′

, ds
2
= εαβρΓΓ′V

αΓ ⊗ V
βΓ′

, (d + Ω)V = 0

• The quaternionic viel-bein controls the fermionic SUSY variations,

δχ
Γ

= V
αΓ

i ∂µφ
i
σ

µβ
α εβ + O(χ

2
)

Bagger Witten
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The c-map is quaternionic-Kähler

• For later reference, let us record the quaternionic viel-bein for the c−map,

V
αΓ

=

0BBB@
u v

eA EA

−v̄ ū

−ĒA ēA

1CCCA
where eA = eA

i dzi is a viel-bein of the Special Kähler manifold, eA
i ēAj̄ = gij̄, and

u = e
K/2−U

X
I

“
dζ̃I +NIJdζ

J
”

v = −dU +
i

2
e
−2U

“
da + ζ

I
dζ̃I − ζ̃

I
dζI

”
E

A
= e

−U
e

A
i g

ij̄
f̄

I
j̄

“
dζ̃I +NIJdζ

J
”

• For the c∗-map, the same formalism goes through but reality conditions change:
ū = −u∗, Ē = −E∗
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Attractor flow and geodesic motion

• Now, restrict to spherically symmetric solutions, ds2
3 = N2(ρ)dρ2 + r2(ρ)dΩ2

2. The
sigma-model action becomes, up to a total derivative (gij is the metric on M∗

3):

S =

Z
dρ

»
N

2
+

1

2N

“
ṙ

2 − r
2
gijφ̇

i
φ̇

j
”–

• The lapse N can be set to 1, but it imposes the Hamiltonian constraint

HWDW = (pr)
2 −

1

r2
g

ij
pipj − 1 ≡ 0

Solutions are thus massive geodesics on the cone R+ ×M∗
3. This separates into

geodesic motion on M∗
3, times motion along r.

• BPS states need to have flat 3D slices, so we may set set N = 1, r = ρ from the outset:
A necessary condition for SUSY is therefore that geodesics be light-like.

• Keeping the variable r is important for defining observables such as the horizon area,
AH = e−2Ur2|U→−∞ and ADM mass MADM = r(e2U − 1)|U→0.
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Geodesic motion and conserved charges

• The isometries of M3 imply conserved Noether charges, whose Poisson bracket reflect
the Lie algebra of the isometries. In particular, the electric and magnetic charges satisfy an
Heisenberg algebra, whose center is the NUT charge k:

[p
I
, qJ] = 2δ

I
Jk

Note that the ADM mass does NOT Poisson-commute with (p, q, k).

• If k 6= 0, the 4D metric contains an off-diagonal term,

ds
2
4 = −e

2U
(dt + k cos θdφ)

2
+ e

−2U
[dr

2
+ r

2
(dθ

2
+ sin

2
θdφ

2
]

This implies that the metric has CTC’s at infinity.

• Bona fide 4D black holes need to have k = 0: this is a kind of classical limit. This meshes
well with the OSV conjecture, which identifies Ω(p, q) as the Wigner function of the
quantum wave function Ψ...Keeping k 6= 0 allows to greatly extend the symmetry.
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Geodesic flow on special quaternionic Kahler manifolds

• Let us now reproduce the attractor flow equations of BPS black holes in N = 2 SUGRA
from geodesic flow M∗

3 = c∗-map(M4). The conserved charges corresponding to the
shift isometries are

qI = −2e
−2U

h
(ImN )IJdζ

J
+ (ReN )IJ(ImN−1

)
JL

“
dζ̃L + (ReN )LMdζ

M
”i

+ 2 kζ̃I

p
I

= −2e
−2U

(ImN−1
)
IL

“
dζ̃L + (ReN )LMdζ

M
”
− 2 kζ

I

k = e
−4U

“
da + ζ

I
dζ̃I − ζ̃

I
dζI

”
• This can be inverted to express dζI, dζ̃I, da in terms of qI, pI, k, hence

u = −
i

2
e

K/2+U
X

I
h
qI − 2kζ̃I −NIJ(p

J
+ 2kζ

J
)
i

, v = −dU +
i

2
e

2U
k

e
A

= e
A
i dz

i
, E

A
= −

i

2
e

U
e

Ai
g

ij̄
f̄

I
j̄

h
qI − 2kζ̃I −NIJ(p

J
+ 2kζ

J
)
i
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SUSY geodesic flow and generalized attractor equations

• The BH solution preserves 1/2 SUSY iff there exists εα 6= 0 such that

δχ
Γ

= V
αΓ

µ σ
µβ
α εβ = V

αΓ
ε̃α = 0

Equivalently, the rectangular matrix V should have a zero eigenvector (1, λ):

−dU +
i

2
e

2U
k = −

i

2
λe

K/2+U
X

I
“

qI − kζ̃I −NIJ(p
J

+ kζ
J
)
”

dz
i

= −
i

2
λe

U
g

ij̄
f̄

I
j̄

“
qI − kζ̃I −NIJ(p

J
+ kζ

J
)
”

where λ is fixed by the requirement that dU is real.

• Using standard special geometry formulae this can be rewritten as

−dU +
i

2
e

2U
k = −

i

2
λe

U
Z , dz

i
= −iλ

|Z|
Z

e
U
g

ij̄
∂j̄|Z|

Z(p, q, k) = e
K/2

h
(qI − 2kζ̃I)X

I − (p
I
+ 2kζ

I
)FI

i
This generalizes the standard attractor flow equations to non zero NUT charge.
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Black holes and D-instantons

• The equivalence between the BH attractor equations and geodesic motion on c-map(M4)

was first observed in the study of spherically symmetric D-instanton solutions in N = 2

SUGRA in 5 dimensions: pI and qI are M2-brane instanton charge, while k is the
M5-brane instanton charge. In fact, such instantons are T-dual to stationary black holes.

Gutperle and Spalinski; Behrndt Gaida Luest Mahapatra Mohaupt

• This suggests how to incorporate higher-derivative corrections: by mirror symmetry, the
FhR2F 2h−2 corrections in 4D are mapped to

∞X
h=1

F̃h∂
2
S∂

2
S(∂C)

2h−2

which depend on the hypers only. The reduction to 3D gives rise to higher derivative
corrections to the geodesic motion.

Antoniadis Gava Narain Taylor

• Throughout this lecture, we will omit higher-derivative F-terms.
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The universal SU(2, 1) sector

• It is instructive to investigate the “universal sector”, which encodes the scale U , the
graviphoton electric and magnetic charges, and the NUT charge k (this amounts to
truncating all moduli away). The Hamiltonian is

H =
1

8
(pU)

2 −
1

4
e

2U
h
(pζ̃ − kζ)

2
+ (pζ + kζ̃)

2
i

+
1

2
e

4U
k

2

Gauge conditions are U = ζ = ζ̃ = a = 0 at τ = 0.

• The motion in the (ζ̃, ζ) plane is that of a charged particle in a constant magnetic field.
The electric, magnetic charges are the generators of translations; together with the
angular momentum

p = pζ̃ + ζk , q = pζ − ζ̃k , J = ζpζ̃ − ζ̃pζ

they satisfy the usual magnetic translation algebra

[p, q] = k , [J, p] = q , [J, q] = −p
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• The motion in the U direction is governed effectively by

H =
1

8
(pU)

2
+

1

2
e

4U
k

2 −
1

4
e

2U
h
p

2
+ q

2 − 4kJ
i

-1.5 -1 -0.5 0.5
U

-0.1

0.1

0.2

0.3

0.4

0.5

V

• At spatial infinity, pU becomes equal to the ADM mass, and J vanishes; hence the BPS
mass relation

M
2
+ k

2
= p

2
+ q

2

• At the horizon U → −∞, τ →∞, the last term is irrelevant and one recovers AdS2× S2

geometry with area

A = 2π(p
2
+ q

2
) = 2π

q
(p2 + q2)2

• Since V A
α is a 2× 2 matrix, SUSY is equivalent to H = det(V A

α ) = 0:

H =
1

2

˛̨̨
pU + ike

2U
˛̨̨2

−
1

4
e

2U |p + iq|2 = 0
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Geodesic motion and nilpotent co-adjoint orbits

• By construction, the Hamiltonian admits a symmetry G3 = SU(2, 1) Positive roots are the
standard Heisenberg algebra, negative roots correspond to Ehlers and Harrison
transformations.

Kinnersley

• The corresponding Noether charges can be arranged in a matrix Q valued in the (dual) Lie
algebra su(2, 1), such that

H = Tr(Q2
) , det(Q) = 0

The last condition can be checked explicitely, and is necessary in order for the motion not
to be over-determined. Different trajectories are related by the co-adjoint action
Q → hQh−1 of G on g∗.

• SUSY solutions have H = 0. The Cayley-Hamilton theorem for 3x3 matrices implies that
Q3 = 0 as a matrix equation (in the fundamental representation).

• In other words, the SUSY phase space is a nilpotent coadjoint orbit of G3. It inherits a
symplectic structure by the standard Kirillov-Kostant method.
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N = 8 attractors and geodesic motion

• For N = 8 SUGRA,

M3 = E8(8)/SO(16) , M∗
3 = E8(8)/SO

∗
(16)

• The SUSY variation is
δλA = εIΓ

I
AȦP

Ȧ

where εI is a vector of the R-symmetry group in 3 dimensions SO∗(16), P Ȧ is a 128
spinor of SO∗(16) corresponding to the tangent space to E8(8)/SO∗(16), and λA is a
conjugate spinor.

• This may be interpreted as a Dirac equation in 16 dimensions, where εI is the momentum,
hence εI should be light-like. In order to have an εI such that (*) vanishes, P Ȧ should be a
special spinor.

• For example, 1/2-SUSY trajectories correspond to pure spinors of SO∗(16), of real
dimension 58. This is the dimension of the minimal nilpotent orbit of E8(8).
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N = 4 attractors and geodesic motion

• For N = 4 SUGRA with nv vector multiplets,

M3 =
SO(8, nv + 2)

SO(8)× SO(nv + 2)
, M∗

3 =
SO(8, nv + 2)

SO(6, 2)× SO(2, nv)

• The SUSY variation is
δλ

a
A = εIΓ

I
AȦV

Ȧ,a

where εI is a vector R-symmetry group SO(6, 2), and V Ȧ,a (a = 1...nv), is a collection of
nv spinors of SO(6, 2) corresponding to the tangent space of
SO(8, nv)/SO(6, 2)× SO(2, nv − 2).

• SUSY solutions can be obtained by requiring that V Ȧ,a = λȦva. 1/2 SUSY trajectories
correspond to pure spinors of SO(6, 2), hence the dimension is nv + 5. This is the
dimension of the minimal nilpotent orbit of SO(8, nv).
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Very special N = 2 supergravity

• Recall that there is an interesting class of N = 2 supergravities where the moduli space is
a symmetric space. Their prepotential is purely cubic

F = N(X)/X
0
= CABCX

A
X

B
X

C
/X

0

where N(X) is the norm of a degree 3 Jordan algebra J . Equivalently, it is invariant under
Legendre transform in all variables.

Gunaydin Sierra Townsend

• The 4D moduli space is a symmetric space

M4 =
Conf(J)

Lorentzc(J)× U(1)

where Lorentzc(J) is the compact form of the reduced structure group of J , while Conf(J)

is the conformal group leaving the cubic light-cone N(X) = 0 invariant; Equivalently, it
leaves invariant the quartic

I4(p, q) = 4p
0
I3(qA)− 4q0I3(p

A
) + 4

∂I3(qA)

∂qA

∂I3(p
A)

∂pA
− (p

0
q0 + p

A
qA)

2
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Very special N = 2 attractors

• Upon compactification to 3 dimensions, the scalar manifold is a symmetric
quaternionic-Kahler manifold in Alexseevski’s classification:

M3 =
QConf(J)

Confc(J)× SU(2)
, M∗

3 =
QConf(J)

Conf(J)× Sl(2)

The 3D U-duality group G3 = QConf(J) is the called the quasi-conformal group of J , for
reasons to be explained shortly. It contains as subgroups the Heisenberg algebra
[pI, qJ] = δI

J together with the 4D U-duality group Conf(J), according to the 5-grading

QConf(J) = G−2 ⊕G−1 ⊕ [Conf(J)× R]0 ⊕ {pI
, qI}+1 ⊕ {k}+2

• The SUSY condition is that the Noether charge Q ∈ QConf(J) can be conjugated into the
grade +1 space. Equivalently,

[Ad(Q)]
5
= 0

Thus, the SUSY phase space is again a nilpotent coadjoint orbit of the 3D U-duality group.
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Q D = 5 D = 4 D = 3 D = 3∗

8 SU(n,1)
SU(n)×U(1)

SU(n+1,2)
SU(n+1)×SU(2)×U(1)

SU(n+1,2)
SU(n,1)×Sl(2)×U(1)

8 R× SO(n−1,1)
SO(n−1)

SO(n,2)
SO(n)×SO(2) ×

Sl(2)
U(1)

SO(n+2,4)
SO(n+2)×SO(4)

SO(n+2,4)
SO(n,2)×SO(2,2)

8 ∅ SU(2,1)
SU(2)×U(1)

SU(2,1)
Sl(2)×U(1)

8 ∅ Sl(2)
U(1)

G2(2)
SO(4)

G2(2)
SO(2,2)

8 Sl(3)
SO(3)

Sp(6)
SU(3)×U(1)

F4(4)
USp(6)×SU(2)

F4(4)
Sp(6)×Sl(2)

8 Sl(3,C)
SU(3)

SU(3,3)
SU(3)×SU(3)×U(1)

E6(+2)
SU(6)×SU(2)

E6(+2)
SU(3,3)×Sl(2)

24 SU∗(6)
USp(6)

SO∗(12)
SU(6)×U(1)

E7(−5)
SO(12)×SU(2)

E7(−5)
SO∗(12)×Sl(2)

8
E6(−26)

F4

E7(−25)
E6×U(1)

E8(−24)
E7×SU(2)

E8(−24)
E7(−25)×Sl(2)

10 Sp(2n,4)
Sp(2n)×Sp(4) ?

12 SU(n,4)
SU(n)×SU(4) ?

16 R× SO(n−5,5)
SO(n−5)×SO(5)

Sl(2)
U(1) ×

SO(n−4,6)
SO(n−4)×SO(6)

SO(n−2,8)
SO(n−2)×SO(8)

SO(n−2,8)
SO(n−4,2)×SO(2,6)

18
F4(−20)
SO(9) ?

20 SU(5,1)
SU(5)×U(1)

E6(−14)
SO(10)×SO(2)

E6(−14)
SO∗(10)×SO(2)

32
E6(6)

USp(8)

E7(7)
SU(8)

E8(8)
SO(16)

E8(8)
SO∗(16)
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The quasiconformal realization

• Due to the above 5-grading, QConf(J) admits a non-linear action on 2nv + 1 variables
Q = {pI, qI, k}. It can be shown that this action leaves the “relative quartic light-cone”
invariant:

∆(Q, Q
′
) = I4

“
p

I − p
′I

, q
I − q

′I
”

+ 2
“

k − k
′
+ p

′I
qI − p

I
q
′
I

”2

= 0

Gunaydin Koepsell Nicolai; Gunaydin Neitzke BP Waldron
• The physical interpretation of ∆(Q, Q′) is unclear at this moment, but seem to involve

bound states of two black holes with relatively non-local charges.
• Moreover, the action of QConf(J) preserves the orbit of (pI, qI) under the 4D U-duality

group. These orbits are characterized by the number of independent charges:
Ferrara Gunaydin

dim Constraint on (p,q) ]charges
2nv + 1 I4 6= 0 4

2nv I4 = 0 3

(5nv − 2)/3 ∂I4(p, q) = 0 2

nv + 2 ∂ ⊗ ∂|Conf(J)I4(p, q) = 0 1

The action of QConf(J) on the smallest orbit is in fact the minimal representation of
G3 = QConf(J).
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Co-adjoint orbits as phase spaces

• Recall that the Noether charges take values in the dual of the Lie algebra g∗. This is
foliated into orbits of the action of G. Each orbit is a symmetric space

OJ = {g−1
Jg, g ∈ G} = G/Stab(J)

where Stab(J) is the stabilizer of J .

• Each orbit carries a natural G-invariant symplectic form, known as the Kirillov-Kostant
symplectic form:

ω(X, Y ) = Tr([X, Y ]J)

on the tangent space around at J . This is evidently non-degenerate (its kernel is given by
the commutant of J , which is orthogonal to OJ). Globally,

ω = dθ , θ = Tr(g−1
dg J)

where g is a gauge-fixed element in G/Stab.
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Nilpotent orbits as small phase spaces

• Generic orbits correspond to orbits of semi-simple (=diagonalizable) elements, whose
stabilizer is U(1)r, where r is the rank. Their dimension is dim G− rankG (an even
number).

• However, when J has a non-trivial nilpotent part (i.e. non diagonal Jordan form), the
stabilizer is typically larger (and non semi-simple), hence the orbit is smaller. Nilpotent
orbits are classified by homomorphisms of Sl(2) into G. The smallest orbit is that of a root.

• As an example, the generic orbit of SU(2, 1) has dimension 6. The maximal (or regular)
nilpotent orbit has the same dimension 6, but the Casimirs are forced to vanish. The
minimal (or sub-regular) nilpotent orbit has dimension 4.

• As another example, the generic orbit of E8(8) has dimension 240. The smallest nilpotent
orbits have dimension . . . , 114, 112, 92, 58.
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The orbit method

• Since the action of G on OJ preserves the symplectic form, its action on functions on OJ

may be expressed in terms of Poisson brackets. The moment map Q for this symplectic
action takes value in the dual of the Lie algebra, in the orbit of J itself.

• The general “orbit method philosophy” indicates that (most of the) unitary representations
of G may be obtained by quantizing the Hamiltonian action of G on OJ .

• For example, the regular representation of G on L2(G/K) at fixed values of the Casimirs
(assuming that G is split and K is its maximal compact subgroup) is associated to the
orbit of a generic semi-simple element:

dim(G/Stab) = dim G− rankG , dim(G/K) = (dim G + rankG)/2

This is the Hilbert space obtained by quantizing geodesic motion on G/K, at fixed values
of the rankG Casimirs !

• Similarly, nilpotent orbits are associated to “unipotent representations” of G, of unusually
small dimension.
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The quantum attractor mechanism

• The standard way to quantize geodesic motion of a particle on R+ ×M∗
3 is to replace the

classical trajectories by wave functions on R+ ×M∗
3, satisfying the WdW equation"

−
∂2

∂r2
+

∆

r2
− 1

#
Ψ(r, U, z

i
, z̄

ī
, ζ

I
, ζ̃I, a) = 0

where ∆ is the Laplace-Beltrami operator on M∗
3.

• As a matter of fact, we have to deal with the geodesic motion of a superparticle, since it
comes by reduction from SUGRA in 4D. The wave function is therefore a section of the
spinor bundle on M∗

3, or equivalently a set of differential forms on M∗
3.

• Moreover, we are really interested in the SUSY Hilbert space, satisfying the stronger
constraint

∃ε/ ε
α ∂

∂XA
α

Ψ = 0
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The BPS Hilbert space

• At fixed (projective) ε, this implies that the function does not depend on half of the
coordinates XA. Ψ should be a holomorphic function with respect to the complex
structure determined by εα.

• Better to say, Ψ should be a holomorphic function (or an element of the sheaf cohomology
group Hl(T, O(−h)) for some l, h) on the twistor space T over the quaternionic-Kahler
space M3. This can be viewed as a higher dimensional, quaternionic version of the
Penrose - Atiyah Hitchin Singer twistor tranform.

Salamon; Baston

• More generally, it may be fruitful to consider the hyperkahler cone (HKC) over the
quaternionic-Kahler manifold M3, by including the cone direction r and an extra conjugate
variable together with the twistor fiber. The minimal representation of G, relevant for BPS
states with 16 supercharges, should then consist of tri-holomorphic functions on HKC.
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SUSY Hilbert space for motion on symmetric spaces

• In the case where M∗
3 is a symmetric space G/K, the Hilbert space H may be

decomposed into unitary representations ρi : G → Hi of G. Furthermore their should
exist a map between vectors of each representation and the unconstrained Hilbert space
L2(G/K).

• CAUTION: we are dealing with unitary representations of non-compact groups, hence of
infinite dimension. Their size may still be characterized by their Gelfand-Kirillov (or
functional) dimension, very roughly, the number d such that H ∼ L2(R

d).
• This can be achieved if the representation admits a (preferably unique) vector fK, called

“spherical vector”, invariant under K. Then

Ψ(g) = 〈fK, ρ(g)v〉

is K-invariant for any choice of v. If fK does not exist, any other finite-dim irrep of K

(called K-type) will do, and yield a section of some non-trivial bundle over G/H rather
than a function.

• Supersymmetric geodesic motion should correspond to unitary representations in a Hilbert
space HBPS of unusually small functional dimension: the unipotent representations
attached to the nilpotent orbits !
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Quaternionic discrete series and very special SUGRA

• Gross and Wallach have constructed unitary representations πh of G by considering the
sheaf cohomology group H1(T, O(−h)) on the twistor space T over the
quaternionic-Kahler space M3 = G/K. For h ≥ 2nv + 1, this representation is
irreducible, lies in the “quaternionic” discrete series and has functional dimension 2nv + 1.

• For lower values of h, the representation becomes decomposable. It admits a unitarizable
submodule π′h of smaller functional dimension:

k dim Constraint on (p,q)
≥ 2nv + 1 2nv + 1 I4 6= 0

nv − 1 2nv I4 = 0

(2nv − 2)/3 (5nv − 2)/3 ∂I4(p, q) = 0

(nv + 2)/3 nv + 2 ∂ ⊗ ∂|Conf(J)I4(p, q) = 0

• These are exactly the quasi-conformal action on (pI, qI, k), and its restrictions to the
various U-duality orbits !
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Quaternionic discrete series and N=4,8 SUGRA

• For example, for E8(−24), the unipotent reps attached to the smallest reps of dim
114,112,92,58 have dimension 57,56,46,29: those are exactly the dimensions of the
quasiconformal representations for 4,3,2,1 charge black holes ! Note that all preserve the
same amount of SUSY. Optimistically, h may be related to the order of the helicity
supertrace...

• After analytic continuation to E8(8), we obtain unipotent reps of dimension 57,56,46,29
corresponding to the BPS Hilbert space of 1/8 BPS, small 1/8 BPS, 1/4 BPS and 1/2 BPS
black holes !

• Since the maximal compact group changes, the spherical vector however will be different.

• For G = E8(8) (and all other simply laced groups in their split real form), the minimal
representation and its spherical vector have been constructed (although with a totally
different motivation). This relies crucially on the invariance of exp(I3(X)/X0) under
Fourier. Remarkably,

lim
β→∞

e
βHωfK = e

iI3(χA)/χ0

reproduce the tree-level topological amplitude !
Kazhdan Pioline Waldron; BP; Gunaydin Neitzke BP Waldron
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Physical interpretation of the wave function

• As usual in diffeomorphism invariant theories (e.g. quantum cosmology), the wave function
is independent of the “time” variable ρ, and some other variable should be chosen as a
“clock”.

• It is natural to use eU as the “radial clock”, since it goes from 0 at the horizon to ∞ at
spatial infinity. One could also use the black hole area A = e−2Ur2, although classically
its range depends on the charges. We expect the wave function to be peaked towards the
attractor values of the moduli and the horizon area as U → −∞.

• The natural inner product is obtained by using the Klein-Gordon inner product (also known
as Wronskian, or U(1) charge) at fixed values of U . E.g, the mean value of the horizon
area should be roughly

A ∼ e
−2U

Z
r

2
dr dz

i
dz̄

j̄
Ψ
∗ ↔

∂U Ψ|U→−∞

• Unfortunately, this product is famously known NOT to be positive definite. A possible way
out is “third quantization”, where the wave function Ψ becomes itself an operator... this
may describe the possible black hole fragmentation near the horizon...
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Topological amplitude and spherical vector

• Recall the OSV proposal for BH degeneracies

Ω(p, q) = 〈Ψp,q|Ψp,q〉 , Ψp,q(χ) = Vp,qΨtop = e
iqχ

Ψtop(χ− p)

interpreted as the overlap between two wave functions associated to each boundary of
AdS2. What is so special about Ψtop ? Do we really need to restrict to k = 0 ?

• On the other hand, we have shown that the proper Hilbert space for the quantum attractor
flow is a sub-module HBPS ⊂ H ∼ L2(M3), corresponding to the quantization of BPS
geodesic motion on M3. If M3 = G/K is a symmetric space, there is a distinguished
“spherical” vector fK which allows for the map HBPS → H

f → Ψ(g) = 〈f, ρ(g)fK〉

• We have found circumstancial evidence, at least at tree-level, that (the k → 0 limit of) the
spherical vector fK is in fact the topological string amplitude ! This seems to suggest a
1-parameter extension of the standard topological string amplitude...
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The automorphic attractor wave function

• This still leaves an infinite dimensional Hilbert space of BPS wave functions f . A natural
physical principle is to select a vector invariant under the 3D U-duality group G(Z):

θG(g) = 〈fG(Z), ρ(g)fK〉

is now a function on G(Z)\G3(R)/K, i.e. an automorphic form. This is in fact the general
construction of theta series for any group G !

• E.g, the Jacobi theta series

θ(τ) =
X
m∈Z

e
iπm2τ

fits into this frame: τ is an element of Sl(2)/U(1), ρ is the metaplectic representation

E+ = x
2

, E0 = x∂x + ∂xx , E− = ∂
2
x ,

fK is the ground state of the harmonic oscillator, and fG(Z) is the “Dirac comb” distributionP
m∈Z δ(x−m).

BP Waldron Les Houches lecture
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Automorphic forms and adeles

• By the “Strong Approximation Theorem”, fG(Z) is in fact the product over all primes p of the
spherical vector over the p-adic field Qp. For the Jacobi theta series,

X
m∈Z

δ(x−m) =
Y
p∈Z

γp(x) , γp(x) =


1 if x ∈ Zp

0 if x /∈ Zp

Indeed, γp(x) is invariant under p-adic Fourier transform !
• In the language of adeles and ideles,

G(Z)\G(R)/K(R) = G(Q)\G(A)/K(A)

where G(Q) is diagonally embedded in G(A) and K(A) =
Q

p G(Zp)×K(R), and the
theta series is written adelically as

θG(g) = 〈fG(Q), ρ(g)fK(A)〉

• The p-adic spherical vector is in fact known for the minimal representation of any
simply-laced, split group G.

Kazhdan Polischchuk
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Black hole degeneracies and Fourier coefficients

• In the general theory of automorphic forms, Fourier coefficients are associated to choices
of parabolic subgroups P = LN of G, and are indexed by characters ξ of P :

θ̂(ξ) =

Z
N(R)/N(Z)

ξ(g) θG(g) dg

• Choosing the maximal (Heisenberg) parabolic subgroup, N ∼ (ζI, ζ̃I, a) has two kinds of
characters,

ξp,q = e
i(qIζI+pIζ̃I)

or ξp,k = e
i(pIζ̃I+ka)

In the first case,

θ̂(p, q) =

Z
dζ

I
dζ̃I da e

i(qIζI+pIζ̃I)

X
(χI,y)∈Q

»
e

i(ζ̃IχI+ay)
f
∗
G(Z)(χ

I − ζ
I
, y)

– »
e

i(ζ̃IχI+ay)
fK(R)(χ

I
+ ζ

I
, y)

–
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Black hole degeneracies and Fourier coefficients (cont)

• The integral of a sets y = 0 and the integral over ζ̃I sets χI = pI , hence

θ̂(p, q) =

Z
dζ

I
e

iqIζI
f
∗
G(Z)(p

I − ζ
I
, 0) fK(R)(p

I
+ ζ

I
, 0)

which is tantalizingly close to the OSV for Ω(p, q) !

• Said otherwise, the automorphic attractor wave function is obtained by choosing the real
spherical vector at infinity, and the adelic spherical vector at the horizon. The Fourier
coefficients are by construction invariant under G4(Z).

• It remains to show that log Ωp,q ∼ 2π
p

I4(p, q), that the Fourier coefficients are integer,
and that they agree with the 4D/5D lift !
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Open problems

• Higher derivative corrections

• Rotating and multi-centered black holes in 4D

• Black holes and black rings in 5D

• Automorphic wave functions, and relations to other counting formulae

• Genuine N=2 theories and Kontsevitch’s “very wild guess conjecture”

• Time-dependence and midi-superspace models


